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ON THE WEAKLY NONLINEAR WAVE EQUATION
INVOLVING A SMALL PARAMETER AT THE HIGHEST DERIVATIVE

MARIE KorPACKOVA-SUCHA, Praha
(Received July 22, 1968)

I. THE CAUCHY PROBLEM FOR A WEAKLY NONLINEAR WAVE EQUATION
INVOLVING A SMALL PARAMETER AT THE HIGHEST DERIVATIVE

1. INTRODUCTION

We shall discuss the equation
(1% Ly = euy, — uy, + 2au, + cu = g(t, x) + f(t, x, u, u,, u,)
with the initial data
1) w(0, %, 8) = (x,8), 10, x,8) = Y(x,5),

where x € Ey, u = u(t, x, &); [t, x] € V= {[t,x] € E;, t €40, + ), x€ E,} and a, ¢
are positive constants. As to a periodic solution of (1), the case a < 0 may be trans-
ferred to that of a > 0 by the substitution T = —t. We are interested in the behaviour
of the solution u = u(t, X, e) as ¢ tends to zero and in the nonuniformity occurring
at t = 0. Under certain conditions it will be proved that there exists ¢, > 0 such that
problem (1) possesses a unique solution u = u(t, x, &) for & € 0, &y». This solution is
of the form

()] u=u’+v+w

where u° = u°(t, x) is the solution of the linear parabolic equation
(3% 2au? —ud, +cu’ =g

with the initial condition

(39 u’(0, x) = o(x, 0)
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and v = u(t, x, &) or w = w(t, x, &) are the solutions of the nonlinear problems (4)
or (5), respectively:

(4% Ly = &f(t, x, u® + v, u) + v, u) + v,) — euly

(4% v(0, x,8) = p(x, &) — o(x,0); 0,0, x, &) = Y(x, &) — Y(x, 0)

(5 Lw = ¢ef(t, x,u® + v + w, ud + v, + wy, u? + v, + w,) —
—&f (t, x, u® + v, ul + v, uy + v,)
(5" w(0, x,€) = 0; w(0, x,¢) = y(x,0) — u)(0, x) .

The problem will be solved in the Banach space €, defined as follows: we put V,=
= {[t,x], x€ E,}, t 2 0 and

() 1Bl ey = 21w + [rellowe + lhellov. + elBelo.y.
() I8l = [2lew + lrelloy + [Relloy + &]Belov

I2le = llow. + tlow.s 101" = laloy + Ihulor
where

al+jh
I e T

Then for ¢ > 0 €, is the Banach space of continuous functions with continuous deriv-
atives up to the second order with the norm (7). Under some conditions we shall
prove that v = u(t, X, &) tends to zero in €, and |wl||,,, — O for &€ — 0 uniformly
with respect to t = ¢y, to > 0. w represents a ‘“boundary layer” which is not negligi-
ble in the neighbourhood of ¢t = 0.

2.

Proposition 1. If 0 < & < a®/(2a + c) and u = u(t, x,€) is a solution of (1)
for €€(0,&,) then u is a solution of the integro-differential equation

® u=t Plg(t, x) + &f(t, x, u, ug, u)) + S0 + QW
€
and conversely, every solution u = u(t, x, ¢) of (8), u €€, is a solution of (1). The

integral operators in (8) are defined by the following formulae
x+(t—1)//e

© PA(t, %) = ~/ O ema-oe L_U_W (JE )h(r, 0 dé d,
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(10) Se(t, x) = -;—e"‘"" {(p (x + —t—) + <p( - i) +

Je Je
N x+t/Je LI ﬂ( e % E_B_C (E) dé}
L—rm[x/ﬁ 0<\/8 0) Yot (\/3 0)](;; |
x+t/Je
(1) Qui(t, ) = X2 emate j (% co) W(E)
2 x—t/Je Je

where I, is the modified Bessel function of the first kind,

p= J(1-%) o= (- 2); - (5 -6- o).

This may be obtained by the substitution t = 7 \/ ¢in (1) and by using the statement
A in [1]. It is known (see [1]) that u; = S,¢ is the solution of the equation

(12) Lu, =0

with the initial data u,(0, x) = ¢(x), (u,),(0,x) = 0, x € E;, u, = Q¥ is the solu-
tion of (12) with the initial data u,(0, x) = 0; (u,), (0, x) = Y¥(x); x€ E; and u; =
= P,h is the solution of equation

(13) Ly = ¢ h(t, x)

with the homogeneous initial data.

3. THE LINEAR EQUATION

Firstly, we shall discuss the behaviour of the solution u = u(t, x, &) of the equation
(14%) Lu=g(t,x) on V
with the initial data
(14°) u(0, x, &) = o(x,¢), u/0,x,¢) =y(x,¢).

The solution u will be sought in the form (2) where u° is the solution of (3), v =
= 1(t, x) is the solution of the equation

(159 Ly = —eul,
with the initial data .
(15%) v(0, x) = o(x, &) — ¢(x,0), v/0,x).= Y(x,¢) — Y(x, 0)
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and w = w(t, x) is the solution of the equation

(16*) Lw=0

with the initial data

(16" w(0,x) = 0; w0, x) = Y(x,0) — u)(0, x).

If ¢ = ¢(x, 0) is a function from C*(E,) and g satisfies

(A) gec(v), Decow), Hecw); —‘1 g
ox ox3 x>’ ot ox

are Holder-continuous of the order o € (0, 1), then the solution u°(#, x) of (3) is of the
form u® = u9 + ud where

+oo
u?(t, x) = \/(i) e—cr/ZaJ‘ (p(ﬁ, 0) o~ (=22t e

t 1 + oo
uO t,x) = _‘_1_ e—c(t—t)/2a , —a(x—&)2/2(t—1) déde
069 ) |, e s 0 ;

and one can easily show (see e.g. [6]) that there exists a constant C such that

(17) 1481y, < Cllo]zz, e
R R P W b= R = IR e
(18) [ < Clallws o8l = suw_ Jullis o)
where
Cle) = ¢(N + ol + ol + igﬁ )

d%g d%g
— (X)) — — (L, x +

N= s {'xl S (F
)}

te{0,+ )
The existence and uniqueness of the periodic solution of (3%) is proved but here it
will be given in the following form.

f,x 1)———(, X2)

ata

Theorem 1. Let g satisfy (A), g be an w-periodic (in t) function. Then there exists
a unique o-periodic solution U° of (3) and |U°||" < C(9).
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Proof. Let u® be the solution of (3*) and u°(0, x) = 0. By (18) we have |[u°|’ <
< C(g). If we put up(t,x) = u°(t + nw, x), n = 1,2,..., then u, solves equation
(3%) and u? — u° solves the equation

2au, — Uy +cu =0

with the initial conditions u(0, x) = u°(nw, x) — u°(0, x) = u°(nw, x). From (17)
we obtain for n = m

"u,,— umH; = "un—m - ull;+mw < C[Iuo((n— m)w’ x)"S,El e—c(t+mw)/2a§ C(g) e~ com/2a

Thus {u,} is a fundamental sequence in the norm |...||’; therefore there exists the
function U°® = U°(t, x) such that |U°||" < |[u°]|]" < C(g),

U°(t, x) = lim ud,,(t, x) = lim u(t + ©,x) = U(t + o, x)

n—+oo n=+ o
and U° solves equation (3°). If U$, U3 are two w-periodic solutions of (3%) then

|ut - us]

i = UL = U2]no = €U0, x) — U0, x)||s,5, e™ 7"V ;
n=12,...

This implies U{(t, x) = U3(t, x) for 10, + ), x € E;.
Now, let us prove the fundamental lemma.

Lemma 1. The integral operators P, Q,, S, defined by formulae (9)—(11) map
the functions h = h(t, x), he C(V), ohjox e C(V), q = q(x), q e C(E,), s = s(x),
s€ CY(E,), respectively into €, for every c€(0,¢,), & € (0, a/(2a + c)) and the
following estimates hold

9 e sc| () e Pe ) [ g 4
L e T R

(20) [BAl. < Ai6) [h]

1) [Qalin < 4209 lalie, 1> 0,

(22) leal. = Clal s,

(23) ISsllen S 4569 Is].s,

(24) ISslle = Ce™H2s].e,
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where the constant C depends on a, c, ¢,

0 for t= %z
a
(25) y(t, &) =
1 for t> £
ap
lime™'2 4,(e) = 0,
e=0+

Ayt e) = C(\/(a) e oA=Ple 4 p-atle 4 a%e""“) , t>0;

(26) lim A,(t, &) = 0 uniformly with respect to  t € ty, +0), to > 0;
g0+ ’

(27) e'244(t, &) = Ce™?2,

First, we shall recall some properties of the modified Bessel functions of the first
kind I,(z) on <0, + o0). These functions (see e.g. [5]) are defined by the formula

I(z) = i~J(iz),

where Jv(z) is the Bessel function of the order v. I, may be written as a series

1 Z 2n+v
(28) I(z) = ,
n= oF(n+v+1)F(n+1)
solves the equation
2
(29) y”+1y’—(1+v—z)y=0
z Z

and for z sufficiently large there holds

G0) M@:ﬂéﬁa0+oe».

From (30) and (28) there follows

(1) im DO _ ;g LG _1
z—+ o0 IO(Z) z—0+ ZIO(Z) 2 ’

more over I4(z) = Iy(z).
In the following we shall need to know that H(z) =1Io(2) = I,(z) > 0 for ze

€0, +00). In fact, as Io, I, are continuous and H(0) = Io(0) — 1,(0) = 1, the
function H(z) > 0 in a neighbourhood of z = 0. Let us suppose that there exists
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Z €0, + ) so that H(Z) = 0. If we denote z, = min Z, then z, > 0 and H(z) > 0
for z€<0,z,), H(zy) =0 and H'(z;) < 0. By (29) we have H'(z,) = Ij(z,) —
— If(z1) = (1/z4) I1(z1) > 0 which is a contradiction. Now, we shall prove the
following proposition.

Proposition 2. Let F(z) = «(I,(z)/Io(z)) — z for ze€ {0, + ), a = 0. Then for
every o€ {0, + o0) there exists a unique number zo = zo(x), zo € <0, &) such that

(32) F(z) 20 for ze<0,z,), F,(z2)<0 for ze(zo, +0).

Furthermore, zo(@) = 0 for a € <0, 2, zo(®) is nondecreasing and

lim zo(a) = +00, lim _z@=1.
a®

a—>+ oo a—=>+ o

Proof. The case & = 0 is simple; thus let us suppose a > 0. If z = « then

Fz) = zx;:% —z £ o[I4(z) — Io(z)] L <0;

Io(z)

this implies that z, € <0, a). For o < 2 there holds

FAD) = 1) [a1,(2) — 2 1)) S 1) [21,(2) - 2 1(&)] =
=—I;1(2)§—~—————1 (E>2”<0, z>0.

Wo(n+ )(n — 1)1\2
Thus we have zo(x) = 0 for « € <0, 2). Now, by (29), (31)

2
F;(z)=a|:1—11:1—(—z—)—£1£2—)]—1, z>0; F(0)= limF;(z)=E—1.
zIy(z) I¥(2) 20+ 2

If F,(z) = Othen Fy(z) = a — 2 — (z*/a), thus the function F)(z) is decreasing on the
set of the points z: F,(z) = 0. As the function F,(z) may be written in the form of
a power series the number of the points z: F,(z) = 0 is finite on <0, a). If « > 2then
there exists at least one point z, where F,(z) changes its sign. Let us suppose that
there exist two such points z;, z,. Let z; > 0 be the least point with this property
and z, > z; be the next one. Since F,(z) = 0 for z€<0,z,», Fy(z;) <0. But
Fz,) < Fi(z;) £0. As F,(z) £ 0 for ze{z,, z,» there must be Fi(z,) = 0 which
is a contradiction.

F,(z) < F,(z) for z > 0, a, > a; = 0, therefore zo(at;) < zo(at) for 2 < oy < a,.
Prove lim z(a) = +o00. Let zo(%,) < K, &, €0, +0), o, > +o00. If o, = k > 2

a=>+ o0

then zy(a,) = zo(k) > 0. As F,(zo(¢)) = 0 there must be

Io(zo(®) _ _Io(K) K

I(zo(o)) ~ I1(zo(K))

o = ZO(“»)
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and this is a contradiction to the assumption &, — + 0. Finally, as F(zo()) = 0 we
get

tim 2 _ iy D@ LG
a>+o O a—+ o IO(ZO(OC)) z—>+o0 IO(Z)
Proposition 2 is proved completely.
In the following we must prove
(33) p= sup [a— Zo(W)] < + 0.

ae{0,+ )

If « and hence also zo(a) is large enough we may use (30) and thus obtain that the
function & — zo(%) = zo(Io(20) — I1(20))/(I1(2,)) is bounded for a, z, large enough
which yields p < + 0. From equation (29) and the relations

a 2 2 2 2
& (-C) — gg =1 ;& % — ig = 1
ot ox o oxt ¢
there follows

G () (e (¢, (o)

From (28) we have

(35) () lim éI—°<f‘ﬁ> =+ lim QI_°<9‘.E§> _ o (t—1).

goxt(t-ive Ot \\/e eexte-one 0x \\Je

The integrals

\/8 J-x+t/Je (a ) \/g x+ilVe | o1 (aﬁC /\/S)
M(t,g) = X~ I, (— &, M s =7 —S R d ’
,.1( ? 2 oy \Ve fo)de- Malte) 2 L—rNe ox 6
/8 x+t/Js'a aﬁ a aﬁ
Ms(t,e) = X 5ol Co) = = Lo
3(t 3) 2 J;-t/\/s ]61‘ o( R CO> e Io <\/£ CO),dé’
L[ (2 \
M t, = Y —1 i
9 2 Jumuye O .0(\3 CO> e

may be estimated for ¢ = 0, ¢€(0,¢,), & < a*/(2a + ¢) in the following way.
Using the substitutions x — & = z, /(1 — z%[t*) = y, y? = s and formula (83),
p. 198 [3] we get

My(t,9) = J/(6) ;’“‘zo (?’i J(L - =)oz = f[ (25) -
() g () ()
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Since

AR A0 R Wi

is positive for & < x, we obtain

wag= - (e -ofo(2) 1

Using the same substitutions as before, formula (79), p. 197, [3] and the relation

a(e) gt )

i (2=

_ apt apt ! _aptm , (aBty _ h(ﬁﬂ)_
= . J\I( >\/(1_y)dy % 11/2<28) C . 1.

Substituting y = [1 — (x — &) . ¢/t*]/* we obtain

Male S)"alj BI‘CW >_yl° aﬂt \J(1~y -

BI, (a—ﬁty> - ylo(gﬁ—ty> =i11<@y)Fa<a—ﬂty>
€ € aft £ €

for ¢t > 0 where & = af*t/e we get
20 for yed0,yo),
apt apt =
I%(Jiy)—y ( B y><
¢ <0 for ye(yo, 1>,
where yo = B(ap?t/e) ™ zo(ap?t/e) and yo < B < 1. Therefore
(36)

= s [(2) 0 (2 )
where -
w9 = [ o (1) =01 (50)| o o

we have
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Applying the inequality (1 — y*)™"/2 < yo(y3 — ¥?)7*/2 to the second integral
from (36) we have

My, 6) < “;‘ [M(L, 1, ¢) = 2(t, &) M(yos 1, 8)] ,

where (¢, ¢) is defined by (25). From formulae (79), p. 197 and (83), p. 198 [3] we
obtain

M(r, t, 8) = — .ZT:E {(ﬂ _ r) etabtrle + (ﬁ + r) e~ abtrle _ Zﬂ}

and

My(t,6) < 5173 {(1 = B) el — (1 + B e~ 4 2B} +

+ %—8) {(B = yo) 0/ + (B + yo) =P/ — 2p}

As yo £ B £ 1, M5 may be estimated as follows:

M3(t, e) =< IZ;Bﬂ ebtle ?—(Lp:f) (ﬂ _ yo) ol +1.

Now, we are able to estimate | P,h;,.,. By C we always denote a constant depending
on a, ¢, & only. Supposing k = h(t, x) € C(V) we obtain

t : t
"PehIIO,V. < e~ @/e)t—1) Ml(t -1, 8) "hHO.Vf dr < € f e"(a/s)(l-—ﬂ)(t—-z)"h"o’yr dr,
0 2ap J,

. .
2l s [ My~ 50) + ] [y, de =
0Ox 0,V 0
t
_ x/sj‘ e—(a/e)(t—t)l0 (@ (t - 1:)) ”h“o,v, dr,
o 3
| t
O s [ M= 2,6) 4 1) [, de
ot 0,V 0

< [([L=8 p-@oi-nau-9 4 pp-@ou-9 [#lo,. dv +
2B o
-2 / ﬁz
N J" ela ﬁ;:ﬂ’}ig e € Il de, t20.
0
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If h, € C(V) then (0/0x) (P,h) = P,h, and

H%_( < J" [1 2—BB (@Rt =B =) 29'(“/”"“')] [7:llo,v. +
0,V 0

t—2¢/ap?
v j (B = yo) €949 [y, d

As the function P,h satisfies equation (13), the expression &(9?/dt*) (P,h) may be
estimated by

+
0,V,

62
e||—(P.h
o (Peh)

< ¢|P.h|o,v, + 2a
0.Ve

0 o2
E(Pgh) Q(Pah) + ¢l h]o,v. -

0,V

Finally, we may write
(37)
t
[Pty < J [.f__ (c + 1) e=@L=PE=D 4 3 (g) g~ (@M= [, (f‘ff (t - 1)) +
o L2aB €

+ (2a + )(

e (@A =p(t=7) 4 26—(als)(t—t)>] “h“: dt +

m
2aﬁ+ 1 J‘t 2¢e/ap? @ - 7o) e—(c/a)(t—t)nhu: dr + anhl“
because
1-p ce
1- = = .
ST R )
Since
Io(z)ée’, ﬂ_yo:ﬂ(l—ZO(a)>=ﬁa—zO(a)éiE_’ a—fl—éit
o o aft €

we get (19). Furthermore, using formula 6.611, [4] in the second integral of (37) and
estimating |h]; < ||’ we get
h
® || 141

IPA, < ¢ [c L pRat+
If we denote 4,(g) = C(1 + |log &|) we obtain (20) and

ap?

lim ¢™%/2 A,(e) = 0.

>0+
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If g € C'(E,) we obtain

Ol S Lo, M9 & 5 s e~ 50 (%)

€

H% (0.9) ot f;(Qaq) O,Vcé J@ laly e Lo (m)
H%(Qeq) ié lale, e (Ma(ts8) +1) =

= Hq“l,El (1_2‘:_—[3__@. e—(alﬁ)(l—ﬁ)t + 2e——at/s + ?(t[; 8) (ﬂ _ yo) e—ct/u) .

As Qg satisfies equation (12) we get

il 52
€ é’t'z—(qu)

62
= CilQa‘l“o,Vt + 2a Py (Qe‘l)

0,Ve

0
5; (Qeq) o

v
l

0,Ve

Ve

and finally

t
(38) [|Qdlce,ey = (8ce‘(“/s)‘1’ﬁ)‘ +2(2a +1) e e 12 /(e) e —atle] (aﬂ >

+ ?—(Zﬁ—ﬂ (B = ¥o) e‘“"') lallcieo

which implies (21) and (22). As f — yo = ¢plapt we may write

12.llcey S Aats &) |a]cren
where

& et
Az(t, 8) =C (\/(8) e~(a/s)(1.-ﬂ)t + e—at/e + ,Y(t, 8) _t_ e t/a) .

Now, ||S,s] (..., must be estimated. Using (34), (35) we get

e La el
SIS

and we may write the following estimates

o gt (1 LM+ M4> Is]a.ee =
l e

ISeslo,v. +

5
— (S,s
o (5)
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< [(1 + ﬁ) e~ (a/e)(1=p)e + (ﬁ _ 1) e-(als)(l‘*'ﬁ)t] “3“2,51

1
28

™ (e + My + cMy) [s]2p, <

® |-

0
—(S,s
5 (5)

g o1 (1) L9 (48],

Since S,s satisfies equation (12), &(3%/0¢%) (S,s) may be estimated as

62
— (S,
o2 5)

1
=
t

£ < C||Ssso,v, + 2a

0,Ve

+
0,Ve

62
o )

0
— (S,s
5 &)

l0,Ve

and finally we obtain
(39) ISesll ey < As(t, €) 52,5

As(t,e) = C [e—(a/e)(t~ﬂ)z v e-oatmr o 1 o I, ("_ﬁ_t)] ,

NE e

which implies (23), (24) and the lemma is completely proved. Let the function g =
= g(t, x) satisfy (A) and let ¢(x,e), Y(x,¢) satisfy the following assumptions:

(B) o(x, ¢), Y(x, &) have bounded and continuous derivatives up to the second
or the first order, respectively, with respect to x € E; for every ¢€<0, &), ¢, €
€(0, a*/(2a + ¢)), ¢(x, 0) e C®(E,) and

sup & %] o(x, &) — ¢(x, 0|25, S0 < +00, sup [|Y(x,€)]1,5, S0 < +00.
£e{0,e1) ee(0,81)

(©  time () = o5, Olae, = 0, lim 905, 5) = ¥, O s, = 0.
Then the functions v, w defined by the formulae
v = —Puy + QY. — Vo) + S(0. — 90),
w = Q,Wo(x) — ui(0, %)), Yulx) = ¥(x,8), @ix) = o(x,2)

are the solutions of (15) or (16), respectively; v, w € €,. From this and from Lemma 1
the following theorem may be obtained.

Theorem 2. If g = g(t, x) satisfies (A) and ¢(x, &), Y(x, &) satisfy (B), (C) then
there exists the unique solution u = u(t, x, ¢) of (14) for every e € €0, &,, u being
of the form (2) where u° is the solution of (3), lim |[v[, = 0 and lim ||w|¢,, =0

>0+ =0

uniformly with respect to t = to, to > 0.
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4, THE WEAKLY NONLINEAR EQUATION

We say that f = f(t, x, P1, P2, p) satisfies assumption (D) if

(D) f and its derivatives f,, f,, i = 1,2,3 are Lipschitz continuous and bounded,
i.e., there exist functions K;(g), K,(g) on <0, + o0) so that for [t, x] € V; |p, |5 < e
there holds

]f(t: X, P15 P2 P3)I é Kl(Q) ’
,fx(tz X, P15 P2s p3), é Kl(g) s
[£5t, %, P1s P2s 13)] S Ki(0), i=1,2,3,

3
,f(t, X, P1> P2 Ps) - f(t, X, P1, D2s ﬁa)l = KZ(Q)~lepi - ﬁil s
3
,fx(t, X, P1s P2» Pa) - fx(t, X, P15 Pas ﬁs)l =< Kz(Q)_ZIIPi - ijil ’

3
lfp,-(ta X, P15 P2> p3) - fpi(ts X, ﬁl’ 52’ ﬁ3)| é KZ(Q)lepl - ﬁ;l .
Now, we shall prove the following theorem.

Theorem 3. Let the functions g, ¢, Y, f satisfy assumptions (A), (B), (D), respective-
ly. Then there exists g, > 0 so that for each ¢ € 0, &, there exists a unique solution
u=u(t,x,¢) of (1), ueC, |u|, < o where ¢ does not depend on &. Furthermore,
if @, satisfy (C) then the solution u is of the form (2), where u® is the solution of (3),
hm ”v" =0, hm [Wll¢t,ep = O uniformly with respect to t = t5, to >0, and

HWII const [(x, ) — 40, %)}

Proof. Let u° solves equation (3*) and satisfies the initial data (3°). The solution
u = u(t,x,¢e) of (1) will be found in the form u = u® + y where y = y(t, x, &)
satisfies the equation '

(39) Ly = ef(t, x,u® + y, u) + yy, up + y,) — eugy
and the initial data
(40) ¥(0, %, &) = o(x, &) — ¢(x,0), y0, x, &) = Y(x, &) — u(0, x) .

When y e €, and assumptions (A), (B), (D) are fulfilled, then this is equivalent to the
integro-differential equation

(41) y= Pe[f(t’ X, u + Y, ug + Yo, u? + y,) - u?,] +
+ QuY(x, &) — w0, x)] + S.Lo(x. &) — o(x, 0)] .
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Equation (41) will be solved by the method of successive approximations. Denoting
the right hand side of (41) by T,y, we obtain for y; € €,, ||y;| < ¢, i = 1,2 by lemma
1 and by (17), (18)

[Tys — Tya|l. < 4a(e) |7(2, x, u® + i, 42 + (71w 40 + (,))) —
= f(t,x,u® + y,, ud + (r2)w uf + ()" =
< A,() {Ko(2) 2 + ¢ + C|o|ls.z, + C9)) + Ki(@)} [¥1 = va.
and
[Tyl = A4e) [ £ % 6% + yi 6 + (9w u? + (' + 4a(6) [ul]* +
+ C( &) = w0, )| 1 g, + 872 0(x, 2) — @(x, O)]2.5) =
< A(e)Ki(Q) 2 + ¢ + Clo]s,z, + C(9) + C(lo]ls.e, + C(g)) + 2Ca,

where § = ¢ + C||¢|2.e, + Clg]| 5
If

A4(e) {K2(0) (2 + ¢ + Cllofs 5, + Cl9) + Ky(2)} < 1
A4(5) Ki(2) 2 + ¢ + Clo]s e, + Cg)) + Clo]s 5, + C(9)) +2Co < ¢

then the mapping T, will map the sphere ||y|, < ¢ into itself and will be contracting
in it. Thus, let us choose g € (0, 1) and then let us find g satisfying

(43) 42 + ¢ + Clo|s .k + C)) + C(lo]s.z + Cl9)) + 2Co < o

and, finally, let us find &, &, € (0, &, so that for this g there holds

(44) A4(e) {K5(0) (2 + ¢ + Clos,z, + C(9)) + Ks(0)} < q.

Such a number &, > 0 exists because lim 4,(g) = 0. By the theorem on contracting
>0+

mapping (see [7]) there exists a unique y € €, such that y = T,y and |y|, < ¢ for
e€(0, &p. By Proposition 1 this function solves (39), (40) and hence u = u, + y

solves (1). The above mentioned function y can be obtained as lim y,, where y, = 0,
n—>+ o

Yar1 = Tyw | alle S 0, n =1,2,..., and satisfies the inequalities

Ik = 210 = 3e-)le 5 3 I = vl

and

Pl 5 D= sl s Sl s 106 - @) ol
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and
“,Vlnz = “Ts)’o”e = A4(3)K1(C"<P“2,E, + C"gnl,V) (2 + C"‘P“s,sl + C(g)) +
+ Ay(e) (Clo]s.r, + C(9)) + ClV(x. &) = ¥(x, )]s, +

+ Co™ 1 p(x, ) = 9, 0)|2.z, -
Thus we obtain

Il s 7 {4 K Clol + Clolin) @+ Cloles, + o) +
+ Ay(e) (C“(PHS,El + Clg)) + _Cll'/’(x’ &) — ¥(x, 0)|| 1k, +

+ Ce™o(x, &) — (. O)HZ’EI} ¥

Now, let assumption (C) be fulfilled. If v, w € €, are the solutions of

(468) st = ﬁf(t, x’ uO + 'U, ug + vx’ u? + vt) - 8u(t’t

(46°) (0, x) = o(x, &) — ¢(x,0), (0, x) = y(x,¢) — Y(x,0)
and

(47 Lw=c¢f(t,x,u® + v+ w,u) + v, + wy, ul + v, +w,) —

—ef(t,x,u® + v, ud + v, ul + vy,
(47) w(0,x) =0,
w0, x) = Y(x, 0) — uP(0, x),

respectively, then the function u = u® + v + w solves (1). Problems (46) and (47)
are equivalent (by Proposition 1) to the integro-differential equations

(48) v =PJ[f(t,x,u® + v,ul + v, u® + v,) —u%] +
+ O[Y(x, &) — ¥(x, 0)] + S,[o(x, ¢) — o(x,0)],
(49) w=P[f(t,x,u® + v+ w,ud+ v, +w,ud +v,+w)—

= f(t, %, u® + v, ul + v, u? + v,)] + Q,[Y(x, 0) — u%(0, x)],

respectively, for v, we €,. These equations will be solved again by the method of

successive approximations. Denoting the right hand side of (48), (49) by T or iw,
respectively we have for v;€ €, [v;|, < 0y, i = 1,2

|Toos = Toa|. < A4(e) [K2(81) (2 + o, + C|lo||s.z, + C9)) +
+ Ki(@)] o1 ~ vy,
| Tvi]. = 4a(e) Ki(81) (2 + 04 + Cleols,z + C9)) +
+ Au(e) (Clo]s.z + C(g)) + 3Cs.
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As before, we choose g € (0, 1) and ¢, such that
£e{0,e1)

and g, = &(o,) such that for & € €0, &),
A(e) [Ko(@,) (2 + 01 + Cllo]s,r, + C0) + Ki(@)] = ¢
hold. There exists a unique v € &, such that T,v = v, [[v], = ¢,. This function can

be obtained as the limit of v,, u = 0, 1, ... where v° = 0, v"** = T,v, and we have

lelle =

1 g oo b Ol < A4(6) K4 .
= Ple= 1 I% o = 4a(e) Ki(Cllo]2 e, +

+ Clglliw) @ + Clols,e + C(g)) + 4de) (Clo]s.e, + Clo)) +
+ C”‘/’(x: &) — ¥(x, 0)”1,51 + CS-I/ZH‘P(X’ g) — o(x, 0)“2,151
for &€ <0, &). Thus by (C) we get lim ||»*||, = 0 and hence li? [o]. = 0. Now, for
-0+ 20+
w; € G, |wi] < 0, i = 1,2, we obtain from (49)
[Fowy = Fowa). < 4u() {Ka(@: + 02) [2 + 81 + 02 + Cllofls.e, + C(0)] +
+ K1(51 + 92)} ”W1 - WZHE ;
”T'ewine < A(e) Ky(8, + 02) [02 + 22+ 01 + C”¢”i£1 + C(g)] +
+ Clly(x, 0) — 10, )] 1.,
and again, if we choose g, such that
24(2 + & + Clo|s .z + C@)) + Cl¥(: 0)]1.e, + Clo]2.e, +
+ C“Q"l,v = Qz(l - 4)
and%, > 0,%, < &, such that
A4(F0) (K81 + 02) [ + &1 + Cllo]ls 5, + C(9))2 + 05] + Kiy(8: + 02)} = 4
then there exists a unique solution w of the equation w = TN’EW, such that Hw" e

. . )
and w = lim w"in €, where w° = 0, w"*! = Tw", n =10,1,2,... As

n—>+ow
1 1
—

P S 3 et = i s

and
W'l = Cl(x, 0) — uf(0, )| 1.,

we obtain |, < (¢/(1 — 4)) (%, 0) — u%(0, x|, .- By (49) and by estimates (20), (21)
there follows that ||w|,, — 0 as ¢ - 0+ uniformly with respect to t > to, to > 0.
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Remark 1. From (43) and (44) there follows that ¢ depends only on C(g), ||¢|s,,
and o, and &, depends on ¢, C(g) and |¢|s . For every ¢ > 0, ¢ satisfying (43)
there exists go(e) such that for every &€ (0, &y(¢)) the solution u of (1) satisfying
[u]. < e is unique. Furthermore, one can prove (using for example the method of
energy estimates), that for every ¢ € (0, &, there exists at most one solution u of (1),
u € €,. The theorem is completely proved.

Remark 2. If we have y(x, 0) = u%(0, x) in condition (C) then |u — u°[|, - 0, as
¢ — 0, and if furthermore Y(x, ¢) = u (0 x), o(x, e) = u°(0, x) then hmg 2|y —
—u°[,=0.

II. THE PERIODIC SOLUTION OF THE EQUATION (1%) IN V

In order to find the periodic solution of (1*) in ¥ we need the following lemma.

Lemma 2. Let g = g(t,x), f=f(t, %, py, P2, P3) satisfy (A), (D), u; = u(t,x,¢), u; €€,
[uil. < @, i = 1,2 be the solutions of (1%) with the initial data ¢(x, €), Y{(x, s) for
ae(O &), & < a*/(2a + c) where ¢y, satisfy (B) and |o(x,0)|s s, < oy,
i =1, 2. Then there exists ¢y € (0, &,, &g = €o(0y,0) such that lim |u, — “2“0,5) =0

. t= -+

uniformly with respect to e€<0, &,y and ¢, Y, satisfying (B) with the same
constant ¢ on <0, &> and |@{(x,0)|sz, < 04, i =1,2.

Proof. Denoting u{ the solution of (3°) with the initial conditions u(0, x) =
= ¢(x,0) we get from Proposition 1 that y; = u; — u{ satisfy (41) and then we
can write for y = y, — y,

(50) y = PLf(t %, us, (ur)e (ur)) = S5 %, vz, (u2)es (u2))] +
+ QLVi(x. ) = ¥alx. &) — ud] + SLos(x. 2) — 01(x. 0)] = S.Loa(x, ) — 02, 0)];
as the function u® = u% — uJ satisfies the equation 2auj — u2, + cu® = 0 and

u°(0, x) = @4(x, 0) — @,(x, 0), we obtain by (17) and the assumptions of Lemma 2
the estimate

6) 4w S max(Le) {nwnm ¥

o3u®
o012 0x

} < 2Cge™¢!?2,

0,Ve.

where C depends only on a, c, &;.
By Lemma 1 we obtain from (50)

17y = (ST, x, 15 (1) (1)) = S(t, x, 3, (u5)s (u2))") () +
+ Ay(t, &) [[¥a(x, ) - Vax, &) 1., + 1200, )] 1,z.] +
@1(% 0)]2,, + lo2(x, &) = @2(x, 0)||2,,]
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where
t .
(52) (tr) (1) = J [V(e) e= @ =Ptmy 4 =@ 1(c) do +
0
t—2¢/ap? 1
+ —— e €t p(t)dT + £ (1) .
0 t—1
By (26), (27) the following estimates hold
Ayt e) < Ce?e 5 Ayt e) < &7 2Ceme 20,
Using assumptions (B), (D) we can write

(53) ]l < CLKA(0) (2 + @) + K1(@)] D[ ¥llceey + [4°]ct.0r) +
+ C(a +'0,1) e—ct/Za .

To prove Lemma 2 we use the following

Proposition 3. If 0 < r,(7) < r,(1), 1€<0, ¢y then M(ry) (1) < M(r,) (1), t 2 0.
Furthermore, if 0 < r(t) £ C,e”/?* then
(54) (0r) (1) < Cy[As(e) (¢ + D] e,

where

Ase) = e max [T+ O, 2 ) fog 2+ o)

The first statement is evident, the latter one will be proved by the mathematical
induction. From (52) we obtain

log ﬁ
ap?

[ 0

(ﬂnr) (t) =<= {\/(8) e-—ct/a(1+p)Jte—-cr(1 =B)/2a(1+B) dr + e—at/efte(a/Zs)(l +p2)t dt +

t—2¢e/ap? 1
+ Be—ct/af ecr/Za d‘C + se—ctlla} C'1 é
0 t—7

- 2e 5
=C §) te=ct28 4 T° p-atle(pa/2e(L D q) 4
1{\/() a(1+ﬁ2)e (e )
+ ee“”z“} < CyAs(e) (t + 1) e/

2¢
+ ge~c%%log t — log —
ap?

thus Proposition 3 holds for n = 1. Let it hold for n (n = 1); using the first statement
of Proposition 3 we have

(ﬁﬁ""’lr) (t) = ﬂn(mt"r) (t) < wa(cl Ag(&) (t + 1)n e—ct/Za) <
< Cp Ale) (1 + 1) Me™24 < €y AT (e) (¢ + 1)+E emeui2e

and Proposition 3 is completely proved.
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Now, using (51), (20) and [[y] e < uy — s rey + [[4°] 1.0y £ 2(@ + Coy) e
obtain from (53)

|7y S 2(e + Co1) CK(e) 4a(e) + C K(0) M(o,e™"*) + C(o + ;) e™%,

where K(¢) = K1(e) (2 + o) + K4(0). Using this inequality in (53) and repeating
this process n-times we get

e = 2e + G0 [CK(Q A + 3 [ KT M(ere™) +

n—1
+ C(o + 0,) Y MK > [CK()]F; n=1,2,...
k=0

If we choose g, € (0, ;) so that
CK(o)A4e) £a <1, CK(p)As(e)<g<1
for every &, ¢ € {0, &;» we obtain by Proposition 3

1
1-g¢

"y"(f.z) = 29‘1" + C(O'l + 0’) (t + 1)" e—cr/Za .

Now, to every n > 0 we can find n, natural, ¢, > 0 so that 2o + Coy) g™ < /2
and

1 (I + I)no e—ct/2a < ﬂ y t .Z tO

Clo +
(o al)l—q 5

which means lim 1 = ¥2]l¢t.e) = O uniformly with respect to & € 0, &) and ¢;, ,,
t—>+ o

i = 1, 2 satisfying the assumption of Lemma 2 with the constants o, 0.

Theorem 4. Let the functions g = g(t, x), f = f(t, %, ps, pz,‘p3) be w-periodic
(in t) on V and satisfy assumptions (A) or (D), respectively. Then there exists &, > 0
so that for every e€<0,g,» equation (1*) has an w-periodic solution U =
= U(t, x, €) which is of the form U = U° + V where U° is the w-periodic (in t)
solution of (3%), lim |V, = 0.

=0+

"Proof. If g satisfies assumption (A) then the w-periodic (in ) solution U°
of (3°) exists and is unique, U® e CX(V), (6°U°/or* dx) e C(V), (8°V°[ox*) e C(V).
Now, as ¢(x, &) = U%(0, x), ¥(x, &) = U;(0, x) satisfy assumptions (B), (C) there
exist &, > 0, ¢ = 0 so that (1%) has the solution u = u(t, x, ¢), []uuz £0,05¢e<Le,
with the initial data u(0, x, &) = U°(0, X), u,(0, x, &) = U7(0, x). u is of the form (2)
where w = 0 (from the proof of Theorem 3)

(5%) Jo]. < € C(g) [K+(C|U°(t )] 1.v + Cllgll1,v) + 1] Aae) -
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If we put u,(t, x) = u(t + nw,x), n = 1,2,... for [t, x] e Vthen u, = u,(t, x, &) are
the solutions of (1%) with the initial data

u,(0, x, &) = u(nw, x) = @,(x,€), (), (0, x, &) = unw, x) = Y,(x, ¢
and u, € €, |u,|, £ |u].. By (55) we have

”q)n(x’ 8) - UO(O’ x)HZ.Ex = ”u(nw’ X, 8) - Uo(nw, x)stEl =
= [Jo(no, x, 8)| 2.5, < o] < Au(e) € Clg) K4(C C(9)) -

As &7 A4(e) =570, 7 '2||pu(x, &) — U%(0, x)|2,z, = 0. Furthermore, we get
from (55)

||¢,,(x, g) — U0, x)"l.sz = [lodne, x, &) 1,5, < “”He

Thus ¢,, ¥, satisfy the assumptions of Lemma 2 and by this Lemma there exists

g € (0, &, such that to any 5 > 0 there exists t, > 0 so that |lu, — ul|,, < for

every t = t,, k = 1,2,... Thus for every t 2 0, n,m = m, = t,/w, this implies the

inequality |u, — u,| . < #; it means that {v,}, v, = u, — V° is a fundamental

sequence. Thus there exists a function Ve €, such that lim v, = V in €,. Further, we
n—>+o

can write V(t, x) = hm v,,H(t x) = hm v(t+ 0,x) =Vt +wx).U=U0°+V

is w-periodic (in t) solutlon of (1) As Hu,,ug < ||v|., the function V is bounded
by the same number as v: | V|, < |||l therefore Lim || V|, =
=0+

Theorem 5. Let u;e@,, llu,u,Z < R, u; be the w-periodic solutions of (1%) for
€€ (0, &3>. Then there exists &, > 0 such that u,(t, x, €) = uy(t, x, ¢) for [t,x] eV
and g€ (0,8, lim [ju, — U°|, = 0,i=1,2.

&0+

Proof. By (8) u = u, — u, satisfies the equation

u(t, x) = PLA(t, %, ug, (1) (ur)e) — £(t, %, s, (2)r (u2))] +
+ Quu 0, %)] + S.[u(0, x)] ;

from Lemma 1 and (52) we obtain

‘

Ik S CORG M) 428 (14 ).
Now, we shall use the same process as that in Lemma 3 to obtain
[l < 2RICK(R) A &))" + 2RC (1 " Jl) et § (¢ + 1F [CK(R) A0
n=12,...
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Choosing g, > 0 so that for e€(0,¢,) there holds CK(R) Ae) g <1 and
CK(R) As(g) < g we can find to every & > 0, £€<0,&) and # > 0 a number
to > 0 such that |uf, <n for t = to. It means: 0 < [[u”(m) = [[u]l¢t4noe for
n— 400 and ¢ = 0; from this there follows u,(t, x, &) = uy(t, x, £). The last state-
ment of Theorem 5 may be obtained easily from Theorem 4.

Remark: The mixed problem (1) on <0, +0) x <0, n) with the boundary data
u(t,0) = u(t,n) =0

may be solved by the same procedure. Let g, @, ¥, f satisfy (A), (B) or (C) and (D),
respectively for t = 0, x € {0, n) and, moreover, let

d%g d%g
56 t,0)=¢g(t, 1) =0, —(t,0)=— (t,71)=0, t=0,
(6 g0 =gm)=0, “5(0)="7 (o7) 2

P90, ) = ¢®(n,e) =0, k=0,1; ¢“(0,0) = ¢*(n,0)=0,¢20,
¥(0, ) = Y(m, ) =0,
(57) f(t,0,0, p,,0) = f(t, 7,0, p,,0).

Then we define the functions f, §, @, for t =0, xeE,, p;eE,, i =1,2,3, as
follows: §, @, ¥ are odd and 2mn-periodic in x and equal to g, @, ¥ for x e <0, ©),
respectively,f(t, —X, —P1, P2 —'pS) = _.f(t’ X + 27‘." P1> P2, pS) = —f(t: X, P1> P2> p3)
for x € (0, m), f(t, nm, 0, p,,0) = f(1, 0,0, p,, 0), for any integer n, t = 0, p, e E,.
Denoting €, as a set of the odd and 2n-periodic in x functions from €, it may be
easily shown that €; with the norm [..-||l. is a Banach space and the operators
T, T., T, map G} into itself. By the same way as before (with €} instead of €,) we
can prove that there exists ¢, > 0 such that for every ¢ € <0, g, there exists a unique
solution @ = #(t, x, &) of problem (1) with the functions g, @, ¥, 7, €€} and
i =a°+J (under assumption (B)), & =i° + 5+ w, [§]. >0, |W|we — O,
: e=0 e—0+

t > 0 (under assumption (C)), where #° is the solution of (3) with g, ¢.

If we define the functions u =@, u® =@°% y =y, v = #, w = W for xe<0, n),
t 2 0 then u® solves the linear mixed problem given by (3) and by the boundary
conditions u°(t, m) = u°(#,0) = 0 on <0, + ) x <0, 7y and u = u(t, x, &) solves
the mixed problem formulated above. Similarly, the existence of the periodic solu-
tion u of (1), u(t, 0) = u(t, 7) = 0 on 0, + ) x <0, 7) under assumptions (A),
(D), (56), (57) and g, f being w-periodic in t may be treated.

I should like to thank OTTO VEIVODA for the formulation of the problem and,
many helpful suggestions and JANA HAvVLOVA for her valuable comments.
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