Czechoslovak Mathematical Journal

Oldtich Kowalski
Immersions of Riemannian manifolds with a given normal bundle structure. I
Czechoslovak Mathematical Journal, Vol. 19 (1969), No. 4, 676-696

Persistent URL: http://dml.cz/dmlcz/100928

Terms of use:

© Institute of Mathematics AS CR, 1969

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100928
http://dml.cz

Czechoslovak Mathematical Journal, 19 (94) 1969, Praha

IMMERSIONS OF RIEMANNIAN MANIFOLDS WITH
A GIVEN NORMAL BUNDLE STRUCTURE

Part I

OLpRicH KowALski, Praha

(Received November 5, 1968)

A start point for this investigation has been given by L. BoCEK in his paper [1].
There the author characterizes the isometric immersion of a Riemannian manifold M
into a manifold N with a constant curvature. This is done by a system of tensors given
on M, called fundamental tensors of the 1%, 2°¢, ..., etc. order. The main point is to
give a full system of integrability conditions for the problem. In [1] a rather complicat-
ed system of analytic conditions is found, some of them being formulated only implic-
itly.

Here we show that, under the assumption of maximality of the osculation spaces,
we can replace the compatibility and integrability conditions of [1] by a single system
of geometrical conditions called generalized Gaussian equations. Moreover, another
immersion problem is solved without any restriction on the dimension of the osculation
spaces. Here the fundamental tensors are replaced by fundamental forms, and the
integrability conditions consist of a system of generalized Gaussian equations and
a system of generalized Mainardi-Codazzi equations. Let us remark that the
integrability conditions are not identical with those studied in the book [2].

Throughout this paper the reader is expected to have a basic knowledge about
vector bundles, principal fibre bundles and connections in principal bundles. For the
sake of simplicity all manifolds, fibre bundles, sections, mappings, etc. are supposed
to be of the class C*.

CONNECTIONS IN VECTOR BUNDLES
Let p : E » M be a vector bundle over M, and 9'E the vector bundle over M of
1-jets of all local sections s : M — E. An (infinitesimal) connection in E is.a bundle

morphism D : E — @'E compatible with the projection 2'E — E. (Cf [4].)
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A covariant derivative in E, V, is given by the following properties:

a) for x e M, t € T(M), and for any local section U : M — E defined at x we have
VUE€E,

b) Vatye,U =a .V, U + b.V,U,

¢) V(Ui + Us) = VU, + VU,,

d) V(fU) = (tf) U(x) + f(x) V,U.

Proposition 1. There is a (1 — 1) correspondence between the connections and the
covariant derivatives in E.

Proof. If Vis a vector space, v €V, let us denote by o, the canonical isomorphism
V - T,(V). Let a connection D be given. For any t € T(M), and for any local section
Y:M - E, Y(x) = e we put V,Y = o, '(dY(t) — ds(t)) where s : M — E is a local
section representing the 1-jet D(e). (Here dY(t) — ds(t) € T(E,),. Conversely, if V is
given and e € E,, we choose an arbitrary section Y: M — E passing through e and
represent De by a section s : M — E such that ds(t) = dY(t) — o,V,Y for any te
€ T(M),. It suffices to verify that if we replace Y by the section f. Y with f(x) = 1
then the expression o, '(dY(t) — ds(t)) is increased by (tf) Y(x) and the expression
dY(f) — ¢,V,Y does not change. But this can be checked easily by means of the
formula d(fY) (¢) = df(t) 6,Y + dY(t). The rest is trivial.

We shall often speak about ‘“‘connection V”’ instead of ‘“‘covariant derivative V.
Let us remind also the well-known fact that the connections in a vector bundle
E - M are in a (1 — 1) correspondence with the connections in the associated
principal frame bundle B(E) - M.

Let E > M be a vector bundle, E = E; @ E, (the direct sum). Then 2'E = 9'E, &
@ 9'E, and we have canonical projections #; : ?'E — 2'E; induced by the projec-
tions m; : E - E;, i = 1,2. Hence to any connection D : E - @'E we obtain the
projection connections D' = #; o D.

Proposition 2. For the corresponding covariant derivatives we have V' = m;0V,
i=1,2

Proof. Let be given xe M, Y : M — E,, Y(x) = ¢, and a section s': M > E
representing De’. Then (m;0V,)(Y') = (n; 0 0") (dY(t) — dsi(t)) = (o' o dmy) .
(dY(r) — ds'(t)) = o' [d(m, o Y') (t) — d(m; o s7) (1)). But m;0 Y/ = Y* and m; o s
represents the jet D'e’. Hence ;0 V = Vi, q.e.d.

Note. Let E —» M be a vector bundle, E = E; @ E,, and let B(E), B(E,), B(E,)
be the associated principal frame bundles over M. Then any connection D in B(E)
can be reduced to the subbundle B(E;, Ez) of adapted frames, i.e., of all frames of the
form (e;,..., e €44, ...,e) where ey, ...,e,€E;, ey, ...,e,€E, Using the
~B(E,)

we obtain the projection connections D', D?
\‘B(Ez)

canonical projections B(E, E,)
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in B(E,), B(E,) respectively. (Cf [3].) It is not difficult to show that if D is a connec-
tion in E associated with D, then its projection connections D', D? are associated
with D', D? respectively.

Let us introduce the following notation: If = : E — M is a vector bundle, dim E =
=d, and if b = (fy,....f,) is a frame at x € M, then we define the isomorphism
b : R! - E, by the rule

Uy
u g o
b| 2] =Y uf; foranycolumn | : |eR.
- i=1 u
u, !

Similarly we define the inverse mapping b~ ' : E, — R%. Now let D be a connection
in E and D the associated connection in the principal bundle # : B(E) - M. Then
the connection form, @, and the curvature form, ®, of D are defined and they are
(R* ® R%-valued. If a point x € M and two vectors u, t € T(M), are given, then the

curvature transformation R,, : E, — E, will be defined by the formula
(1) Ru(0) = b®(7, 1) b~'(v), veE,

where b € B(E), is an arbitrary frame and i, 7 € T(B), are arbitrary vectors such that
dii(it) = u, dfi(f) = t. It is easy to verify that the above definition is independent
of the choice of b, i and 7. (Cf. BisHOP-CRITTENDEN, [3]).

Proposition 3. Let V be the covariant derivative corresponding to D. Then for any
local vector fields U, T on M and for any local section V': M — E defined in the same
domain Q = M we have

) Ryr(V) = VyViV = VoV = Vg1V .

Proof is the same as in the classical case E = T(M).

A soldered vector bundle, (E, j), is a couple consisting of a vector bundle 7 : E - M
and a bundle injection j : T(M) — E. Particularly, for a soldered vector bundle E we
have dim E = dim M. Let us remark that this definition is a natural modification of
that given in paper [5].

Let B(E) - M (canonical projection %) be a principal frame bundle associated to
a soldered vector bundle (E, j). The solder form w is defined on B(E) by the formula

(3) wy(E) = b™(j  di(i))

for any be B(E), i e T(B)b. (ct.[3])

Clearly the solder form is an R%form, d = dim E.
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Let be given a connection D in B(E, j)- The torsion form Q of the connection D is
defined by the formula

4 O(a, 1) = do(Ha, Hi)

for any two 1, T € T(B)b, where H means the horizontal projection with respect to the
connection D. Q is an R%form, too.

Let A, B be two matrix forms on M such that the matrix product 4 . B exists.
If A= (a;), B =(bj) then we define the exterior product A A B by the formula
A A B=(Ya; A by).

J

Proposition 4. If B(E, j) — M is a principal bundle associated to a soldered vector
bundle and if a connection D is given in B(E, j) then we have two structural equa-
tions
Q) a) do=-9pArw+Q

b) do

- A+

Here the latter equation is classical, the former is analogous to the classical case.
(ct. [31.[6])

Let (E, j) be a soldered vector bundle with a connection D, so that the torsion
form Q of the associated connection D in B(E, j) — M (projection #) is defined. The
torsion translation T,, is defined for any x € M and any two vectors u, t € T(M)x as
follows: let b € B(E), ii, T € T(B), be such that d#(it) = u, d#(i) = t. Then put

(6) T, = bO(a, 7).

We can see that the above definition is independent of the choice of b, @, I. We always
have T, € E..

Proposition 5. For any two local vector fields X, Y on M we have
(7 Txy = Vx(jY) — Vy(jX) — j[X, Y].

Proof. We use the first structural equation and the following Lemma:

Lemma. Let X be a vector field on M, t e T(M),, © a lift of t to b e B(E), X a lift
of X. Then

®) V{iX) = b(i(X) + o(7) o(X(b))) -
Proof is the same as the proof of Theorem 11, [3].
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RIEMANNIAN VECTOR BUNDLES

A vector bundle E — M is called Riemannian if on each fibre E, there is defined
a symmetric positively definite bilinear form ¢ , >, (inner product) and if the real
function f induced on the bundle E ® E (tensor product) by all { , ),, xe M, is of
class C®. If V is an arbitrary connection in E then in any subbundle F = E we have
a canonical projection connection V¥ because of the canonical splitting E = F @ F*.
A connection V defined in E will be called semi-Riemannian if the parallel translation
by V preserves the inner product. Clearly a connection V is semi-Riemannian if and
only if

©) U, VY = VU, VY + (U, V,V>

for any vector t on M and for any two local sections U, V of E. Hence we see that any
projection of a semi-Riemannian connection is semi-Riemannian.

Let now E — M be a Riemannian vector bundle over a Riemannian manifold M.
Let us denote by V the canonical Riemannian connection on M and let VE be a fixed
semi-Riemannian connection in E. Consider a function H(U , T, X, Y) induced by
a bundle morphism H: T(M) ® T(M) ® E® E—>'M x R, ie., HU, T,X,Y) =
= H(U RTRX® Y). The covariant derivative V,H of H is a function of the
same type defined by the formula

(10) (V:H)(U, T, X,Y)=Z{HU, T. X, Y)} - HV,U, T, X, Y) —
— H(U,V,T,X,Y) — HU, T.V;X, Y) — H{U, T. X, V;Y).

We say that H satisfies the Bianchi identity if
(11) © (VzH)(U,T.X,Y) + (VzH)(Z,U, X, Y) + (VyH)(T. Z,X,Y) = 0

holds for any local sections Z, U, Tof T(M) and X, Y of E.

Proposition 6. Let Rf, denote the curvature transformation of VE. Then the
function RE(U, T, X, Y) = {R{rX,Y) satisfies the Bianchi identity.

Proof is the same as in the classical case (see [6]).

A Riemannian vector bundle over a Riemannian manifold, E — M, will be called
soldered if it is a soldered vector bundle (E, j) and if the solder map j : T(M) —»
— jT(M) < E is an isometry. A semi-Riemannian connection D in (E, j) is called
Riemannian if its torsion form vanishes.

Now, any projection of a Riemannian connection is also Riemannian (assuming
that the bundle F < E is still soldered by the mapping j). Indeed, let VZ, V¥ be the
corresponding covariant derivatives, T, TF the corresponding torsion translations.
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According to (7) we have
TS, = VIGY) - ViGX) — JIX, Y]e F
Tiy = Vi(Y) — V5(jX) — j[X. Y] =0,
hence Txy = projp (Txy) = 0 and QF = 0 as required. Particularly, if we project

a Riemannian connection V* from (E, j) onto jT(M) and then onto T(M), we obtain
the usual Riemannian connection V of the Riemannian manifold M.

%
Let M, N be two Riemannian manifolds, dim M < dim N, and y : M - N an

isometric immersion. The induced bundle E = y* T(N) is a soldered Riemannian
vector bundle over M, the solder map j being defined by the commutative diagram

E . ¥ - -~—>T(N)
N1 ' 0
1\ 4 .// B
(12) Jj » M N\ o i
/! N
/ T(¥) NV
T(M)—mm——" -—T(N)

Here =, p, p’ denote the canonical projections, ¥ a canonical bundle map, i the
identity map and T(y) the tangent map to y. Moreover, a Riemannian connection D
is induced in E. Remark that if N has a constant curvature C then the identity
® = C(w A ') holds in the frame bundle B(N) (cf. [3], p. 184), and consequently,
in the frame bundle B(E). (Here ' denotes the transpose of the column matrix w,
i.e., a Tow matrix).

Let E - M, E' - M’ be two fibre bundles of the same type fibre. A bundle map

E — E’ will be called a fibre isomorphism if any fibre is mapped isomorphically onto
a fibre.

Theorem 1. (First Immersion Theorem). Let (E,j) be a soldered Riemannian
vector bundle over a simply connected Riemannian manifold M, dm M = m <
< dimE = d. Let D be a Riemannian connection in E such that the equality
® = C(w A ') holds in B(E). Further let N be a complete Riemannian d-manifold
with the constant curvature C; denote by DY the canonical Riemannian connection
in T(N). Then there exists exactly one fibre isomorphism ¥ of E into T(N) such
that

a) Y(ey, .. e)) = (fi,...fa) where (e, ...,e))eB(E), (fy,....f))eB(N) are
prescribed orthonormal frames,
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b) a commutative diagram (12) holds,
¢) D =Wy*DN.

Moreover, V¥ is an isometry of Riemannian bundles and \y is an isometric immersion
of M into N.

Proof. If ¥ : E - T(N) is a fibre isomorphism as required, then we have an in-
duced mapping ¥ : B(E) » B(N) of principal bundles. From c) we obtain D =
= P*DN for the corresponding connections, i.e., ¢ = P*¢" for the connection forms.
From b) we obtain w = $*w" for the corresponding solder forms. Consider the

Py B(E)
diagram P = B(E) x B(N) . The matrix equations pfp — pip™ =0,
P2 B(N )
piw — p¥w" = 0 represent a system of d + d? independent linear equations and
hence a linear distribution of dimension m + d? on P. The system of equations is
completely integrable because of the structure equations and because Q = QY = 0,

OV = C(w" A @™). Hence the distribution is involutive and there is exactly one
maximal integral manifold B through any point (e, f) of P. The mappings p,, p, are
regular on B and B becomes a covering manifold over B(E) with the covering map p;.
From the relation pYp = p3¢" we see that the full linear group GL(d) acts freely on
the integral manifold B. B is a principal fibre bundle over the factor manifold
E/GL(d) and p,, p, are fibre isomorphisms. Here p, induces a covering map 7, :
: B/GL(d) — M. Because M is simply connected, 7, is a diffeomorphism; thus p; is
a bundle isomorphism and consequently a diffeomorphism. We obtain an immersion
¥ = p,p;' : B(E) - B(N) which is a fibre isomorphism and induces an immersion
Y : M — N. Now it is easy to complete the proof. :

CANONICAL GRADUATIONS

Let (E, j) > M be a soldered Riemannian vector bundle with a Riemanniah con-
nection V. We can identify T(M) with a subbundle E' < E via j. At any point x € M
put St = EL, S2 = the subspace of E, generated by S} and by all vectors of the form

V. X" where t € EL and X" : M — S' = E! is a local section at x. Put % = |J S2.
xeM
Further, let S2 be the subspace of E, generated by S2 and by all vectors of the form

VX121 where t € EL and X'21 : M — E is a local section at x such that Im X2 = S2.

Put §3 = U S2, etc. Finally, we obtain at any point x € M an orthogonal decomposi-
xeM .

tion E, = S% 4+ Z, where VX" e S, for any t € E, and for any local section.X['] :
:M = E at x such that Im X! = S". The number r depends, in general, on x.
Moreover, we have the orthogonal decomposition

S =E!+E2+ ..+ Ef forany k<r, xeM.
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Let us put EX = {J EX for k = 1, ..., r. Now, the connection V will be called stable
xeM

if dim S% is constant on M for any k = 1, ..., r, i.e., if the subsets S* are subbundles
of E. Then E¥ k = 1, ..., r are subbundles of E as well and we have the canonical
orthogonal splitting

(13) E=E QE*.. 0F®Z

where Z = | Z,. Each subspace SX*! is generated by S* and by all vectors of the
xeM

form V,X® where t € T(M), and X® is a local section at x of the bundle E*.

Each subspace S* is called the osculation space of order k at x and each sub-
bundle S* is called the osculation bundle of order k. The elements of E* will be called
vectors of grade k and the local sections X® : M — E* sections of grade k. The
orthogonal splitting (13) will be called the canonical graduation. An immersion
¥ :M — N will be called stable if the induced connection V in E = y* T(N) is
stable. In the following we suppose that Riemannian connections ‘and immersions
under consideration are stable.

It is well-known that any local section in a vector bundle can be prolonged to the
whole base. For the sake of simplicity (to avoid speaking about definifion domains)
we shall work with global sections throughout this paper.

Proposition 7. Let E=E' @ E>® ... ® E" ® Z be the canonical graduation
induced by V in (E, j). Then there exist bundle morphisms

P, :E'® EF > E**' (k=1,..,r—1)
Lo E' @ E > B! (k=2,...7)

such that for any vector t € E' and any section X® of grade k we have the orthogonal
decomposition

(14) VXY = L1 ® X¥) + VPX® 4+ p(t @ X¥).

Here V® is the projection connection of V onto E¥ and P, = L, = 0 by definition.

All Py are bundle epimorphisms and P, is symmetric. Fuyrther, for any section
U : M — Z and for any vector t € EX we have V,U € Z.

Proof. According to the definition we have V.X® e Sk If § < k — 2, then
(X®,X®) =0 for any X and ((X®, XDy = (V,x® x(ry 4 (x®,y x0y =
= 0. Since V,X¥ e S;™" we have <X, V,X®) = 0 and hence <V, X®, X> = 0 for
any X € S, *. We obtain V,X® e E{™! L Ef + EX* for any k= 1,...,r. (Here
put Ey = E{"' =0 by definition). Now, proju (V,X®) = v¥x® 4nd clearly
V — V® induces a bilinear mapping E! x Ef —» EX"1 ¢ E*1 at any x'e M. Hence
we obtain a bundle morphism : :

L,® Py E' @ E*» E*' @ pr+t
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as required. Further, V being Riemannian, we have for any two sections X, Y
of E' Vi(Y)— Vy(X) — [X, Y] = V{(Y) — ViP(X) — [X, Y]+ P,(X ® ¥) —
— P(Y® X) =0, and because V" is Riemannian, we have Py(X @ Y) =
= P,(Y® X). The rest of the proof is trivial. We shall write also P(U, X®),
LU, X®) instead of P,(U ® X)), L(U @ X®).

Remark that we have identically
(15) (LT, X®), Y&~y = — (X®, p,_ (T, Y*~ )5

by differentiation of the identity (X®, Y*~U% = 0. Let us denote by [X]* the
projection of a vector X € E into E*.

Proposition 8. Denote by Ryp, RS} the curvature transformations of V,V®
respectively. Then
a) RUTx(k)e(Ek—Z @ Ek—i @ Ek @ Ek+1 G_) Ek+2),
b) [RyrX® 7% = L, (U, L(T. X®)) — L,_,(T, L(U, X®)),
[RyrX®T = Vi 'L(T, X®) — V¥ VLU, X®) +
+ LU, VPX®) — L(T, vPX®) — L,([U, T], X®),
[RorX®T = R{EX® + P y(U, L(T, X)) — Po_y(T, LU, X)) +
+ Ly (U, PT, X®)) — L, (T, Py(U, X¥)),
[RypX®]Frt = VEFDP(T, X®) — VEVP(U, XP) +
+ P(U, VIPX®) — P(T, VPX®) — P([U, T], X®),
[RurX®]2 = Py (U, PYT, X¥)) = (Puso(T, PYU, X®)).
Here we put P,=0,L, =0, V® = v+ - ¢
Proof. By direct calculation using (2) and (14).

In the following we are going to study in detail the immersions of the form ¢ : M —
— N, where N has a constant curvature C. As we know, the identity ® = C(w A o)
holds on the frame bundle B(E), where E = Y*T(N) is the induced vector bundle of
the immersion. Using an adapted orthonormal frame b in formula (1) we obtain

) Ry X® = C{(T, X0y U — (U, x® T} .
Hence RypX® = 0 for k > 1 and [RyrXV]? = [Ryr XP]? = 0.
Proposition 9. Let the connection V be such that ® = C(w A o) on B(E). Then the

composed mappings P* = P,_,o...oP,o P,k > 1,of E' @ E* ® ... ® E! into E*
are symmetric in all variables. k times

Proof. We use the last formula of Proposition 8 and the symmetry ofP, (Proposi-
tion 7).
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Let once again § : M — N, E = y* T(N) be given; supposc E = E' @ ... @ E" ®
@ Z. If N has a constant curvature, it is not difficult to show the following: if Z % 0,
then there is a totally geodesic submanifold ¥ = N such that dim ¥ = dim (E' & ...
... ® E") and y(M) < N. Thus we can always reduce our problem to the case Z = 0,
E=E'®...® E" In the following we shall consider the reduced problem only.

For the further considerations it will be convenient to introduce the following
definition:

Definition 1. A graded Riemannian bundle {E¥, P,}" over a Riemannian manifold M
is a soldered Riemannian bundle (E,j) > M provided by an orthogonal splitting
(graduation) E = E! @ ... @ E" and by a system of bundle epimorphisms P, : E! ®
® E*— E**', k =1,...,r — 1. Moreover, we require that E! = jT(M) and that
the composed mappings P*: E! ® ... ® E' — E* be all symmetric.

k times

Thus each P* induces an epimorphism E'O ... O E' —» E¥ where O denotes
the symmetric tensor product. T ki

Proposition 10. Let a graded Riemannian bundle {E¥, P}" be given. Define bundle
morphisms

(16) L:E'®@E > E! (k=2,..7)
by relations (15). Then
(17) Lk—l(U, Lk(T, X(k))) = Ly- 1(T’ Lk(U, X(k)))

for any U, T, X®.
Proof. Using (15) twice we obtain
(Laes(U, LT, X)), Y = By (T Poo(U, VOB, X0
But the composed mapping P,_; o P is symmetric with respect to T, U because P*

is symmetric in all variables.

Definition 2. Let {E*, P,}" be a graded Riemannian vector bundle over M, and let !
be an integer, 1 < I < r. A sequence of canonical connections in the subbundle
S!=E'® ... ® E'is a sequence of semi-Riemannian connections V&, ..., V) in
the bundles E!, ..., E' respectively such that

a) j*V( =V = the canonical Riemannian connection in T(M),
b) forany k, 1 < k <1 — 1, we have

(18) VEOP(T, Xx®) — v¥+Dp(U, X®) 4 P(U, VPX®) —
— P(T, VPX®) — Py[U, T],X%) =0

for arbitrary sections U, T, X®,
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Propesition 11. Let be given a sequence of canonical connections in E' ® ... ® E.
Then

a) Fork =1,...,1 — 1 and for any sections U, T, Y**V we have
(19) ' VPLy (T, YED) — VOL, (U, YETD) 4
+ Ly (U, VEDYED) — L (T VG OYRY) — L ([0, T, Y& ) = 0,
b) The Bianchi identity holds for the functions
(0) LU T.X®, Y®) = CL(T,X®), LU, Y ~ (LU, X), L,(T, Y¥)y
2 < k £ 1, and also for the functions
(21) P(U, T, X®,Y®) = (P(T, X®), P(U, Y®)> — (P(U, X®), P(T, Y®)>
where 1 <k <1 — L. \
Proof. Using (9) and (15) we obtain
VPLera(T YE) = Ly (T VETVYED), XO) =
= — (VEOPYT, X®) — P(T, VPX®), YEDY | k=1,..,1~1.

Denoting by A+ 1(L) the left hand side of (19) and by A(P) the left hand side of (18),
we obtain easily

{Ax+ 1(L)a X0y = — <Ak(P)a Y**D% =0 and hence Ak+1(L) =0
fork=1,...,1— 1.
The Bianchi identity may be checked directly using (9), (10), (11), (18) and (19).

*

In the following we shall denote by P the bundle epimorphism of E' @ (E' ®

QE)®..®(RE)onto E' @ E*@ ... ® E' givenby P=idp ® P> ® ... ® P’
(see Definition 1).

We shall always write P(X, ..., X,) instead of P(X; ® ... ® X). Further, we shall
put P! = idg,.

*

Proposition 12. Let {E¥, P,}" be a graded Riemannian vector bundle over M. If
a sequence VO V® of canonical connections in E' @ ... @ E' exists, then it is
unique.
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Proof. Suppose that V¥, ..., V® is a canonical sequence. From (9) and (18) we
obtain easily the following Formula

(22)  XVPP(Xy, ... X)), P(Yy, ... V) =
= Z{P(X . ..., X)), P(Yy, ..., 1)) +

1
+._ZIXi<P(Xi+1s -"’Xla Yl’ cees Yx): P(Yi+1’ sees ),h ZaXh ""Xi—1)> -

—i; YCP(Yigqs oo Yo Z, Xay oo Xioq), P(X sy s X0 Yy, L Yl ) +
+ h(Z, P(Xy, .. Xyoa)s X, P(Yy, .. Yi2y), YY) —
—éh(xi, PXisps o Xp Yoo oo Yiy), Yo P(Yiy 1y oo, V1, Z, X, ..
v Xioa) Xioy) +
+iil (Y P(Yigrs oo Yo Z, Xy oo Xi20)s Xio s P(X 4y o, X3, Yo,
 Yisa), Yiy)
where
(23) h(U, XU, T, YD, S) = (P, (VG VXD, T) -
— P (VXA U) + Py (XY, [U, T]), P (YD, S))

for any sections X*~", YY"V U T, S. (Cf. [1].) Hence each V® is determined
uniquely by V¢~Y, and V) is determined uniquely by the Riemannian connection
of T(M) and by the solder map j. Hence the sequence is unique.

Let ¢y : M — N be a stable immersion, V the induced connection in the Riemannian
bundle E = y* T(N). The bundle epimorphisms P, given by Proposition 7 will be
called the normal operators of the immersion .

Theorem 2. Let {E¥, P,}" be a graded Riemannian vector bundle over a simply
connected Riemannian manifold M, and let N be a complete Riemannian d-
manifold with a constant curvature C, d = dim E. Suppose that there exists a se- ~
quence VU, ..., V® of canonical connections in the bundle E' ® ... ® E" and that
a system of “generalized Gaussian equations” ’

(24) P(U, T, X®,Y®) + L(U,T, X®, Y®) =
= RO(U, T, X®, Y®) + C{<U, X©) (T, Y®) — (U, YV (T, X®)}

for k=1,...,r holds. Then there is exactly one isometric fibre isomorphism
¥ : E — T(N) such that
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a) Yley, ..., ) = (f1....fa) where (e, ...,e;)eB(E), (fi,...fd)e B(N) are

prescribed orthonormal frames,
b) a commutative diagram (12) holds,

¢) under the canonical identification E = * T(N), the mappings P, are the
normal operators of the isometric immersion .

Proof. A. Existence. Define a semi-Riemannian connection V on E by formula
(14). Since the mappings P* are all symmetric, and P, = P2, we have [Ry; X®]"2 =
= Ofork = 1, ..., r, and the torsion of V is zero. Relations (17) imply [RyrX®]*7% =
=0 and (18), (19) mean that [Ry;X®]*"" = [Ry;X¥]**' = 0. The Gaussian
equations (24) and Formula (15) imply [RyrX®]* = C{(T, X®) U — (U, XW) T}.
Hence we have ® = C(w A ') on B(E). Now we can apply the existence part of
Theorem 1.

B. Uniqueness. Let be given an isometric fibre isomorphism satisfying a), b), c).
Then the induced Riemannian connection V in E satisfies the relation ® = C(w A )
and the projection connections v, .. V" of V form a sequence of canonical con-
nections in {E¥, P,}". According to Proposition 12 such sequence is unique and hence
V! = Vi,V = V. Now we can use the uniqueness part of Theorem 1.

MAXIMAL IMMERSIONS

A graded Riemannian bundle {E*, P,}" will be called maximal if the mappings P,
are of maximal ranks. It requires that the composed mappings P* induce isomorphisms
and hence any E* is isomorphic to the symmetric tensor product of k copies of E'.
(See Definition 1.) If  : M — N is a stable immersion into a manifold with a constant
curvature, then E = y* T(N) is a graded bundle in the sense of Definition 1. The
immersion  will be called maximal if the graded bundle E is maximal. The maxima-
lity property means that all osculation spaces of the immersed manifold are of maxi-
mal dimensions.

Proposition 13. If {E*, P,}" is maximal then all mappings L, are epimorphisms.

Proof. Let x € M be given and let { Y™, ..., Y¥~9} be a basis of EX~*. Choose
a vector U e E}, U # 0; then the vectors P,_,(U, YY), ..., P,_4(U, Y¥™Y) are
linearly independent because P¥, P*~! induce isomorphisms of E¥, E*~! with sym-
metric tensor powers of E'. Let be given Ze EX™" and denote a; = (Z, Y1),
Then there is an element X® ¢ E¥ such that <X®, P,_,(U, Y*™))> = —a;, j =
=1,...,f. Hence (LU,X®), y* V) =aq; for each j, and L(U,X¥)=Z.

The study of the maximal immersions is based on the following ,,Prolongation
Theorem™.
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Theorem 3. Let {E*, P,}" be a maximal graded Riemannian bundle over M. Let
be given a sequence VOV, ..., VO~V of canonical connections in E' ® ... ® E'™!,
1 £ r. Then the sequence V'V, ..., V¢~ can be prolonged to the bundle E* @ ...
... ® E'"' @ E' if and only if the function P,_ (U, T, X"~ V, Y4~ V) satisfies the
Bianchi identity. If such prolongation exists, it is unique.

Proof. The necessity of the Bianchi identity follows from Proposition 11 and the
uniqueness from Proposition 12. The sufficiency will be proved in several steps. We
must prove that under the above assumption for P,_,, system (22) is solvable and its
solution determines a canonical connection. Let us denote the right hand side of (22)
by S(Z | Xy, ... Xy | Yy, .. YY)

Lemma 1. We have

(25) SUZ| Xy X | Yy V) + SYZ| Y Vi | Xy X)) =
=2Z{P(X 1, ..., X)), P(Yys - 1))

Proof. If we perform the permutation (X, ..., X;) <> (Y}, ..., Y;) then all sum-
mands of S, are transformed into one another:

X«P(..), P(..)> = Yoy - CP(), P

Y<{P(...), P(...)> = X101 -KP(..), (.. ) i=1,..1
WX, ..)> —h(Xppy-5...)
WY, ..) > —h(Yiipos...) i=2,..1,

WYy, ..) > —h(z,..)
Wz...) > —h(Y,,..)

Hence our result follows.
Lemma 2. We have
26)  S{Z| X1 ow Xion X | Vi Y) = S | Koy o X0 2| Vo YY) =
= 2h(Z, P(X1, .0 X1_1)s X3 P(Yes oo Yioy), Y0) -
Proof. If we perform the permutations Z « X/,
Xps o X)) = (Xpogs oo Xp), (Vg oo o) = (Yo, Y)
all summands of S, are transformed into one another:

ZCP(..), P(..)y o X(P(.), P(.L)) s
XLP(.), P> = Xy KP(), P s i=1,..,1-1,
YCP(...), P(-.)> = YiuqoiKP(), PG
WX )= —=h(Yieiop-..) i=1..1,
h(Yi’ ) - —h(Xl+1—i7 )
Wz,..) - —h(z,..)

Hence our result follows.

689



Lemma 3. If the function P,_ (U, T, X"~ 9, Y"~) satisfies the Bianchi identity,
then S(Z | Xy, ..., X, | Y1, ..., Y)) is symmetric in the variables X; and also in the
variables Y.

Proof. First of all we obtain easily

S(Z| Xy, Xy | Yy Y Yy, 0 Y) —
=S Z| Xy, Xi | Y Y, Vi Y) =
= XiPl—l(Yi’ Yie1, Ai Bi) + YiPt—x(YiHa X, Aj Bi) +
+ Y Py(X5 Vs 45, By) +
+ WXy, By, Yii1, A Y;) — h(X 1, Bi, Yy, Ay Yigy) +
=+ h(Yi+ 1> 4, X4, B, Yi) - h(Yi’ A, Xy, By, Yi+1) +
+ h(Xi+l’ B}, Y, A, Xi) - h(Xi+la B}, Y., Ay, Xi) +
+ (Y, A X1, B X;) — B(Y1 1, A7, Xi_ 1, B, X)
where
A = P(Yiin Y Z, X4, ., Xiy) By =PX;iq,-0 X1, Yy, oo, Yiny)
A; = P(Yiiy, 0 Vo Z, Xy, o, Xy) Bi = P(X;i5 .. X, Y1, .., Yioy, X))
A = P(Yo Vg Yo Z, X s oo Xisy) Bl = P(Xi10n oo X0 Yo oo Yiog, Yin ) .

After a routine calculation we obtain

SUZ| Xy Xi | Yy Y Yisy, 2 0Y) —
- S(Z| X n X | Y Y, YL ) =
= (Vx:Pz—1) (Yi’ Yien, As Bi) + (VY.-Pz—x) (YH- 0 X Ais Bi) +
+ (Vyf+,Pt—1) (Xia Y, 4, Bi) + <(H,, P(Xi’ Bi)> + {H,, P(Xh Ai)> s
where -Hy, H, are certain expressions. Here H; involves three functions of grade
(I — 1), namely A4;, 4}, A7, and H, involves B,, B;, B;. We can apply- identities (18)
in order to replace all functions of grade I — 1 by functions of grade [ — 2.
Then H, involves only one function of order I — 2, 49 = P(Yiﬂ,..., Y, Z,
Xy, ..., X;-5), and similarly, H, involves only one function of order I — 2,
BY = P(Xi120 -0 X0 Yy, ey Y;_,). After the substitutions we can see that H; =
= H, = 0. Thus the function S,(Z | X, ..., X, | Y;, ..., ¥;) is symmetric with respect
to any transposition (Y,-, Y. 1), and consequently, it is symmetric with respect to all
variables Y;. Now, using (25) we obtain
SUZ | Xp oo X X s oo Xi | Y. Y) —
—S(Z| Xy X, Xy X | Yy, Y =
=S Z| Y0 Yy | Xpy oo Xy Xy, -0 Xy) —
- S(Z| Y. Yy | Xy X, Xy -, X)) = 0.

Hence S, is symmetric in all variables X ;. This completes the proof.
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Lemma 4. We have
(27) S(Z| Xi . Xy | Yoo fY X)) =fS(Z | Xy X | Y Y Y))
(28) S(fZ|Xy ... X, | Y. Y)=f.S(Z]|X\. ... X,|Y\,.... )
(29) S(Z| Xy fXo WX | YL Y) =
=f.SUZ | Xy X, | Y0 YY) 4 2(2f) <P(X 4, .. X)), P(Yy, 0 Y))
for any function f on M.

Proof. (27), (28) follows by direct calculation and (29) follows from (27) and (25).

From Lemma 3 and (27), (28) we see that the value S,(Z|X,, ..., X, | Yo .. Y,
at any point x € M depends only on the vector Z, on the section X; O ... O X, and
on the vector (¥; O... O Y),. Now, the function P, induces an isomorphism
ELO...OE! - EL Hence, if Z,, X4, ..., X, are prescribed. there is exactly one

I-times
vector W, € E, such that

W PV, V) = (12) S(Zo | X 1o - Xy | Yo, oo V),

for any vector (¥; O... O Y)),. Let us denote W, = x(Z,, P(X; O ... O X))). From
(29) we obtain

WZof - P(X;0...0X)) =
= f(x) 2Z PX, O ... O X)) + (Z.f) P(X, O ... O X)),

Hence we can extend the function y to all sections of the bundle E' in such a way
that x(Z, X1V) is a covariant derivative on E'. We put V3'X® = »(Z, X”). From (25)
there follows that V" is semi-Riemannian and (26) induces relation (18) of order I.
This completes the proof of Theorem.

Corollary. Let {E¥, P,}" be a maximal graded Riemannian bundle over M. Let
be given a sequence VW, ..., VY of canonical connections in E' ® ... ® E', | < r.
If the “generalized Gaussian equation” (*)

(30) P(U, T, XD, YD) + L(U, T, XV, YP) =
= R(U(U, T, X, Y(l)) + C{(U, XY LT, YOy — (U, YO LT, X“)>}

holds then we have the unique prolongation to a canonical sequence V), ..
v V(l+1)
e 5 .
1y Forl= 1,dimM=2,dmE=3,C=0 equation (30) is reduced to the classical Gaussian
equation
{Py(U, T), Py(U, T)) — {Py(U, U), P{(T, T)) = RO, T, U, 7).
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Proof. L, satisfies the Bianchi identity according to Proposition 11 and so does R®?
according to Proposition 6. The second term on the right-hand side is easily proved to
have the same property. Hence P, satisfies the Bianchi identity.

*

If P,, k =1, ..., r are the normal operators of an immersion {y : M — N, then the
scalar product

(X150 Xio Yoo, X)) = (PHXy, o0 X0, PH(Yy, 0 YO

is called the k-th metric tensor of the immersion . (See [1].) Let {E¥, P,}" be a maxi-
mal graded Riemannian bundle over M and let us identify each E¥ with the symmetric
tensor product OE1 = OT(M) via P*. We obtain a maximal graded Riemannian

bundle {OT(M) PPy, the “normal form” of {E" P,}". Here the mappings P} are
defined as follows: if X® e O T(M), X® = Z 2{X;; O...0Xy) and Z e T(M),
we put PY(Z, X®) = z MWMZOX;,0.. OX,,,)

Now, Theorem 2 and Corollary of Theorem 3 imply

Theorem 4. (Second Immersion Theorem). Let M be a simply connected manifold,

and let be given a Riemannian inner product { , >, on each vector bundle E* =
=T(M)O...OT(M) for k =1, ..., r. Let N be a complete Riemannian manifold

k—times
with a constant curvature C and of dimension d = dim (E' @ ... ® E'). Suppose
that the generalized Gaussian equations (24) are satisfied for k = 1, ..., r. Then
there is, exact up to an isometry of N, a unique immersion y : M — N such that

hk(Xl""’Xk;Yla'-',Yk) =X,0...0X,Y,0...0Y% ), k=1,..,r.

Particularly, the immersion s is isometric and maximal.

FLAT IMMERSIONS

Let (E, j)) > M be a soldered Riemannian vector bundle with a2 Riemannian con-
nection V. Suppose that V is stable and induces a canonical graduation E = E'®
@ E*@® ... ® E" in E. The connection V will be called flat if all projection connec-
tions V for i = 2 are locally flat; i.e., if the curvatures R®, ..., R® vanijsh. Also
a stable isometric immersion  : M — N will be called flat if it induces a flat con-
nection in the bundle E = y* T(N).

Let V be a flat Riemannian connection in (E,j) > M, E = E'®...®E, and
suppose the manifold M to be simply connected. Then the conections V®, k > 2
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are all flat and each bundle E*, k > 2 is canonically a product bundle #% = M x R%.
Let us choose for any k =2, ... r an orthonormal frame b® = { o, f”‘)}

dc
of R%, Then for any section Z® = (x Z z8(x) £) we have VIRZ® = (x, Z (Uz9).

_(k)( x)

- /). We shall represent Z®) by a column vector z¥) e Ric z0) — | : . Then

. X zdk)(x)
we can write briefly

(31) Z(k) — (x, pk) z(k)) , Vgt)z(k) — (x, b(k) . (Uz(k))) .
Clearly, there is an R*-valued symmetric form o\(U, Z) on M such that
(32) P,(U,Z) = (x,b¥ . 0P(U, Z))
and, for k = 2, an (R*** ® R%)-valued 1-form
(k+1)(U) L, w1 ::)(U)

w(k+1)(U) I
O O(U), ..., oD, (0)
such that

(33) P(U, Z%¥) = (x, b+ D o®+D(U) 20, k=2, ... r.

Each form o® will be called the k-th fundamental form of a flat Riemannian con-
nection in E, or else, if V is induced by an immersion iy : M — N, the k-th fundamen-
tal form of the flat immersion . We can see that any isometric immersion ¢ : M —
— N where M is a hypersurface of N, dim N = dim M + 1, is flat. If M is simply
connected, the second fundamental form is defined and it has the classical meaning.

Let us remark that each fundamental form o® is determined uniquely exact up to
a constant matrix factor belonging to the orthogonal group O(d,), and a constant
matrix factor from O(d,_,). We check easily that

(34) LU, Z®) = (x, —b* Dep®{(U) 2)
for k = 3 where »®" denotes the transpose of @®. Indeed, we obtain
(LU, Z®), Y* =Dy = — (P, _ (U, Y* V), 0y =
— = (BW®(U) y*=1, piz®y o z@i@(1) y*=1) =
= — (@®(U) 2®)" y*=1 = (—pEDu®I(U) 28, pE-DyE-Dy -

= (=b%* Dep®YY) 20, y*- )
Finally

(35) Ly(U, z®) = ¥ 23U, T) T,
i=1
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where {Ti, ..., T,,} is an arbitrary orthonormal frame of the tangent vectors at

x € M, x being the initial point of U.
Now, the symmetry conditions

Py i(U, P(T, Z®)) = Py (T, P(U, Z%)) ke =1,...,r =2
Lo (U, L(T, Z¥)) = L_ (T, L(U, Z%)) k =3,...,r
are equivalent to the system
(36) (V) 0®(T, Z) — ®(T) 0?(U, Z) = 0
0***V A ® =0 k=3 ...,r—1.
We only substitute into (32)—(35).
Similarly, conditions (18), (19) are equivalent to the system
(37) (Voo ®) (T, Z) = (V70®) (U, Z)
(Voo ) (T) = (Veo®)(U) k=3,....r
Here, of course,
(V™) (T, 2) = V[T, 2)] - PV, 2) — (T, V,2)
(Vo) (1) = U[(T)] — w7, T),
are usual covariant derivatives. For example, condition (18), k = 2 can be written in
the form
B DU () 2) — (V) 29) + o (U) T —
- o**(T)Uz® — o** (U, T]) z¥} =0
and hence.
B D UG (1) — Tl (U) — (U, T]) 20— o,
U™ (T) — Tw®**(U) — o®*D(V,T) + o®*(VrU) = 0.
Finally, we obtain (V,0®** V) (T) = (V,0%* V) (U) as required.
The Gaussian equations (24) assume the form
(38) oMU, X) (T, Y) — o@4(U, Y) 0?(T, X) <~
= CU. X (T, Y) = (U, Y) (T, X} + (RurX, v

CU(k) A w(k)r + w(k+1)r A a)("“) — 0, k = 2>~--,r.

Here we define the anti-symmetric 2-form 0® A o®" by
((,0(2) A w(z)t) (U, T) — Z {C()(Z)(U, 7’1) w(Z)t(’T, 7’,) - w(Z)(T; T) (()(Z)t(U T)}
i : - 1)

where {T}, ..., T,,} is an orthonormal frame B(M), and we put w+1) — ,

*
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Theorem 5. (Third Immersion Theorem). Let M be a simpl 'y connected Riemannian
manifold,dim M = m,and d,, ..., d, positive integers. Let wm(U, T) be a symmetric
R%-valued form on M and let w("“)(U), k=2,...,r—1, be a (R"kﬂ ® de)_
valued 1-form on M. Let N be a complete d-manifold with o constant curvature C,
d=m+d, + ... + d, Suppose that the following conditions are satisfied.

(I) Dimension conditions: at any point x € M the vectors »®(U, T), U, Te T(M),,
span R™ and the vectors o*+*(U) z®), where U e T(M),, z® € R*, span R%*".

(I) Symmetry conditions:
o(U) 0T, Z) — o®(T) 0>(U, Z) = 0,
o® D A ® =0, k=3,... r—1.
(IIT) Generalized Gaussian equations:
0@H(U, X) 0®(T, Y) — 0®X(U, Y) 0®(T, X) =
= C{CU,X> (T, Yy — (U, Y)<T, X} + {RyrX.,Y)

0@ A @® 4 EFDE A G*FD 0 k=2 .. F.

(IV) Generalized Mainardi-Codazzi equations:
(7,0 (1, 2) = (V,0) (U, 2),
(Veo®)(T) = (Vr®)(U), k=3,...r.

Under these conditions there is, exact up to an isometry of N, a unique isometric
Aat immersion Y : M — N such that o®, k = 2, ..., r, are fundamental forms of
the immersion.

Proof. Let us provide each R%* with the Euclidean inner product. We define
a graded Riemannian vector bundle {E¥, P,}" over M putting E' = T(M), E* =
=M x R%, P(U,T)=(x,0?(U, T)), P(U,(x,z?)) = (x, o**(U) 2¥), k =
= 2,...,r. Moreover, we define a sequence of connections in E, ..., E" resp=ctively
as follows: V() = the canonical Riemannian connection in M, V{(y, z®(y)) =
= (x, Uz®), (x = the origin of U, k = 2, ..., 7). According to (IV) the sequence
v y@ vy s a canonical one. Now we can apply Theorem 2.

(To be continued)
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