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With the present paper we resume the publication of a series of notes devoted to the
open mapping theorem in inductive limits of Fréchet spaces. The first two notes [1]
and [2] appeared in 1965 and 1966. Although the results of the present note existed
in manuscript form at that time already, the final editing had to be postponed for
different — partly non mathematical — reasons. The present note is direct continua-
tion of [2] which represents the abstract background for the discussion of the problem
to be treated here. This problem necessitates the study of a weaker notion of openness
for linear mappings; this was done in the note [2]. Let us recall in a few words some
of the properties of this notion. If E and F are two normed spaces, T a continuous
linear mapping of E into F and if we denote by Q the canonical quotient mapping
modulo T~*(0), openness of T may be characterized by the following two equivalent
conditions

1° if Tx, — O then Qx, — 0,
2° T'F' is o(E’, E) closed in E'.

Let us state now another set of equivalent conditions which characterizes a some-
what weaker type of openness which we have called type (o, 0) in [2].

1° If x,, is bounded and Tx, — 0 then Qx, — 0 weakly,
2° if x, is bounded and Tx, — 0 weakly then Qx, — 0 weakly,
3° the norm closure of T'F’ is a(E', E) closed in E'.

This notion arises naturally in the study of simultaneous extensions of two functio-
nals, the subject matter of the present note. Given a normed space F and two sub-
spaces Y and R the following question may be asked: if y’ € Y’ and r’ € R’ coincide
on YN R, does there exist a functional z’ € F’ whose restrictions to Y and R coincide
with y’ and r'? It is easy to see that this is not always true; on the other hand, if the
mutual position of Y and R is favourable, a simultaneous extension exists. There is,
however, an intermediate situation: the simultaneous extension does not exist but
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the problem may be solved approximately. By this we mean the following: given
¢ > 0, there exists a z’ € F’ which is an extension of ' and such that its restriction
to Y differs from y’ less than ¢ in the norm of Y.

To illustrate the three possibilities mentioned above, let us consider the following
example.

We shall denote by F the Banach space of all sequences x = {x,; n € N} of real
numbers such that lim x, = 0. The norm is defined by the formula

|x| = max |x,| .

We denote by f; the coordinate functionals so that f; € F' and {x, f;) = x;. We
denote by e; the unit vectors in F so that

ewfi> = 5ij~

We shall denote by R the closed subspace of F generated by the elements e, e3, es, ...
We shall keep the space R fixed and consider three different spaces Y to produce
examples of the situations possible.

I. Let Y be the closed subspace generated by the elements e,, e4, e, ... Clearly
RN Y={0} abd R + Y= F. Consider a y' € Y’ and an r' € R". To simplify the
notation, we decompose the set N of all natural numbers into N, the set of all even
numbers and N, the set of all odd numbers: N = N; U N,. It is easy to see that

Z ey ') fi + Z leu y'> fi

ieNy ieNo

is an element of F’ which extends both y’ and 7.

II. Let Y be the closed subspace generated by the elements g, = e; + 1e,, g3 =
=e3 + %4, ... Gon-1 = €3,—4 + (1/2n) €,. Let us show first that R n Y = {0}.
We intend to prove that every y € Y may be written in the form y = Y <y, f;> g;.

- ieNy
Denote by G the set consisting of the g;, i € N so that Y = G°°. We observe that G°
contains all elements of the form f; — (i + 1) fi+1 for i odd. The difference d =

=y — Y. {¥, f) g; is clearly annihilated by every f;, i€ N, and also, d being an

ieNy
element of G°°, by every f; — (i + 1) fi+1, i€ Ny. It follows that d = 0. Suppose
now that ye R n Y. Since y € R, we have {y, f;> = 0 for every even k. If j is odd,

consider <y, fy+1)> = (2, <0, > 9:)s 1410 = 0 > <9y fie1d = (G + 1)1

ieN1
whence, j + 1 being even, (j + 1)7 {y, f;> = {3, fj+1> = 0. It follows that y = 0.
Further, R + Yis dense in F since it contains all e,, t € N. We shall show, however,
that R + Y is different from F. Suppose that R + Y = F. It follows from the closed
graph theorem that there exists an > 0 such that |r| + |y| £ w|r + y| for all
reR and ye Y. In particular, (1/2n) eyn = Jan-1 — €2,—1 Whence 2 = Iezn—1l +
+ g2nes] S O~ €2y + Goni| = @(1/2n) |ez,| = @/2n which is a contradiction.

554



Let us show now that there exists a linear functional on Y such that no extension of
it annihilates R. Let f, be a sequence such that Y |B,| < oo and Yn|B,| = co. It is
easy to see that there exists a y’ € Y’ such that {g,,-1, ¥'> = B,. Suppose that x’ € F’,
x' = Yw,f, and x' extends y’. It follows that B, = {gs,—1, x> = {ezs—1 +
+ (1/2n) ey "> = @p,—1 + (1/21) ,,. Suppose now that x’ e R%; we have then
W1 = {€3,-1, x> = 0 whence w,, = 2np,. This is impossible since

w = Y2n|B,| = Yo £ x| < o.

Similarly, there exists an 7 € R’ such that no extension of it belongs to Y°. Indeed,
it is easy to see that there exists an r’ € R’ for which {e,,_q, r'> = B,. Suppose that
x' € F',x' = Y w,f,and x" € Y°. It follows that w,,—; + (1/2n) @, = {gpp—1, x> =
= 0. If x" is an extension of ', we have w,,_1 = {e3,-1, XD = {€ap—1, "> = B,
whence w,, = —2nw,,_, = —2nf,, again a contradiction.

Consider now a fixed ' € R” and denote by P the set of all possible extensions of r’
to the whole of F. We intend to show now that there exist extensions with arbitrarily
small norms on Y, in other words, that

inf {|f]y; feP} = 0.

If f=Yw,f; and ye Y, we have y = 3¢, 1g5—; lim &y = 0 and |y =

= max |&;_,|. It follows that |fly = Y |<g2i-1, /)| = Y]wsi-1 + (1/2i) @z If f

is to be an extension of ', we must have w,;_; = <{e,;_,, ). To produce an extension

of r' with small norm on Y, take a fixed natural p and define, for i = 1,2,..., p,

the coefficient w,; so as to have w,;_; + (1/2i) ,; = 0; for i > p set w,; = 0. It

follows that |f|y = Y |w,;-| which can be made arbitrarily small if p is chosen large
i>p

enough.
III. Let Y be the closed subspace generated by the elements

1

hy=———ey, 2+ ey-1+—e, for n=1,2 ..

n 2n _ 2 2n—2 2 1 2n 2

(we define e, = ()). We shall write H for the set consisting of the h,, n € N, so that

Y = H°. Let ye H°®; we intend to show that y =Y <V, fon_1)> h,. Write d =
neN

=y — Y{¥s fan-1 hy; clearly <d, f,—;> = 0 for each n. Also, {d, H®) = 0 since
d e H®®. If we show that the set consisting of all the f,_, together with H° is total
in F’ then d = 0 and our assertion is established. To see that, it suffices to show that
H® contains all elements of the form f,,_, — 21 f2, — fa,+1. This, however, is
immediate since this functional annihilates h, and h, -

Let us show now that there exists an ' € R’ such that every extension f of r’
satisfies | f|y = 1. Define ' by the equations {e,,_;, ') = 1/2". it follows that |r'| =
= 1. Let f be any extension of r' to the whole of F. We intend to show that | f Iy =
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Indeed, if f = ¥ @;f;, we have w,,_; = 1/2". Given & > 0, there exists an n such
that 1/2 + ... + 1/2" > 1 — ¢ and at the same time |, < & We have then, for
y = hy + ... + hy, the following

1 1
yey, Iyl=1’ <.V;f>= +---+—+§—U)2ngl—‘28.
n

2”

IR,

It follows that |f|y = 1 — 2& for each & which completes the proof.

To sum up: in the first case, a simultaneous extension is always possible; the
second example shows that simultaneous extensions need not always exist but that
they may exist up to a small error; in the third case simultaneous extensions do not
exist even approximately.

A systematic study of these phenomena forms the contents of the present note.
The results are intended to be applied to the study of open mapping theorems in
LF-spaces. The results are rather technical; some of the ideas used in the proofs,
however, might be not entirely uninteresting.

1. NOTATION, TERMINOLOGY AND PRELIMINARIES

The term “‘convex space” is used for *locally convex Hausdorff topological linear
space over the real or complex field”. If E is a convex space, we denote by E’ its dual.
If x’ € E’, the value of the functional x" at the point x will be denoted by <{x, x">.
If Yis a subspace of E, we denote by P(Y) the operator which assigns to every x’ € E’
its restriction to Y. In particular, if E is a normed space, we denote by |x’]y the norm
of P(Y) x’ as an element of Y’, so that

[x'[y = [P(Y) x| = sup {[<y, xD; ye ¥, [y £ 1}.

If Vis a subspace of a normed space E and x a given elément of E, we denote by
d(x, V) the distance of x from V, defined as

d(x, V) = inf {|x — v|; ve V}.

We shall also use some simple results about weakly open mappings and closed
mappings. For these, we refer the reader to the first two sections of [1].

We conclude this section with two lemmas which will be used in the sequel.

(1,1) Let E be a normed space, Y a subspace of E. For an x’' € E' the following
conditions are equivalent

10 lx'ly é 1,
2° x’ may be written in the form x" = y° + m with y° e Y° and |m| <1,
¥ d(¥, Y°) < 1.
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Proof. Suppose that 1° is satisfied. According to the Hahn-Banach theorem, there
exists an extension z' of P(Y)x' with norm |z'| = |P(Y) x’| = |x'|y. It follows that
x' —z' = y°e Y° so that x’ = y° + z' is a decomposition of the required form.
The implication 2° — 3° being immediate, it suffices to prove that 3° implies 1°.
Assume 3° and take any y €Y, | y[ < 1. Given ¢ > 0, there exists a y° e Y° such that
[x = 3°| <1+ e Hence <(y,x> =<y, x" — y°> < |y||]x" = »°| <1+ e Since
¢ > 0 was arbitrary, this shows that |x’|y < 1. This completes the proof.

(1,2) Let E be a normed space, U its unit ball, A, B two subspaces of E' and 8
a real number,0 < p < 1.If Ac Band BN U®° ¢ 4 + BU° then A = B = norm
closure of A.

Proof. Clearly it suffices to show that the inclusions 4 « Band BN U° = 4 +
+ BU imply B A U°® < A + B*U° as well. Indeed, if b € B and |b| < 1, the vector b
may be written in the form b = a + By, y € U°. It follows that y = (1/8) (b — a) e B
whence y € B n U° so that y = a, + By, for suitable a, € A and y, € U°. Hence

b=a + p(a, + Byz2) = (a + Bay) + PPy, e A + BU°.

2. ORTHOGONAL PAIRS OF SUBSPACES

This section is devoted to the study of the simplest case where every pair of functio-
nals has a common extension.

The results of this section are fairly obvious, the proofs straightforward; they are
included for the sake of completeness. Also, we intend to compare them with analo-
gous results in a more general situation in section four.

(2,1) Theorem. Let F be a convex space, R and Y subspaces of F. Then the follow-
ing conditions are equivalent.

1° the natural mapping of R @ Yonto R + Y is weakly open,
2° given any two r*e R’ and y*e Y’ which coincide on R n'Y, there exists
a simultaneous extension x' € F', ‘
21° given any r*€ R’ n (R 0 Y)°, there exists an extension 1’ € F' of r* which
is zero on Y,
22° given any y*€ Y' n (R N Y)°, there exists an extension y' € F' of y* which is
zero on R,
3 (RNY)° =R®+7Y°
4 (RnY) =R+ Y°,

Any of these conditions implies R Y =< R Yand (R® + Y°)°® = R® + Y°.
If R and Y are closed then the preceding conditions are equivalent to the following
5° R® + YO is closed,
6° the natural mapping of F onto F|R @ F|Y is weakly open.
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Proof. Consider first the mapping S which assigns to the pair [r, y] € R @ Y the
sum r + y. First of all, the mapping S is weakly open if and only if each x" e S7!(0)°
may be expressed in the form x’ = S’z’ for some z’ € F’. Let us clear up the meaning
of S'. If 8’z = [r*, y*] we have, for any re R and y € ¥, taking x = [r, y],

<7‘, Z’> + <y: ZI> = <Sx: ZI> = <X, S'Z,> = <[r: Y]’ [r*’ Y*]> =
= {r, ) + <y, y*) .

It follows that S’ is the mapping which assigns to each z’ € F’ the couple consisting
of its restrictions to R and Y. Further, it is easy to see that S™'(0) consists of all
elements of the form [¢, —¢] with € R n Y; hence S™*(0)° is the set of those [r*, y*]
which coincide on R n Y. This proves the equivalence of 1° and 2°.

The inclusion R® + Y° = (R n Y)° being satisfied for any pair of subspaces, the
equivalence of 3° and 4° is obvious.

To complete the proof, it suffices to prove the following two chains of implications.

4° — 2° - 22° - 4° and 4° — 2° - 21° — 4°. Since 21° is obtained.from 22° by
interchanging R and Y and both 4° and 2° are invariant with respect to this change, it
will suffice to prove 4° — 2° and 22° — 4°, the implication 2° — 22° being immediate.

4° — 2°. Given y* and r* which coincide on R n'Y, take y; and r, in F’ which ex-
tend y* and r*. It follows that y; — g € (R n Y)° so that, by 3°,

Yo—ro=y"+r1°
with y° € Y® and r° € R®. It follows that y, — y° = ry + r° is the required extension.
22° - 4°. If y'e(R nY)° is given, there exists, by 22°, a z’ € F’ such that z’
coincides with y" on Y and z' = 0 on R. We have thus z’e R® an z' — y' e Y° so
that y’ =z’ + ()’ — z')eR® + Y°.
It is easy to see that (R° + Y°)° = Rn Y. Hence if (RN Y)° = R® + Y°, we
have (R° + Y°)° = (RN Y)®® = Rn Y so that Rn Y < RN Y whence equality.
Condition 3° clearly implies that R® + Y? is closed.

Let us examine now condition 5°. If R and Y are any two subspaces of F, the
following two inclusions are immediate

RO + YO - (ROO A YOO)O, (RO + YO)O c ROO A YOO .
It follows that R® + Y° < (R%° n Y°°)° < (R® + Y°)°°; this proves, for closed R
and Y, the equivalence of 3°, 4° and 5°.

Consider now condition 6°. The natural mapping Q of F onto H = F/R®® @ F/Y°°
is weakly open if and only if Q7!(0)° = Q’H’. Clearly Q7!(0) = R°® n Y°° and
H' = R° ® Y°, Q' being the addition. Hence Q is weakly open if and only if (R°° n
N Y°%)°% = R® + Y° which proves, for closed R and Y, the equivalence of 6° and 3°.

The following two lemmas contain additional information of a quantitative charac-
ter in the case of normed spaces.
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(2,2) Let F be a Banach space, R and Y two closed subspaces of F. If we define the
norm on R @ Y as max (|r|, |y|) and the norm on F|R @ F|Y as d(x, R) + d(x, Y),
then the following conditions are equivalent.

1° the natural mapping of R ® Y onto R + Y is of type (o, 0);
2° if r*e R’ and y* €Y’ coincide on R N Y and |r*| + |y*| < 1 then there exists
an x' € F with |x'| < w which is a simultaneous extension of r* and y*.
Further, the following two conditions are equivalent.
3° the natural mapping of F onto F|R @ F/Y is of type (o, 0);
4° each x'€ (RN Y)°, |x'| <1 may be written in the form x' =r° + y°
with |r°| £ o, |y°| £ w, r°€ R, y°e Y°.

Proof. According to a general proposition (see e.g. proposition (2,3) of [2])

a continuous mapping T of F into a normed space H is of type (a), 0) if and
only if T7*(0)° n Uy < T'(wUY).

(2,3) Let F be a normed space, R and Y two subspaces of F. Then the following
two conditions are equivalent:
1° d(r, RN Y) £ wd(r, Y) for each re R;
2° for each r*e R' n (RN Y)° there exists an extension r' of r* such that
|7'| £ o|r*| and r' eY°.

Proof. Let r* € R’ be zero on R n'Y. Define a linear form g on R + Y by the for-
mula g(r + y) = <r, r*). This is possible since r*e (RN Y)°. If r + y =r; + y,,
we have r — r; = y;, — ye€ Rn Y so that {ry, r*) = {r, r*>. We have, r* being
zeroon RN Y,

lg(r + y)| = |<r, 7| £ d(r, RAY)| r*| £ o|r*| d(r, Y) £
< ofr¥| |r + ¥
so that g is continuous with norm < w|r*|.

On the other hand, if r € R, we have d(r, Rn Y) = sup {r, r*)> where r* € R’ are
zero on R n Y and ]r*] < 1. Take such an r*. By 2° there exists an extension r’ of r*
with norm < o such that ' € Y°. If y € Yis arbitrary, we have

|<ry 73] = [Kry )| = Kr = p, )| £ 0fr =y

so that [<r, r*)| < @ d(r, Y) whence d(r, Rn Y) £ 0 d(r, Y).

(2,4) Theorem. Suppose that F is a Banach space and that both R and Y are closed
in F; then the conditions of Theorem (2,1) are also equivalent to the following

7° R + Yis closed in F;
8° the natural mapping of R @ Y onto R + Y is open;
9° there exists an @ > 0 such that d(r, R "' Y) < wd(r, Y) for all r e R;
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10° there exists an @ > 0 such that d(y, R 0 Y) < wd(y, R) for all ye Y,

11° there exists an w > 0 such that each r*e R' n (R ' Y)° has an extension
v’ with |r'| £ o|r*| and r' € Y°;

12° there exists an o > 0 such that each y*e€ Y’ A (R " Y)° has an extension
y' with |y'| £ w|y*| and y’ € R

13° there exists an @ > 0 with the following property: given any two y*eY’
and r* € R’ which coincide on R 0 Y and |r*| + |y*| < 1, there exists a simul-
taneous extension x' € F' with Ix’| < w;

14° the natural mapping of F into F|[R @ F|Y is open;

15° there exists an @ > 0 such that each x’ € (R N Y)® may be written in the

form x' = 1% + y° with |[r°] £ w|x'[, |y°| £ o|x'|, ©°€R°, y* e Y°.

Proof. First of all, 1° and 8° are equivalent according to a general theorem. The
open mapping theorem gives the equivalence of 7° and 8°. The equivalence of 8°
and 13° is a consequence of (2,2). By (2,2) the conditions 14° and 15° are equivalent.
Further, 14° is equivalent to 6° according to a general theorem. To complete the
proof, it will suffice to prove the following two chains of implications:

21° 5 11° - 9° - 11° - 21°, 22° - 12° > 10° — 12° — 22°.

We observe first that it is sufficient to prove the first four implications only, the other
chain being obtained from the first one by interchanging R and Y.

The equivalence of 11° and 9° is a consequence of (2,3) and 11° — 21° is immediate.
Hence the proof will be complete if we show that 21° — 11°.

Denote by P(R) the mapping which assigns to each x’ e Y° its restriction to R.
If 21° is satisfied, P(R) is a mapping onto R’ n (R n Y)°. By the open mapping theo-
rem, there exists an w > 0 such that d(x’, P(R)™* (0)) < w|P(R) x'| for all x" e Y°.
Clearly P(R)™!(0) = Y® A R%. If * € R’ n (R n Y)° is given, there exists, by 21°, an
extension z’ € F’ of r* which is zero on Y so that P(R) z’ = r* and z'€Y°. We have
thus d(z’, Y° n R°) £ w|P(R) z'| = o|r*|. According to (1,1) there exists a v’ eY° N R°
such that |z — o[ = d(z’, Y° n R°). It follows that the functional x" = z' — v’ sat-
isfies |x'| £ w|r*|, P(R)x" = P(R)z' — P(R)v'=P(R)z' = r* and x' = z' — v e Y°.

The proof is complete. '

(2,5) Definition. Let R and Y be two closed subspaces of a convex space F. The
pair R, Y will be called orthogonal if it satisfies one of the conditions of (2,1).

In applications we shall encounter a situation where the existence of simultaneous
extensions is deduced from stronger assumptions. The following lemma shows that
this situation may be reduced to the case of orthogonality if we make appropriate
changes in the spaces considered.

(2,6) Let F be a normed space, R, S and Y three closed subspaces of F such that
R NnY c S < R. Then the following conditions are equivalent.

1° every r* € R’ which annihilates S has an extension x' € Y°;

560



2° 8° = R® + YO

3° Y+ Sisclosedin R + Yand R, Y + S are orthogonal.

Proof. Assume 1° and take an s° € S°. By condition 1°, there exists a y° e Y°
which extends P(R) s°. It follows that s° — y® € R® whence s € Y° + R°. Suppose
now that S° = R® + Y° and consider an r, € R outside S. Since S is closed in R,
there exists an r* € R’ such that r* annihilates S and {r,, r*) = 1. According to 2°,

r* has an extension 1’ € Y°. Given a y, € Y, we have, for each yeY

y+s,1r>=0 while {yy+ ro,ry="C_gr'y=1.

This proves that Z = Y + S is closed in Y 4+ R. To prove that the pair R, Z is
orthogonal it suffices, by (2,1), to show that (R n Z)° = R® + Z°. Since clearly
RnZ=Sand Z° = (Y + 5)° = Y° 1 S°, this reduces to S° = R® + (Y° n S°).
To prove that, take an arbitrary s® e S and write it in the form s = 7 + °,
r®e R® and y° e Y°. Since clearly R® = S° we have y° = 5% — r°e S° so that
y° e Y% n S° = Z° This proves 3°. The implication 3° — 1° being immediate, the
proof is complete.

3. AN INEQUALITY

We devote a separate section to the proof of the equivalence of an interesting
inequality and a quantitative statement about extensions (the first two conditions of

the proposition below). This equivalence generalizes considerably lemma (2,3) to
which it reduces in the case a = 0.

(3,1) Let F be a normed space, R and Y two subspaces of F. Then the following
conditions are equivalent
1° for each re R and each yeY
dir,RnY) £ o|r — y| + oy,

2° if r*eR’, |r*| £ 1, r*e(R N Y)® then there exists an extension x' € E' such
that |x'| £ w and |x'|y £

3° if r* e R’ and y* € Y’ coincide on R N Y and |r*| +,|y*| < 1 then there exists
an x' € E' which extends r* and |x'| < |y*| + o, |x' — y*|y S %
4 (RnY)P’ U< R+ (Y° + U n wU°.
If o < 1 then these conditions are equivalent to those of theorems (2,1) and (2,4).
Proof. Assume 1° and put, for each x € F
p(x) = inf {w|x — y| + o|y|; ye Y}.

Clearly p(ix) = 4 p(x) for A 2 0. If x; and x, are given, take an & > 0 and find
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Y1, Y2 €Y such that
plx;) < wlxi - .Vi! + a]yi| <p(x)+e, i=12.

It follows that p(x; + X;) < o|x; + X2 — (y; + Y| + alyy + ya| < @fxy — yi| +
+ “b’ll + olx, =y, + oc|y2| < p(x1) + P(xz) + 2¢. Since ¢ was arbirary, the
function p is subadditive. Consider now an r*e R’, |r*| < 1 and r* e (R n Y)°; we
have, foreachre RandeachzeRNnY

r,r*) ={r —z,r*) <inf|r — z| =d(r, RN Y) <
< inf {o|r — y| + oz[y!; yeY}=p(r).

It follows that the linear form r* on R may be extended to a linear form f on the whole
of F with f(x) < p(x) for all x € F. Since p(x) < x|, the linear form f is continuous.
The rest follows from the fact that p(y) < a|y| for y € Y. This proves 2°.

Now assume 2° and suppose we are given an r* € R’ and a y* € Y’ such that they
coincide on R N Y and |r*| + |y*| < 1. Consider an extension y’ of y* with norm
|y'| = |y*|- Then r* — P(R) y’ has norm <1 and is zero on R n Y. According to 2°,
there exists an extension z’ of r* — P(R) y’ with |z'| £ » and |P(Y) z'| £ . Put
x' =y’ + z’. We have P(R) x’ = P(R) y’ + (r* — P(R) y') = r* and

[P(Y)x" = y*| = [P(Y) ¥ + P(Y) 2" = y*| = [P(Y) 2| < .
Further, |x'| < |y'| + |z/| £ |y*| + o which proves 3°. Since 3° implies 2° immediate-
1y, the equivalence of 2° and 3° is established.

Now assume 2° and let z’ € (R " Y)° n U°. There exists, by condition 2°, an x’ which
extends P(R) z’ and |[x'| £ o, [x'|y £ «. Since ||y £ «, the functional x’ may be
written in the form x" = y° + m, where y° € Y° and |m| £ «. Clearly z’ — x’ € R°
so that z’ = (z' — x’) + (° + m) is a decomposition of x’ of the form required in 4°.
To complete the proof, let us show that 4° implies 1°. If € R is given, we have

d(r, R 0 Y) = max {<r, x'>; '€ (R Y)° n U°}.
Now each such x’ may be written in the form x" = r° + y° 4+ m with |)° + m| £ @
and |m| < o. Hence

(rxy =y +my=<r—p,y° +m)y +3,)° +m) =

=<r=5"+m +<ymd < ofr — y[ + ofy].

The equivalence of the four conditions is thus established.
Condition 1° implies
dr,RnY) 2 olr—y| +ay| £ (0 +a)|r — )] + afr| .

If o < 1, this implies d(r, R 0 Y) < ((@ + @)/(1 — d) d(r, Y)) so that theorem (2,4)
applies.
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4. SEMIORTHOGONAL PAIRS OF SUBSPACES

In this section we intend to investigate another set of equivalent conditions which
characterize a slightly weaker notion than that of orthogonality. Roughly speaking,
the openness of the mapping R @ Y — R + Yis replaced by the weaker type (o0, 0)
and the existence of extensions by the existence of approximate extensions. Although
a part of the results could be proved — similarly as in (2,1) — without the assumption
that R and Y are closed, we restrict ourselves to closed R and Y: the following lemma
indicates that this restriction is a natural one.

(4,1) Let F be a normed space, R and Y two subspaces of F; suppose that (R nY)°
is contained in the norm closure of R® + Y°. Then

YNnRcYnR.

Proof. If x, lies outside Y N R, there exists an x" € (Y n R)® with {(x,, x') = 1.
According to our assumption, x' may be written in the form x' = y° + r® + m
with y° € Y°, r° € R® and |x,| |m| < 1. Then x, cannot belong to ¥ n R since other-
wise

1 = (X, x> = <X, Y°) + (X0, 17 + Xg, m) = (X, m) <1,

a contradiction.

(4,2) Theorem. Let F be a normed space, Y and R two closed subspaces of F. Then
the following conditions are equivalent.

1° there exists an o < 1 such that
(RNY)NU°<=R®+Y°+al%;

2° (R n Y)° is contained in (or equal to) the norm closure of R® + Y°;
3° the norm closure of R® + Y° is weakly closed,
41° if r*e R’ and y* € Y’ coincide on R N Y and |r*| + |y*| £ 1, there exists, for
each ¢ > 0, an x' with P(R) x' = r* and |P(Y) x' — y*| < &;
42° if r*e R’ and y* €Y’ coincide on R 0 Y and |r*| + |y*| < 1 there exists, for
each ¢ > 0, an x’ with P(Y)x' = y* and |[P(R)x' — r*| < ¢;
51°if r*e R n (RN Y)° |[r*| £ 1 and & > 0 there exists an extension x' of r*
such that |P(Y) x'| < &
52° if y*e Y' n (RN Y)°, |y*| £ 1 and & > 0, there exists an extension x' of y*
such that |P(R) x'| < &;
6° if r*e R’ and y*e€ Y’ coincide on RN Y and lr*] + |y*| < 1 there exists, for
each ¢ > 0, an x' such that

|P(R) x" — r*| + |P(Y)x" — y*| < &3
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7° suppose that r,, y,€U and that r, + y, — 0; then both Q(r,) and Q(y,) tend
weakly to zero, Q being the quotient map modulo R n'Y;

8° Rn Y= RANY, the bar denoting o(F", F') closure;

9° the natural mapping of F onto F|[R @ F|Y is of type (o, 0).

Proof. The implication 1° — 2° is a consequence of (1,2). The equivalence of 2°
and 3° is a consequence of the following two inclusions (valid even without the
assumption that R and Y are closed)

RO+ Y c(RNY)P, (R®AY®)Pc (R + Y.

2° — 41°. Take an extension r’ of r* with |r'| = |[r*| and an extension y’ of y*
with |y’| = |y*|. We have " — y’e (RN Y)° and | —y'| <[] + [y| S 1 s0
that, by 2°, # — y’ may be written in the form » — y' = r® + y° + m where
|m| S e Put x' =¢ —r® =y + y° + m. Since x’ = 1 — r°, we have P(R) x' =
= r*. Since X' — y' = y° + m, we have |P(Y) x' — y*| < e.

41° - 51°. Follows immediately if we take y* = 0.

51° - 1°. Take an ¥ € (R 1 Y)° N U° and an ¢ > 0. Take P(R) r’ and extend it
to an x’ with |P(Y)x’| <& We have v’ — x' € R® and x' e Y° + eU° whence r' €
ex’ + R® < R® + Y° 4 ¢U°.

This proves the equivalence of 1°, 2°, 41°, 51°. Since 42° and 52° may be obtained
from 41° and 51° by interchanging R and Y, they are also equivalent to 2°, condition 2°
being invariant with respect to this change.

41° - 6°. Immediate.

6° — 51°. Let r*e(Rn Y)° n U° and let & > 0. Put y* = 0. By 6°, there exists
a v’ such that

|[P(R)v' — r*| + |P(Y) v’ §_ e. Put o=|P(R)v — r¥

and take an extension z’ of P(R) v’ — r* with |z’| = ¢. Put x’ = v’ — z’. We have
P(R)x' = P(R)v' — (P(R)v' — r*¥) = r* and |P(Y) x| £ |P(Y)v| + Iz’] <e

7° > 2° Let x’ € (R n Y)° n U°® and & > 0 be given. Suppose that x’ non e R® +
+ Y° + eU°. Let n be a natural number. Since x’ does not belong to the o(E’, E)
closed set R® + (Y° n nU°) + eU° there is an x, € F, x, = 0 such that

(Xns XD Z (X R® + (Y° (1 0UO) + ¢U°) .
We may clearly assume that |x,| = 1. Since
12 (XX 2 {x,, R®)

we have x, € R; we write, accordingly, r, = x. Further, 1 = (r,, x'> = <r,, eU%)
so that it follows from |r,| = 1 that {Tw X'} > & We have

1 2 {ryp x> Z sup <ry, Y0 nU® = nd(r,,, Y)
so that d(r,, Y) < 1/n.
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We have {r,, x'y = ¢ > 0 and d(r,, Y) < 1/n so that there exist y, € Y such that
|rs + ya| £ 2/n. Hence |y,| < 3. Set #, = ir, and §, = 1y, so that #,e U, 9,eU,
|, + 9] < 1/n. Now x" € (R n Y)° and <#,, x> = 4 > 0. This contradicts 7°.

2° - 7°. Suppose that r,eU, y,eU and r, + y, > 0. Take an x'e (RN Y)°
and an ¢ > 0. According to condition 2°, there exist #° € R°, y° € Y° and m € F’ such
that x' =7r°+ y° + m and |m| <e It follows that {(Q(r,), x> = <r, x> =
=Y A my =1 4 9 Y+ my — (3 Y+ my =+ y, Y A M) —
— {Y» m). Given &> 0, there exists an n(e) such that, for n = n(e), we have
[ra + va| < €/|y° + m|. It follows that, for n = n(e)

[<O(r), 5] = [Kry + v ¥° + md| + [Kypy m)| < 26

This proves 7°.

To prove the equivalence of 2° and 8° let us recall first a general equality in convex
spaces. If E is a convex space, P and Q two subspaces of E, then (P + Q)° = P°nQ°.
Now condition 2° says that the o(E’, E”) closure of R® + Y° contains (R n Y)°, in
other words

(R® + Y)Y 5 (RN Y)*.
Since (R® + Y°) = (R¥ + Y¥)¥ = R¥F n Y*¥ = Rn Y the inclusion above
may be rewritten as
(RnY) > (RnY)".
We shall use condition 2° in this form.
Taking polars in E”, we obtain

RoY)=RnY)f¥ <(RnY)f¥ =RnY

so that 8° is satisfied.
On the other hand, condition 8° may be rewritten as R n Y = (R n Y)*®'; taking

polars in E’, we obtain
(RATF 5 (RAYPFEE = (R Y)F

so that 2° holds.
The equivalence of 9° and 2° is a consequence of a general theorem.

5. THE CHARACTERISTIC &(R, Y)

Let F be a normed space; given two subspaces R and Y, we may consider the
following problem: take a linear functional * on R of norm one and such that r* is
zero on R N Y; consider all possible extensions of r* to the whole space and compute
for each of them its norm on Y. What is the infimum of these norms? The answer is
given in the following theorem.
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(5,1) Definition. Let R and Y be two subspaces of a normed space F. We define

éR,Y) = sup inf {|x'|y; P(R)x" = r*}.

r*eR’,r*e(RnY)°, |r*¥| <1

(5,2) Theorem. The characteristic ¢ is symmetric, &R, Y) = &(Y, R). There are
only two possible values for &, zero or one.

Proof. The symmetry is a consequence of the following equations:

¢R,Y) = sup inf |x'|y=  sup inf |x'|y =
r*eR’,r*¢(RnY)% [r*|S1 P(R)x'=r* r'e(RNY)°AU° x’—r’eRO
= sup inf inf |x' = )°| =  sup inf |x'—r°—)° =
re(RNY)°NU° x’—r’eRO y0cYO© r'e(RnY)°AUO rOeRO, y0cY0

= sup d(r,R°+Y°).
r'’e(RnY)°nU°
This expression is independent of the order of the subspaces considered. Also, it
shows immediately that 0 < &(R, Y) < 1. Suppose now that &R, Y) < 1. It follows
that (R 1 Y)° n U® = R® + Y° + BU° for some B < 1; the conclusion &(R, Y) = 0
is then a consequence of the equivalence of conditions 1° and 2° of theorem (4,2).

(5,3) Definition. If R and Y are two closed subspaces of a normed space F, then
the pair R, Y will be called semiorthogonal if &(R, Y) = O or, equivalently, if it
satisfies one of the cvnditions of (4,2).
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