Czechoslovak Mathematical Journal

Ladislav Bican
Some properties of completely decomposable torsion free Abelian groups

Czechoslovak Mathematical Journal, Vol. 19 (1969), No. 3, 518-533

Persistent URL: http://dml.cz/dmlcz/100919

Terms of use:

© Institute of Mathematics AS CR, 1969

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/100919
http://dml.cz

Czechoslovak Mathematical Journal, 19 (94) 1969; Praha

SOME PROPERTIES OF COMPLETELY DECOMPOSABLE
TORSION FREE ABELIAN GROUPS
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(Received November 28, 1968)

In this paper there are proved some theorems giving the solution of two following
problems:

1. To find the most general sufficient conditions for the type set of a given com-
pletely decomposable torsion free abelian group H such that G ~ H whenever
H = G or G = H and the embedding of H in' G or G in H, respectively, has a given
property.

2. For a completely decomposable torsion free abelian group H with the type set
of given properties to find the necessary and sufficient conditions for the embedding
of H in G or G in H such that G ~ H, whenever H or G is embedded in G or H,
respectively, under these conditions.

For this reason, three notions generalizing the boundedness of the factor-group
G/H are introduced. Some theorems from [6] and [8] are simple consequences of the
theorems solving the problems mentioned above. Further consequences are, for
example, some new criteria for the complete decomposability of a torsion free
abelian group.

By the word “group” we shall always mean an additively written abelian group.
If'M is a set of elements of a torsion free group G then {M }i denotes the pure closure .
of M in G. If 7 is a height, then £ will be the type to which the height t belongs.
R denotes the greatest element of the lattice of all types. If G is a torsion free group,
then I(G) denotes the set of types of all elements from G. By T(G) we shall denote
the set of the types of all direct summands J, of the completely decomposable group

G =), J,. The p-height of an element g of the group G is denoted by hS(g), and the
acd

type of the element g in the group G is denoted by t°(g). A group G is called p-
divisible if the equation p*x = g is solvable in G for all ge G and all positive
integers k, p-reduced if it contains no p-divisible subgroup.

In general, we shall adopt the notation used in [1].
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Definition 1. Let H be a subgroup of a torsion free group G. We say that H is
regular in G if the factor-group S/S n H is finite for every rank one subgroup S
pure in G.

Definition 2. Let H be a subgroup of a torsion free group G. We say that H is
strongly regular in G if the factor-group S/S N H is finite for every rank finite sub-
group S pure in G. '

Definition 3. Let H be a subgroup of a torsion free group G. We say that H is
fully regular in G if the factor-group S/{S n H, T} is finite for every two subgroups
T < S pure in G such that S/T'is of a finite rank.

Remark. It is easy to see that if H is fully regular in G or strongly regular in G,
then H is strongly regular or regular in G, respectively. Wang in his paper [13] has
introduced the notion of the regularity of a subgroup H in a group G. This notion
together with the condition that G/H is torsion is equivalent to the notion introduced
by Definition 1.

Lemma 1. Let G be a torsion free group containing a subgroup H = H{ 4+ H,
where H, is divisible. If G/H is a torsion group then

(1) G={H{+ H,.

Proof. It is easy to see that {H,}§ n H, = 0. On the other hand, to an arbitrary
g € G there exists a non-zero integer m such that mg € H, i.e. mg = h; + h,, h;e H,,
i = 1, 2. The divisibility of H, implies the existence of an element hj € H,, mh}, =
= h,. Then g — h} € {H,}§ because m(g — h3) = hy. Now g = (g — h}) + h} and
the proof is finished:

Theorem 1. Let G be a torsion free group containing a completely decomposable
subgroup H such that

(«) T(H) satisfies the maximum condition,

(B) for any two incomparable types %, %, from T(H) there is t; v £, = R.
If H is fully regular in G then G ~ H.

Proof. We shall prove this theorem in several steps. Due to Lemma 1 we may
restrict ourselves to a reduced group H.

a) Let H = ) ;J,. Let us decompose the set A into disjoint classes A(%) in the
acAd
following way:
(2 e At) =2(J,) =1,

We define an arbitrary weﬂ-ordering <; on any set A(%) and then partial ordering <
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on the set 4 as follows:
(3 o < B <>ecitherae A(t), feA(6) and %> 8,
or o,feAf) and a<,;p.

It is easy to see that the set 4 with the relation < satisfies the minimum condition and
that there holds

“ a < B=1J,) = #(J,).

For an arbitrary o € 4 we shall introduce the following notation:

Ha = Zd']ﬁs Ha = Ha + Jaa Ga = {Hz}g’ Ga = {Ha}g
B<a

Evidently
) «<p<G, <Gy

b) First we shall prove that G, is a direct summand of G, for every o € A. There is
H,n J, =0 and hence G, n J, = 0, too, according to the torsion free character
of G. Thus we can put K = G, + J,.If g4, g, € G, ~ G, are arbitrary elements, then
there exists a non-zero integer m such that mg, e H, ~ H,, i = 1, 2. In view of the
fact that H,/H, is of rank one, there exist non-zero integers A, 4, such that A,mg, +

+ A,mg, € H, < G,. From this there follows immediately that the factor-group
G,/G, is of rank one. By Definition 3 the factor-group

(6) G,/{G,nH,G,} = G,{H, G} = GJK

is finite, so that m.(G,/G,) = K/G,, for a suitable non-zero integer m. Hence the
factor-groups G,/G, and K/G, have the same type, such that the following isomor-
phisms are true:

(7 GG, ~K|G, ~ J,.

If x € H is an arbitrary element then the factor-group {x}¢/{x}% is finite by Defi-
nition 3, hence
©®) t¥(x) = £%(x) for an arbitrary xeH.

The inclusion A, = K < G, implies that to' every x € K there exists a non-zero
integer m such that mx e H,. Then by (8) there holds #°(x) = t%(x) = #X(x) =
= t%(mx) = t7+(mx) = t¥(mx) = £°(x) and hence

) t(x) = 2%(x) forall xeK.

Now let x € G, =~ G, be an arbitrary element. By (6) there exists a non-zero integer m
such that mx € K and mx has a non-zero component in J, (otherwise mx and con-
sequently x belongs to G,, contrary to our hypothesis). Then by (9) and (4) thereis
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19(x) = t%(mx) = t¥(mx) = #(J,). From this and from (7) there follows that all
conditions of Baer’s lemma (see Lemma 46.3 in [1]) are fulfilled, so that

(10) G, =G, +1,
for a suitable subgroup I, of G,.

¢) Now we shall prove that if p is an arbitrary prime and «,, a, two incomparable
elements from A then at least one of the groups H,,, A,, is p-divisible. In fact, if f,,
is not p-divisible, then the incomparability of the elements o, o, (in relation <)
together with (3) implies the incomparability of the types %(J,,), #(J,,), so that H,,
is p-divisible by hypothesis (f).

d) Let ay, a5, ..., o be elements from A incomparable to each other. If we put

k
A;={BpeA; B2}, i=1,2,...,kand A* = | 4, then
i=1

i=

(11) ﬂZA,,'J,, =Hf, +H,+..+H,,
and
(12) (A, +H,+..+0,)i=6,+G,+..+G,.

(11) will be proved by showing that the sets 4, 4,, ..., 4, are mutually disjoint.
Let us suppose that fe Ad;n4;, 1 =i, j <k, i & j. Then f < a;, f < a; so that
(Jp) = #(J,,) and #(J4) = #(J,,) by (4). From the incomparability of a;, «; (in <)
the incomparability of the type #(J,,), 2(J,,) follows by (3), so that #(J;) = R by
Hypothesis (§). But H is assumed reduced, which is a contradiction.
We proceed now to prove (12). Evidently {G,,, G,,, ..., G,,} = {H,, + H,, + ...
k

... + A,)¢. Further, if Y. g, =0, g,€ G,,, i = 1,2, ..., k, then mg, € H,, for a suit-
i=1 k

ably chosen non-zero integer m, and Y. mg; = 0. From (11) we get mg; = 0 and
i=1

hence according to the torsion free character of G there is g; =0i=1,2,..., k.

This shows the independence of G,,, G,,, ..., G,, in G. It remains to prove the inclusion

A, +H, +..+0,)<6,+6G,+...+G,. I ge{l, +H,+..

... + H,}% is an arbitrary element then for a suitable non-zero integer m there is

mgeH, + H,, +... + H,,ie.

(13) mg="hy +hy+..+h, heH,, i=12..,k.

Let m = pi'. p7 . .... pi* be the canonical decomposition of m. Using the induction
by s we shall prove that geG,, + G,, + ... + G,.. For s = 1 we can assume,
without loss of generality, that H,, is not p,-divisible. By c) there exist elements
g:=H,,i=23,...,ksuch that pi'g, = h;, i =2,3,....k. It we put g, = g —

— 9> — ... — g theng, € G, , because pl'g, = h,. The proof of this case is complete.
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Now let s be a positive integer, s > 1 and let us assume that for all ¢+ < s our asser-

tion is true. For the sake of simplicity we may assume again that py, p,, ..., P
r > 0, are all primes dividing m and such that lfl",ll is not p,divisible, i = 1,2, ..., 1.
If we put my = pi*.p%.....p" m, = pt.....p" then m = m;.m, and

(my, m,) = 1. From the part c), the existence of the elements hje H,,i = 2,3, ..., k,
such that mh; = h;, i = 2,3, ..., k follows easily. If we put

(14) gy =myg —hy — ... — ki

then m, g} = h, so that g} € G,,. The choice of the primes p;, p,, ..., p, implies the
m,~divisibility of A, . Hence there exists an element h € H,,, m,h} = h,. The in-
tegers m,, m, are relatively prime so that there exist integers u, v satisfying the relation
myu + myw = 1. If we put g, = wh| + vg} then g, € G,, and m,g, = myuh] +
+ myvg) = uh, + myvgy = myug} + myvgy = g;. Hence by (14) there is

(15) myg —g,)=hy + hy +...+h, hjeH,eH,, i=23 ..k
and formula (12) follows now by the induction hypothesis.

e¢) Now we shall prove that the subgroups I,, « € A are in G independent. Let us
suppose that

(16) iy + iy + ...+ i =0, ijel,,i,el,, ...i,el,, o +ao for i%j.

Let (without loss of generality) oy, o5, ..., &, I < k be all the maximal elements of
the set {ay, o, ..., 0} (in the sense of partial order < of the set A). Denoting by g,,
i=1,2,...,1 the sum of all i; from (16) belonging to G,, i = 1,2, ..., I, we can
rewrite (16) in the form

(17) gi+g2+..4+g,=0, geCG,, i=12..,1I.

Then by (12) g; = 0,i = 1,2, ..., I. Thus we can assume that (16) holds and o; > a;,
i=2,3,..,kand i; + 0. Now by (5) there is (i, + i3 + ... + i) € G,, and hence
(16) contradicts to (8).

f) It remains to prove that G is generated by I,, « € 4 and that G ~ H. Let us
denote G* = Y1, and let us assume that G ~ G* % 0. Let ge G ~ G* be an

acA

arbitrary element. From the periodicity of the factor-group G/H there follows the
existence of a non-zero integer m such that mg € H. In view of the form of H it is
clear that mg may be written in the form (13). Hence by (12) we can write

(18) g=g1+gs+ ...+, 9:€G,,, i=12,..,k.

Now it is clear that the set M of all elements g € G ~ G* lying in some G, is non-void.
Due to the fact that the set A4 (with <) satisfies the minimum condition, we may
associate with any g € M an element «, € A such that g € G,u but g ¢ G, for f < o
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The set {0 g € M} contains a minimal element y. Let g be that element from M
for which a, = y (if those g are several, we take any one of them). By (10) we have

g =9, + iy g,€G, i,el,. For a suitable non-zero integer m there holds

(199 mg,=hy+hy+...+h, heH,, o;<y, i=12..,k
so that by (12) there holds
(20) 9, =91 +ga+ ...+ g, g:€G,,, i=12..k.

In view of the choice of y thereis g; € G*,i = 1,2, ..., kand hence g, € G* and g € G*,
which is a contradiction proving that G = G*.

By (7) and (10) there is I, ~ J, for any a € A4 so that G ~ H and the proof is now
complete.

Now we shall proceed to the ‘““dual” theorem.

Lemma 2. Let G = G; 4+ G, be a torsion free group, G, being divisible. If H is
regular in G then

(21) H=(G,nH) +G,.

Proof. Let g € G, be an arbitrary element. In view of the regularity of H in G
there is mg € H for a suitable non-zero integer m. The factor-group {mg}ﬁ/{mg}f,f is
finite by Definition 1 so that {mg}§ ~ {mg}§. Then {mg}y is divisible, g € H and

hence G, = H. Our lemma now easily follows.

Theorem 2. Let G be a completely decomposable torsion free group such that

(«) T(G) satisfies the maximum condition,
(B) for any two incomparable types t,, t, from T(G) there is %, v %, = R.
If H is regular in G, then G ~ H.

Proof. In view of Lemma 2 we may restrict ourselves to a reduced group G.

a) Let G = 2;1,, J,. Similarly as in the proof of the preceding theorem we shall

define a partial order < on the set A. Especially we shall use the formulae (3) and (4).

For an arbitrary a € A we shall introduce the following notation: G, = Y4 Jg,
p<a

G, =G, +J,H,=G,nH, H = G, n H. Clearly
(22) «<p<H,<cH,.

b) We shall prove now that H, & H, for any « € 4. In fact, for H, = H, there is
J,~ GG, ~ G,/H,/G,/H, where on the right hand there is a periodical group,
because G,/H, = G,/G, n H ~ {G,, H}/H <= G/H. This contradicts to the torsion
free character of J,.
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c¢) We proceed to show that H, is a direct summand of H, for any « € A. The factor-
group {x}§/{x}% is finite for any x € H, hence t”(x) = #%(x). For an arbitrary element
geH, =~ H, there is g = g, + g5, 91 €G,, g€ J,, g, + 0 and 2%(g) = %g) =
= 1%%g,) 0 %%(g,) = t%(g,) = %(J,) = © by (4). Further, H,/H, = G, n H/G, n
nH=6G6,nH/G,nG,nH~{G, G, nH}G, = G,[G, ~ J,, hence H,/H, is
a group of rank one and #(H,/H,) < 4. On the other hand, H,/H, is torsion free,
hence H, is pure in f, and #(f,/H,) = %. Using Baer’s lemma (46.3 in [1]) we get

(23) H,=H, +I, forany acA.

d) If p is an arbitrary prime and o, o, two incomparable elements from 4, then
at least one of the groups G,,, G,, is p-divisible. The proof of this fact runs on the
same lines as the proof of ¢) in Theorem 1.

e) If p is an arbitrary prime and o € 4 an arbitrary element, then the p-divisibility
of G, implies the p-divisibility of H,. Evidently, for an arbitrary h e H, the factor
group {h}5/{h}§ is finite, so that {h}§ ~ {h}% and the assertion follows.

f) Let oy, a5, ..., o be elements from A4 incomparable to each other. Let us put
k

A;={fed; <o}, i=1,2,.., kand 4* = | 4, Then
i=1

(24) szﬂ=Gu1+Gaz+'--+Gak5
peA*
and
(25) G, +6CG,, +...4G)nH=H, + A, +... + H,_.

The proof of (24) is the same as the proof of (11). Proceeding to (25) let us note that
H,=6,,nHc (G, + G, + ... + G,) n H implies the inclusion {H,, f,,, ...
.. Hl,} (G, + G, +...+G,) N H. Further, the subgroups A,,i = 1,2, ..., k
are obviously independent in H (due to H,, = G,, and (24)). Now if he(G,, +

+ G, + ... + G,) N H is an arbitrary element, then we may write
(26) h=g, +g,+...+ge, 9:€G,,, i=12..k.

From the periodicity of G/H the existence of a non-zero integer m such that mg; e
ef,,i=12,..,kfollows. Let m = p}'.p%..... pl be the canonical decomposi-
tion of m. Using the induction by s we shall prove that he A,, + H,, + ... + H,,.
For s = 1 we can assume (without loss of generality) that G,, is not py-divisible (if
it is then the assertion immediately follows from e)). Then by d) the groups G,
i=2,3,..,k are p,-divisible, so that g,e H,, i =2,3,...,k by e). Further,

gi=h—g,—...—g.€G,, nH=H, and we are ready. For s > 1 we may
assume that py, P2, .- Pr» I > 0 are all primes dividing m and such that G,, is not
p-divisible, i = 1,2, ..., r. If wedenote m; = p{' . p¥ . .... plr, m, = plii. ... p¥,
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then it is easy to see that myg; € H,, i = 2,3, ..., k (by using d) and e) several times).
But myh = mygy + Mygy + ... + Myg, and mygy = myh — Mgy, — ... — Mgy €
e G,, n H = H,,. Hence the assertion follows by induction hypothesis.

g) We shall prove now that the subgroups I,, @ € A are independent in H. The
proof of this fact runs on the same lines as the proof of the part ¢) in Theorem 1, and
hence it may be left to the reader.

h) The proof that H is generated by I,, « € A is very similar to the part f) from the
proof of the preceding theorem and may be left to the reader.

Finally, A,/H, ~ I, by (23) so that #(I,) = #(J,) for any e A and therefore
G ~ H, which completes the proof of the theorem.

Corollary (KovAcs [8], Theorems B1, B2). If G is a completely decomposable
torsion free group such that T(G) is inversely well-ordered (in the natural order of
the types), then G is isomorphic to any its subgroup H or extension K such that
nG < H or nK < G, respectively, for a suitable positive integer n.

Proof. It may be easily shown that all the conditions of Theorem 2 (Theorem 1
resp.) are satisfied.

Theorem 3. Let G be a completely decomposable torsion free group such that T(G)
satisfies conditions («), (B) from the preceding theorem. Then every its subgroup H
such that t¥(x) = t%(x) for any x € H and {H} is a direct summand of G is again
completely decomposable.

Proof. From the theorems proved by KuLikov [11] and KAPLANsKY [12] there
follows (see also Fuchs [2], § 1) that a direct summand of a completely decomposable
group is again completely decomposable. Hence we may restrict ourselves to the case
that G/H is periodical. Now it is easy to see that the condition ##(x) = £%(x) for any
x € H is equivalent to the regularity of H in G and it suffices to use Theorem 2.

Theorem 4. Let G be a torsion free group containing a homogeneous completely
decomposable subgroup H such that G[H is a periodical group. Then G ~ H if and

only if
(«) H is strongly regular in G,
(B) Ger,t)

Proof. First let us assume that G ~ H. Then G is completely decomposable and
hence GeI'y or Ge I',. If S is an arbitrary subgroup of finite rank r pure in G, then
evidently S n H is pure in H and hence by Theorem 46.6 from [1] the group S n H

is completely decomposable, S N H = Y, J;. Let us denote I;, = {J'k}f.f, k=1,2,...,r

) I, denotes Baer’s classes of torsion free groups (see [1] § 48, p. 174).
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r
and B = Y, I,. There is #(I;) = #(J;) so that the factor-group I /J, is finite, k =
k=1 r
=1,2,...,r. Then B/S " H ~ Y 4I;/J, is finite. Further, the group S is completely
k=1

decomposable by Theorem 46.6 from [1], so that S/B is finite by Theorem 48.1
from [1]. Finally, the index [S:Sn H] =[S:B].[B:Sn H] is finite and this
implies the necessity of the condition (a).

In order to prove sufficiency, let us note that G is homogeneous of the same type
as H.In fact, from the periodicity of the factor-group G/H there follows that to every
g € G there exists a non-zero integer m such that mg € H. The homogeneity of G now
easily follows from the fact that {mg}5/{mg}% is finite (condition (x)).

Now let S be an arbitrary rank finite subgroup pure in G and T/S a rank one sub-
group pure in G/S. It is not too difficult to prove that T'is a rank finite subgroup pure
in G. Clearly, T H is pure in H so that Tn H is completely decomposable by
Theorem 46.6 from [1]. Hence the corollary to Theorem 2 implies T~ T H.
S being a pure subgroup in a homogeneous completely decomposable group T of
finite rank, it is a direct summand of T by Theorem 46.8 from [1] All the conditions
of Theorem 48.2 from [1] are satisfied now, hence G is a completely decomposable
group which is homogeneous of the same type as H. From the periodicity of the
factor-group G/H there follows that r(H) = r(G) (the equality of ranks) and hence
G ~ H.

Corollary 1. Let G be a torsion free group containing a countable homogeneous
completely decomposable subgroup H such that G/H is periodical. Then G ~ H
if and only if H is strongly regular in G.

Proof. From the periodicity of the factor-group G/H there follows that r(G) =
= r(H) and then it suffices to use Theorem 4.

Corollary 2. Let G be a torsion free group containing a homogeneous completely
decomposable subgroup H. If G € I',, the factor-group G[H is periodical II-primary
wherell is a finite set of primes, and if for every p €Il the subgroup H is p®-indepen-
dent in G then G ~ H.

Remark. In the case « = 1 we get Theorem 1 from [6]. For the definition of p*-
independence see [6] and [7].

Proof. Let S be a subgroup of a finite rank n pure in G. Then S/S N H is periodical
IT-primary and for every p eIl the p-primary component of S/S n H is of rank at
most n. By Lemma 7 from [7] S n H is p®-independent in G (because S n H is
pure in H). By Theorem 46.6 from [1] S n H is completely decomposable and
by Lemma 4 from [6] there is r, (S) = 02). Hence by Theorem 5 from [5],

2) rp(G) denotes the p-rank of the torsion free group G and r*(P) denotes the rank of a maximal
divisible subgroup of the p-primary component of a perlodlcal group P. For the definitions see
e.g. [4].
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r3(S/S 0 H) = 0*) holds for every p e IT so that the factor-group S/S n H is reduced.
Now it is easy to see that S/S n H is finite (e.g. by using the notion of the basic
subgroup — see [1]) and it suffices to apply Theorem 4.

Now we shall give an example showing that for countable groups Corollary 1 is
more general than Corollary 2.

Example. Let H = Y, {y,} be a free group of countable rank. Let us define
. n=1

a group G as follows: G = {H, x,,n = 1,2,...} where p,x, = y, + y,+, and p,,
n = 1,2, ... are different primes. It is easy to see that G is torsion free again (e.g. by
considering a suitable subgroup in a divisible closure of H). If S is an arbitrary rank

finite subgroup purein Gthen S n H = H, = Y 4 {y;} for a suitable positive integer n.
i=1

Then the x, for k = n do not belong to S, and p; . p5..... p,—1S € H, < H so that
S/S N H is a finite group. By Corollary 1 thereis G ~ H, but G/H is infinite [T-primary
II = {p,, p,, ...}, so that Corollary 2 may not be applied.

Theorem 5. Let G be a homogeneous completely decomposable torsion free group
and H its subgroup such that G[H is periodical. Then G = H if and only if H is
regular in G.

Proof. The condition is sufficient as follows from Theorem 2.

If S is an arbitrary rank one subgroup pure in G and g € S an arbitrary element,
then the periodicty of G/H implies the existence of a non-zero integer m, mg € H. In
view of the isomorphism G = H there holds %(S) = 1%(g) = t%(mg) = #(S n H).
Now it is easy to see that the factor-group S/S n H is finite, which proves the necessity
of the condition stated in our theorem.

Corollary ([6], Theorem 11). Let G be a homogeneous completely decomposable
torsion free group and H its subgroup such that G[H is periodical IT-primary
wherell is a finite set of primes. If for any p eI every non-zero element from G has
in G a finite p-height, then G =~ H.

Proof. Let S be an arbitrary rank one subgroup pure in G. Due to the fact that
the set IT is finite, we may choose an element g in S for which

(27) hS(g) =0 forall pell.

Since G/H is II-primary, there is mg € H for some integer m divisible by primes from IT
only. If g’ € S is an arbitrary element then there exist integers r, s, rg’ = sg. We may
assume, without loss of generality, that (r, s) = 1. From (27) we get that (r, m) = 1.
Clearly rmg’ = smg € H. If we assume that mg’ ¢ H then the element mg’ + H of
the factor-group G/H has an order ' | r with (', m) = 1, which contradicts to II-
primarity of G/H. Hence mS = S n H and by using Theorem 5 the proof is completed.

527



Theorem 6. A homogeneous group G belonging to some class I', is completely
decomposable if and only if every its pure subgroup of finite rank is completely
decomposable.

Proof. In fact, the condition is necessary by Theorem 46.6 from [1].

On the other hand, if S is a finite rank subgroup pure in G and T/S a pure subgroup
of G/S of rank one, then, obviously, T is a pure subgroup of G of finite rank. T is
completely decomposable by hypothesis and by Theorem 46.8 from [1] S is a direct
summand of T. Hence G/S is homogeneous of the same type as G and Theorem 48.2
from [1] completes the proof.

Corollary. A torsion free group G belonging to some Baer’s class I, is free if and
only if every its rank finite subgroup is free.

Proof. It suffices to prove that the condition is sufficient. Because, in particular
every rank finite subgroup pure in G is free, G is homogeneous of the type £ where
T = (0, 0,...,0, ), and the assertion follows from Theorem 6.

Remark. This corollary generalizes Pontrjagin’s criterion of the freeness of a count-
able group (see [ 1], Theorem 14.2).

Theorem 7. Let G be a torsion free group containing a homogeneous completely
decomposable subgroup H. If G contains a subgroup G, suchthat H < G, < G, H is
Sfully regular in G4, G, is strongly regular in G and G|G, is countable, then G ~ H.

Proof. By Theorem 1 thereis G, & H. If g€ G ~ G, then mg € G, for a suitably
chosen non-zero integer m and mg has a non-zero-component in a finitely many -
direct summands of a given complete decomposition of G; = Y 4J,. In any coset

acA
of G/G; we choose one representant and the set of all these representants we denote
by M. Let us denote by A, the set of all indices « € A with the property that J,
contains a (non-zero) component of at least one element mg, g € M *). Obviously 4,
is countable (because M is countable). If we put A, = 4 ~ 4,, G’ = {Y,J,; M},

acAg

G" =), J, then it is easy to see that G’ n G” = 0. On the other hand, there is

acAz
G = {Gy, M} = {G’, G"} so that G = G’ 4 G". From Definition 2 it may be easily
derived that ), J, is strongly regular in G’ so that G’ ~ Y ;J, by Corollary 1 to
acAy acdy
Theorem 4, and the assertion now easily follows.

Lemma 3. Let G be a torsion free group containing a subgroup H = H, + H,,

3) The set of those J,, « € 4 in which mg has a non-zero component does not depend on the
choice of the non-zero integer m for which mg € G,. In fact, let ¢ be the least positive integer
such that tg € G;. Then m = tq + r, 0 = r < . For r == 0 there is rg = mg — qtg € G which is
a contradiction with the minimality of z. Hence r = 0 and the assertion follows.
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where H, is reduced and H, divisible. If H is strongly regular in G then

(28) G={Hi + H,
and
(29) G~H<{H}§{~H,.

Proof. Using Definition 2 we get that G/H is a periodical group so that (28) holds
by Lemma 1. If {H,}{ ~ H, then evidently G ~ H. Conversely, from Definition 2
there easily follows that {H,}{ is reduced and then it is not too difficult to show that
{H,}{ ~ G/H, ~ Go/H,p = H[H, ~ H;, ¢ being an isomorphism between G
and H.

Lemma 4. Let H =Y, J, be a reduced completely decomposable torsion free
n=1

group. Then either there exists a prime p and indices ny, n,, ... different to each

other so that J,_ are p-reduced, k = 1,2, ..., or there exist different primes p,,

D3, ... and different indices ny, n,, ... such that J, is p;-reduced, k = 1,2, ...

Proof. Assume that for any prime p only a finite number of J, is p-reduced. The
group H is reduced so that there exists a prime p, for which H is not p,-divisible. Let
us choose an index n, so that J,, is p;-reduced and for any s > n; the group J; is
p,-divisible.

Proceeding by the induction we shall assume that we have chosen the primes
Pi» P2 -+, Dy, and the groups J,,, J,,, .., Jp, such that ny < n, < ... < m, J,, is
pireduced and for any s > n; the group J is p;-divisible. Then we can write H =

ny 0
=%Ji+ Y4 J;=H, + H, where H, is p-divisible for all i = 1,2, ..., k. On
i=1 i=nme+1
the other hand, the group H, is reduced by hypothesis, so that there exists a prime
Di+, different from all py, p,, ..., pr and such that H, is not p,, -divisible. By
hypothesis at the beginning of this proof there exists an index n,, ; such that Jn;,
is py+i-reduced and for any s > m.; the group J is p,,-divisible. Obviously
My 1 > m, and our lemma now easily follows.

Lemma 5. Let H = Zd J, be a reduced completely decomposable torsion free
acA

group such that there exists a type t € T(H) for which H*(t) is of infinite rank.
Then there exists a torsion free extension G of H such that H is strongly regular
in G, but G & H.

Proof. The group H*(%) obviously contains a reduced completely decomposable
subgroup of countable rank. In view of preceding Lemma two cases are to be con-
sidered:

1. There exists a prime p and infinitely many different direct summands J,,, J,,, ...
of H*(%) such that J,, J,,, ... are p-reduced.
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2. There exist different primes Py, P2, - .. and different direct summands J,,, J,,, ...
of H*(%) such that J, is p,-reduced.

Moreover, let us denote by J,, that direct summand of a given complete decomposi-
tion of H for which #(J,,) = %. In the first case we choose an element x, € J,, such
that h}(x,) = 0, n = 0, 1,2, ... and in the divisible closure of H we form the sub-
group

(30) G={H;y; "V = %o+ X n =1,2,...}.

In the second case we choose an arbitrary element x, € J,, and we denote h, =
= h}/(xo). We choose elements x, € J, such that h}(x,) = h,, n =1,2,... and in
the divisible closure of H we form the subgroup

(31) Gz{H§yn§P:"+1y,.=xo+xm n=1’29}

. n

Now, if S is a pure subgroup of G of finite rank, then SN H < Y, J,, + H"
i=0

where H’ is the direct sum of a finite number of J,, o & «;, i =0,1,2,... Then

clearly S = { Y J,, + H}S = {YuJa, + H's ¥15 Y25 - .-, y,} so that in the first case
i=0 i=o

we have p"S < H and in the second case we have (p; . p,.....p,) S = H. Hence in
both cases H is strongly regular in G.

In both cases there holds t%(x;) = #%(x;) > ¢ for all i = 1,2, ... and hence
(32) X EGHE), i=1,2,..

Assume that G ~ H. Then G(%)/G*(%) is a homogeneous group of the type . Since H
is strongly regular in G there is £%(x,) = t¥(x,) = % so that £°®/¢*®(x;) = £ holds
for X, = x, + G*(%). However, in the first case the element %, is p-divisible according
to (30) and (32), and in the second case h§®/9*®)(x,) = h, + 1 holds by (31) and (32).
This contradiction completes the proof of the lemma.

Theorem 8. Let H be the direct sum of a divisible and a countable completely
decomposable torsion free groups. Then any torsion free extension G of H such
that H is strongly regular in G is isomorphic to H if and only if

(«) for any t e T(H) the group H*(%) is the direct sum of a divisible group and
a reduced group of finite rank,
(B) for any two incomparable types %y, %, from T(H) there is £, v £, = R.

Proof. Thecondition () is necessary according to Lemmas 8 and 10. If U < H
is such a subgroup that pH < U for a suitable prime p, then pH is strongly regular
in U. In view of the isomorphism relation pH ~ H, there follows from Definition 2
and Lemma 1 [14] that.the group H is an IQ-group; hence the condition (B) is
necessary following Theorem 2 [14].
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In the proof of the sufficiency we may restrict ourselves to a reduced group H =

= Y4 J,, due to Lemma 8. We may define a partial order in g on the set 4 as in the
acAd

proof of Theorem 1, with the following difference only: If A(%) is infinite (necessarily
countable according to the hypothesis) then <, denotes the well-ordering of the
type w. Since this case may occur only if £ is a minimal element of T(H) (condition
(oz)), we may follow now, word by word, the proof of Theorem 1, as it is evidently
sufficient to assume the strong regularity at all places where the full regularity is
assumed in the proof of Theorem.

Theorem 9. Let G be a torsion free group containing a completely decomposable
subgroup H = Y 4 J, such that T(H) is ordered. Suppose that

acd

(«) H is strongly regular in G and

(B) for any t € T(H) the group H*(%) is the direct sum of a divisible group and
a reduced group of finite rank. Further, if T(H) contains the least element %,
then G/{H*(?)}§ belongs to some I',. Then G ~ H.

Proof. In view of Lemma 3 we may restrict ourselves to a reduced group H.
If T(H) does not contain the least element £ then H is necessarily countable and it
suffices to use Theorem 8.

Suppose now that T(H) contains the least element £. By Theorem 8 it holds
{H*(£)}§ ~ H*(%). For the sake of simplicity let us denote U = {H*(%)}§ and let V
be the direct sum of those J, of a given complete decomposition of H for which
#(J,) = %. Then G/U contains a homogeneous completely decomposable subgroup
U + V/U.If S/U is a pure subgroup of G/H of finite rank, then S is a rank finite pure
subgroup of G by hypothesis (U is of finite rank pure in G). Hence there exists a non-
zero integer m, mS =€ SN H = S n (U 4 V), so that U + V/U is strongly regular
in G/U. Now according to Theorem 4 there is G/U ~ U + V/U so that G/U =
=Y4Jp=Y4J4/U is a completely decomposable group homogeneous of the

BeB B

type 7. Forﬂg € G = U there is mg e H ~ H*(%) for a suitable integer m = 0 such
that £%(g) = ©%(mg) = t¥(mg) = . By using Baer’s lemma 46.3 from [1] we get
that U is a direct summand of any Jy, f € B, so that Lemma 2.2 from [1] completes
the proof.

Theorem 10. Let a torsion free group G be the direct sum of a divisible group and
a reduced countable group. Suppose that T(G) is ordered and for any % € I(G) the
group G*(%) is a direct sum of a divisible and a reduced rank finite groups. Then G
is completely decomposable if and only if any subgroup regular in G is strongly
regular in G.

Proof. First let G be completely decomposable, H regular in G and S a pure
subgroup of G of a finite rank n. Then S is contained in a completely decomposable
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direct summand of finite rank such that S is completely decomposable, S = J; +
4+ J, + ... + J, by hypothesis (¥(G) is ordered) and by Theorem proved in [5].
By hypothesis the factor-group J i/J; 0 H is finite for all i = 1,2, ..., n so that the

n
factor-group S/ Z dJin H) = Z oJi/J: 0 H is finite, too. The necessity of the con-
i=1 n
dition stated in Theorem 10 now immediately follows from the inclusion )" ;J; " H =
= SnH. =1
Proving the sufficiency, we may assume, without loss of generality, that G is
reduced (hence countable). First we shall suppose that G is of countable rank. By
Lemma 42.1 from [1] the set ¥(G) is either a finite or an infinite decreasing
sequence, ie., either I(G) = {£,%,,....,%; £ >1%>..>1%}, or I(G)=
= {t;,%,5,...; ;> 1, for i < j}. In both cases we choose an arbitrary maximal
independent set of elements of G(,). This set is finite provided G(#,) #+ G. In this
case we proceed to G(%,) by extending this set to a maximal independent set of G(%,),
etc. It is clear that in both cases we obtain finally the set x, X,, ..., which is maximal

independent in G. We shall show that the subgroup H= Z,, {x,}% is regular in G. In
fact, if x € H is an arbitrary element, x = Z Vi Vi € {x }*, ¥, * 0 then from the

choice of the elements X, X,, ... there follows easﬂy that £%(x) = t%(y,) = %%(y,) =
= £9(x). By hypothesis H is strongly regular in G, hence Theorem 8 shows that
G ~ H.

If G is of finite rank, then the proof runs along the same lines. The only difference
is that the maximal independent set x;, X5, ... is finite.

A special case of this Theorem is a theorem of Wang (see [13], Theorem 2), which
states:

Corollary. Let G be a torsion free group of finite rank, the type set of which is
ordered. Then G is completely decomposable if and only if the factor-group G/H
is finite whenever H is regular in G.

Theorem 11. A homogeneous torsion free group G is completely decomposable if
and only if

(¢) GeTI,and
(B) any subgroup regular in G is strongly regular in G.

Proof. The necessity of the condition () is evident, condition () is proved in the
the same way as in the preceding theorem. Conversely, if {x,, & € 4} is an arbitrary
maximal independent set of elements of G then the subgroup H = Y4 {x,}¢ is

acd

regular in G, hence it is strongly regular in G by hypothesis and Theorem 4 completes
the proof.
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