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INVARIANTS OF SUBMANIFOLDS

Jikf VANZURA, Praha
(Received July 1, 1968)

All differentiable structures involved in this paper are real structures af class C* or
C®. Unless otherwise specified all propositions remain valid for both these classes of
differentiability.

INTRODUCTION

The goal of this paper is to formulate in the modern way the theory of geometric
invariants of submanifolds of a given manifold provided with a geometric structure.
Our invariants are generalization of those known from the classical geometries. We
start by a differentiable manifold M which becomes an object of differential geometry
by giving a sheaf % of germs of vector fields on it. So that to study all imbeddings of
a differentiable manifold B into M we take first the trivial fibered manifold (M X
x B, p, B) and then the fibered manifold (.7 Lat,, B) of I-jets of all local cross
sections of (M X B, p, B). In fact our field of interest is much larger, for we consider
all differentiable mappings of B into M.

Paragraph 1 is preliminary and is concerned with the basic definitions.

Paragraph 2 is devoted to the prolongation of &. As the I-th prolongation of &
we get a sheaf #' of germs of vector fields on J'. In this paragraph & is supposed to
be a sheaf of vector spaces only.

Paragraph 3 treats the case when & is a sheaf of Lie algebras. The main result is
that #!is also a sheaf of Lie algebras. This result is based on Proposition 6 concerned
with the prolongation of the bracket of two vector fields, which, as it seems to me,
even if it is of a certain importance in the theory of differential equations (see [5],
p. 48) has never been correctly proved.

In paragraph 4 we develop the theory of invariants. The sheaf of invariants of order !
is defined here and it is shown that every fiber of this sheaf can be characterized by
a finite number of its elements. We also prove here that there exists an integer [, = 0
such that knowing all invariants of order /, we can get all invariants of any higher
order I = I, by a certain process of “prolongation of invariants”.
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Paragraph 5 introduces the pseudogroup I'(#) associated to the sheaf #. As the
main result we have proved here that a local 1-parameter group of transformations
of M whose I,-th prolongation preserves all invariants of order I, belongs to I'(F).

1. FIBERED MANIFOLDS

Definition 1. Let (E, P, B) be a bundle where E and B are differentiable manifolds
and the map p is a submersion (i.e. p, is of maximal rank at every point x € E) Such
bundle (E, p, B) will be called fibered manifold.

Let (E, p, B) be a fibered manifold, dim E = m, dim B = n. As p is a submersion
we can find to every point x € E his open neighborhood U such that

(i) pU is an open neighborhood of px € B;

(ii) there are a coordinate system (y’,...,»™) on U, and a coordinate system

(x*,...,x")on pU such that y* = x' o p,..., )" = x"o p
(see [1], p. 80, Prop. 2). A coordinate system of type (y*, ..., y™) we shall call natural
coordinate system and write it in the form (x*, ..., x", y***, ..., y™).

Definition 2. Local cross section of the fibered manifold (E, D, B) is a differentiable
mapping ¢ : W — E, where W < B is an open set, such that po o = id.

In the next let J(E, p, B) (briefly J) denote the sheaf of germs of all local cross
sections, J'(E, p, B) (briefly J') for any integer I = 0 the set of I-jets of all local cross
sections of the fibered manifold (E, p, B). For the sake of completeness we define
J™'=B. For I; 21, > —1 there exists the natural projection =j!:J" — J=.
Likewise for any I = —1 there exists the natural projection 7, :J — J%. It is well
known that J(E, p, B) can be provided in the natural way with the structure of
a differentiable manifold. At the same time =j! is a differentiable mapping, =, is
a continuous mapping, and (J", n}!, J*?) is a fibered manifold. It can be easily shown
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that there is the natural diffeomorphism between J° and E.

Definition 3. Let M, B be differentiable manifolds. Let p and g be the natural pro-
jections of E = M x B onto B and M respectively. A fibered manifold (E, p, B) is
called a trivial fibered manifold.

2. PROLONGATION OF SHEAVES

Let #(M) be the sheaf of germs of all differentiable vector fields on the manifold M.
& (M) is a sheaf of Lie algebras. Let us introduce this notation: if X is a differentiable
vector field defined on an open set V = M, & € V, we denote by gé(X) the germ of X
at &. .

Let V3, V, @ M be open sets and let ¢ : V; - V¥, be a local diffeomorphism.
Let us set U; = g~ '(V;), i = 1, 2. First of all ¢ induces the local diffeomorphism
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¢°: Uy — U,. In fact, for (¢, a)e U,, we set ?°(C, a) = (¢, a). Further ¢ induces
the local homeomorphism @ : (ny) ! Uy — (m5) ™t U,, and for every I > 1 the local
diffeomorphism @' : (n6)"* Uy — (16) "' U,. For g,(0)e(no) ' U, and jio)e
€(m0) ™' Uy we set § g.(0) = g.(#°0) and ¢' ji(o) = ji(¢°0) respectively. Let X be
a differentiable vector field defined on an open sgt ¥ = M and generated by a local
1-parameter group h,:V x (—¢, &) > M. For every I = 0 the local 1-parameter
group h; generates a differentiable vector field on (gn))~" ¥, which we shall denote
by X%

Definition 4. Vector field X' is called the I-th prolongation of X.

Definition 5. Let (E, p, B) be a fibered manifold. Let X be a vector field defined
on U < E. X is called vertical if p,X = 0.

Proposition 1. X' defined on (qng)™' V is a vertical vector field on the fibered
manifold (J', =", B).

It is well known that if local 1-parameter groups h, and h, generate vector fields X
and X respectively, then a l-parameter system of local transformations h,o fi,
generates a vector field X + X. Considering this fact and using a natural coordinate
system we can prove by the direct calculation the following proposition.

Proposition 2. Let X and X be two differentiable vector fields defined on an open
set V.< M. For any 1 = 0 we have (X + X)! = X' + X

Let us keep the notation from the preceding proposition. We have an obvious

Proposition 3. For any a € R there is (X)' = aX".

Now let us consider a subsheaf # < &(M) of vector spaces. For any I > 0 we
shall attach to # a subsheaf #' = #(J'). Let g(Y) e #(J'), where x € J' and Y is
a differentiable vector field defined on an open neighborhood of x. gx(Y) e #'if and
only if there is a differentiable vector field X defined on an open neighborhood of
& = qmi(x) such that g(X)e F and g,(Y) = g(X"). Propositions 2 and 3 imply
that #' < #(J') is a sheaf of vector spaces.

Definition 6. & is called the I-th prolongation of F.

Definition 7. Let & < &(M) be a subsheaf of vector spaces. We say that & is
locally finitely generated if we can find to every point & € M its open neighborhood ¥
and a finite number of differentiable vector fields X4, ..., X; on V such that for any
1 € V the germs g,(Xy), ..., g,(X,) generate the fiber #, of #.

It is clear that if & is locally finitely generated then %' is also locally finitely
generated. In § 4 we shall study a locally finitely generated sheaf # < #(M) such
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that dim %, is constant on M. Likewise it is clear that if dim & ¢ =k on M then
dim #. = k on J'. We shall end this paragraph by proving two propositions con-
cerning such sheaves.

Proposition 4. Let M be a connected analytic manifold, let (M) be the sheaf of
germs of all analytic vector fields on M, and let F < (M) be a locally finitely
generated subsheaf of vector spaces. Then dim & is constant on M.

Proof. We shall prove that the function dim % is locally constant. Let {e M,
let V be its open neighborhood, and let X, ..., X; be analytic vector fields defined
on Vsuch that for any € V the germs ¢,(X), ..., 4,(X;) generate the fiber #, of #.
Let dim #; = r. Then we can choose X;,, ..., X;, such that (g«X,,), ..., g«X,)) is
a basis of #,. In other words there exists a connected neighborhood V; = V of ¢
such that for any i = i, ..., i, the field X; is equal to a linear combination of the
fields X;,, ..., X; on Vy, and on the other hand the fields X; , ..., X;_are not linearly
dependent on any open neighborhood of £. Hence it is clear that for any 5 € V; the
germs g,(X;,), ..., 9,(X ) generate the fiber #,. Let us suppose that for some y € V;,
n =+ & there is dim &%, < r. Then there exists a non-zero vector (ay, ..., &,) € R such

that ) a; g,(X; j) = 0. In other words there is a neighborhood W < V; of 5 such
j=1 r
. ¢

1 ir

that we have )’ o;X; = 0 on W. As V; is connected and the vector fields X ;
j=1

r

are analytic, it follows by the standard argument that ) o;X; , = 0on ¥, and this is
j=1

the contradiction. Thus the function dim 4 is locally constant and therefore constant

on the connected manifold M.

Proposition 5. Let M be a connected analytic manifold and let V be a vector space
of analytic vector fields defined on M, dim V = k. Let us denote by & the sheaf of
germs of all vector fields from V. & is a sheaf of vector spaces and dim %, = k
for every &e M.

The proposition follows easily from the preceding one.

3. SHEAVES OF LIE ALGEBRAS

Let us denote by N* the set of all positive integers. k-tuple (iy, ..., ir) of elements
of N* is called admissible if i; < ... < i, < n, where n = dim B. Let xe€ E and
let ¥ and W be coordinate neighborhoods of points g(x) and p(x) with coordinates
(¥ .., y™ and (x%,...,x") respectively. Let us set U = p (W)~ q (V). On
(w5) ™' U we have the associated coordinate system (x', % y%, ..., »%, ;) (see [2],
p. 3), where i = 1,...,n; « = 1,...,m and the k-tuple (iy, ..., i) runs through all
admissible k-tuples. Let X be a differentiable vector field on V. Under the usual

455



summation convention we may write X = a”(9[0)"). In terms of the associated
coordinate system we can find

X0 = g" i
ay"
= X% + a
6y.1
IS 6a" a, :I 0
ala as 1712 ay11 a 7“2
6_)7“ ayaz a a3 yi:y?:yzs a a1 a a2 (yuyle; lzy?flg + ylllzyig) +

oa" ” d
+ —_—
ay™ oyt

i1i2is

We recall once more that the sums are taken over all admissible k-tuples (iy, ..., i),
k = 1,2,3. Now we are going to express X' in terms of the associated coordinate
system forany ! = 0. An ordered partition D of order r of an admissible k-tuple
(i1 ---» i) is an ordered r-tuple (Dy,..., D,) of sets, where D, = (i;a, ..., i;
d=1,...,r,such that

i (l) dL=}1D¢ = (il’ ey ik)y

(ll) Dd; ] Ddz = 0 for dl + d29
(iii) j§ £ ... S jjo forall d =1,...,r

1 . Jn@? )

Let us denote by Z(r) the set of all ordered partitions of order r of the admissible
k-tuple (i, ..., i). Let re N*, r < k and let o, ..., o, € N*; «;, ..., &, < m, where
m = dim M. We define a polynomial

1
Hiyzw== 3 ¥o,---V5,-
r! peE(r)

Obviously for any permutation 7z of r elements there is Hir¢).~* = Hi!. Now

igeanin®

for every 0 < k < let us assign to the vector field X a vector field py(X) on (n¢)™* U
defined by

&a" F
X e for k=1,
nlX) = r21 oyt ..oy oyt

[P %

where the sums are taken again over all admissible k-tuples (iy, ..., i). Now it can
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1
be easily seen that there is X' = Z pu(X) on (ng)~* U. In addition let us set A5 =
= rl Hil=wir. Now we shall dlSCUSS the properties of H and H.

Lemma 1. For r < v < | there is

! o0H 71
¢1 - Jidv . §Y1EF%1-ar
Z i1 u:a,, v_(SHJx Jv
k=r yil...ik
i M M
Proof. Obviously Hn v = Yji..j, and we have
! oH! i
FT010.0; J1eedv ul @ y]l oJ = al e SY1Si i V1 foL...ar
ZH. i':_‘a*" = H° 'a v = f° ,:5,15“ .00 =90 H_“ e
k=r yil...ik yu...l.,

Lemma 2. Let r + s — 1 £ z £ . Then there is

z P1eesVs s

Z oo aﬁn Jz Z 5vaa1 -@ry1e9pe¥s
ig...ik a " J1edz

k=r “ ik p=1

where “A> denotes as usual the omission of the corresponding index.

Proof. We shall proceed by induction on s. For s = 1 and any z such that r <
=< z £ 1 our assertion is nothing else than the assertion of lemma 1. Thus let us
suppose that our assertion holds for any 1 < ¢ < s — 1 and for any z such that
r +t — 1 =< z < 1. First we must realize that for a + b < z < I we have

-b
I.”Iul --@afi...Bp zz ZHax a Hﬂx ~Bo
=a

J1ejz Jr(1)yeeedn(w) " Jn(w+1)---Jn(z)
where ) is taken over all ordered partitions (D4, D,) of order 2 of the admissible
D,
z-tuple (jy, ..., j,) such that D, consists of v elements. Using this formula for a = 1

we easily get

v =
.Il Jz

1 s -s+
d 71‘--914-“')'5
s Z Z ZHJh(l) Jh(v) .n.(w 1)eedn(z) ©

v

On the basis of the last two formulas and the induction hypothesis we have

z 6 71 Vs
z a1 a,- l —
ik
'l
k=r a 11 Vi
z s z—s+1 Yu 71e-Juevs,
— Z ax ﬂr_ Z aHJhgx) -Jn(v) H71~--9u~-~?s + H™ aH}hgu+1) Jnz) | —
- is. Y] Jr(v+1). Jh(z) Jn(1)esedn(w) d
k=r u=1 v=1 Dy Viyoi Vit
s z—s+1 z
—_ !‘_ Z Z Zﬁal «ar aH."l(l! odh(v) FFr1ee-Puce?s +
- it Jh(v+1)eedn(z)
S Ju=1 v=r Dy k=r 3 11 ik
s z—r—s+2 z El V1o Pueeds
3 1. ﬂ'r Jn(w+1)...Jn(z)
+ Z Z Z Z H.Ihu) Jh(v)H P
u=1 v¢= Dy k=r yu...xk
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1 s z—s+1
— Yu Lot .ar Fjrae--Pu-evs,
- s [Zl ;5 Hn.(x) Jh(v)HJh(v+l) Jn(z) +
u= v=r
s z—r—s+2
Yw ffVu At @ryteeJuePwenn¥s ] —
+ Zl Zl & 216 H.Ih(l) Jh(v)Hu.(un) -Jn(z) ]_
n= v= w=
vw#u
S , s s z—r—s+2
= Voo fJ1-@ry 1 Juees Vs — SYwfrYu ateelr¥ e Py Pwenys
= s [215 H.Il Jz + Zl Zx | %: 5 th(l) ]h(v)HJh(v+l) -Jn(z)
u= w=1u= v=
uFw v

— _[zaYuH;: ::71 Hueeevs + (s _ 1)257’ij: :;Vx Fweers] — Zévaa;: j:)'l Jpe--vs
and this finishes the proof.
From lemma 2 we get easily

Lemma 3. Let r + s — 1 £ z £ 1. Then there is

z OHM'%  1(r+s—1) ¢
Aoy Jredz T Yp EJ®1-- @Y1 PpensPs
k; Hiuli 0 ’;111 e s ( r )pz'té" i )

Proposition 6. Let X, Y be two differentiable vector fields defined on V. There is
[x, Y] =[X% Y] on (ng) "' U.

Proof. Let X = a"9/dy", Y = b*(0/0y°). We shall proceed by induction on I.
The assertion is obvious for [/ = 0. Let us suppose that it holds for / — 1. In order
to prove that it holds for [ it is clearly sufficient to prove the equality

L P00 2O+ [0, T 200 + [0, PV = RCX, YD)

Let ﬁs calculate the left and the right-hand side respectively.

1-1 k r 1N S1L&
L=|:a'li+z Z da oo 0 Z b Hvs 0 ]+

ay" =Sy oy e Vi s=iayn..ayt g Vi

1 ron 1-1 gq S1S
L e ) AR ]
F=10y™...0y" oy" 0y°  4=1s=10y™...0p™ 1 0Y5, g

u g

1 r.n ! spHé
+[Z T P g L Ay f ]=
r=10y™ ... 0y™ 0y =10y™...0y 0Y5,..iy

11 R

1 1 k ron s1,& PATE 2]
_Y Yy &a &b o JOHRE 9
K=1s=1/=1 )™ ... Y™ 0y ... Oy™ OV OV5yiy
A OHU % 0

V1eeeVs o li..lr N1
g=1r=1s=1 0y’ ... dy" oy™ ... 0y*™" e ay5,.. wia 6yl1 i
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1 s+17.¢ 1 r+1 1
a’l a b V1eeYs a a a & LT a
a, irdy a ]

+ L Jiedu z P
s=1 0y"dy...dy’ 0y5,. j, re1oytoyt..oy* Vi

iy _ @ OV (g PHREY 0
r=1s=1 0y Oy Oy .. Oy \i=r B oyt ) 0V

s7,& r 1 1 A1eenlly 1 4
xa : s nua . ar <Z H}': z: aHiu ”> f + Z 0 - Z o
c Oy 0y™ L0y \a=s 0Y3.da) OV sy =1 r=1

where [] stands for the terms which remain unchanged. It suffices to take the sum
over r + s — 1 < I because for r 4+ s — 1 > [ the derivatives of the polynomials H
vanish. Now the right-hand side. We have p/([X, Y]) = p(a"(0b*/0y") (8/0y")) —
— p(b%(0a"/8y*) (6/0y")) and we shall start calculating p,(a”(0b%/0y") (9/0y%)). Let us
denote by P(k) the group of all permutations of k elements.

ak(a"?ﬁ>
1
p,(a ob* a) y W) a9 _

oy 0yt WS ay .oy ey
1 k+1
o**ips 0
= L+
k=1 Oy"0y™...0y™ 0V i
1 k 1 r o k—r+1p¢&
+ Z (Z ! ! Z ﬂn(l)aa %m(r) n aan(rn) ’ % (k)>}13(i :l" f =
¥=1 \/=1 1! (r — k)! xePey 0y*= ... 9y*=™ 9y" dy Oy Y5,
1 1 ron k—r+1p¢&
% (2 S sy g ey T )
k=1 \r=1 7! (,. - k)' 7eP() OY ™1, By ™) GyNt ytrerrD | §yteea
 _ ‘ i 1 5 1 aa oIt
05,5, k=1 /=1 (r — k) 2Pt k — 7 + 1 0y™ ... dy™ 9y’ ... 0p"r+! ’
k—r+1 i
( Z 57:Ha]!: (;:)'1 Feeeyic- r+1)> : —
6yj1-~~jl
1 k 1 ron k—r+13.¢&
— A+ Z Z k! 1 da 0 b )
k=tr=1rl (r— k) k —r + 10y™ ... 0y™ ay™...oyT
k—r+1 9 6
( Z 5?:Hji l;;)'x e Vi — .-+1) : .
ayixmfl

Again A stands for the term which remains unchanged. Setting s =k — r + 1 we
get easily

,0b° 0 ! r+s— 0
a 5*hHu: @Y1t Vs .
G R H G oL S e
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In the same way we can calculate p,(b*(0a"/0y°) (8/0y")). Now the assertion follows
immediately from lemma 4.

Corollary. Let # < & (M) be a subsheaf of Lie algebras. It follows immediately
from proposition 6 that ' is also a sheaf of Lie algebras.

4. SHEAVES OF INVARIANTS

From now on we shall consider a locally finitely generated subsheaf # < y(M)
of Lie algebras such that dim & is constant on M. This constant will be denoted by k.

Definition 7. Let N be a differentiable manifold. A pseudodistribution D on N is
a mapping assigning to every point p e N a subspace D, = Tp(N) (not necessarily of
the same dimension at every point). A vector field X defined on a subset U < N is
said to lie in D if for every p e U there is X, € D,. A pseudodistribution D is called
differentiable if for any pe N there exists its open neighborhood U and a finite
number of differentiable vector fields X4, ..., X, defined on U such that each of them
lies in D and for every g € U the vectors (X,),, ..., (X,), span the subspace D,. The
r-tuple (X;, ..., X,) is called set of local generators of the pseudodistribution D on
the neighborhood of p.

The sheaf & gives us in the natural way a pseudodistribution D* on J*: let x € J*;
a vector Y, € T,(J") belongs to D% if and only if there exists a differentiable vector
field X defined on an open neighborhood of x such that g(X)e #' and Y, = X,.
As Z'! is locally finitely generated, the pseudodistribution D' is obviously differenti-
able. It is also clear that D' is vertical,i.e. for any x € J' any vector from D' is a vertical
vector on the fibered manifold (J?, z* ,, B).

Let us denote by &' the sheaf of germs of all differentiable functions on J'. &' is
obviously a sheaf of rings. Let us define a subsheaf o7’ = &' in the following way:
letg.(f) e ', where x e J* and f is a differentiable function defined on an open neigh-
borhood U, of x; g,(f) € &7"if and only if for any differentiable vector field X defined
on an open neighborhood U, of x and lying in D' there exists a neighborhood U =
< U; n U, of x on which Xf = 0. Obviously g,(f) € &' if and only if Xf = 0 on
a neighborhood of x for all elements X of a set of local generators of the pseudo-
distribution D’ It is also clear that o' < &' is a subsheaf of rings.

Definition 8. The sheaf </’ will be called the sheaf of invariants of order .

More generally let Q be a differentiable manifold, dim Q = g, let 2(Q) be the sheaf
of germs of all differentiable functions on Q and let &/ = 2(Q) be a subsheaf of rings.
For x € Q we denote by &, the fiber of & over x. Now we shall introduce several
useful concepts. A ‘subsheaf 7 is called ¢-closed if for any x € Q the following
assertion holds: if g,(f,), ..., 9.(f,) € o where f,, ..., f, are differentiable functions
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defined on an open neighborhood of x and if F is a differentiable function defined
on an open neighborhood of the point (fy(x), ..., f(x)) € R" then g.(F(f,,....f,)) €
esf,. Let (x, ..., x%) be a coordinate system defined on an open neighborhood of x
and let g,(fy), ..., 9:(f;) € #. The germs g,(f,), ..., g,(f;) are called -independent
if the matrix [(3f;/0x"),|{Z1:75 has maximal rank. It can be immediately seen
that ¢-independence of germs does not depend on the choice of a coordinate system
around x. s-tuple of germs (9.(f1), ..., g.(f,)) is said to be a set of ¢-generators of
a fiber &, if for any g,( f) € o, there exists a differentiable function F defined on an
open neighborhood of the point (fy(x), ..., fi(x)) € R® such that g,(f) = g (F(f1, ---
eoes f))- s-tuple of germs (g.(fy), ..., g,(f;) is called @-basis of o, if it is a set of
¢@-generators and if the germs g.(f)), ..., gx(fs) are @-independent. We can prove
easily that any two ¢@-basis of the fiber <7, consist of the same number of elements,
and so we are entitled to define the @-dimension of o/,. We can also easily check on
examples that the fiber <7, need not have any ¢-basis. If o/, has a ¢-basis, then
obviously dim &/, < q. We say that a sheaf has a local ¢-basis around x € Q if
there exists an open neighborhood U of x and differentiable functions fy, ..., f;
defined on U such that for every y € U the s-tuple (g,(f1), .-, 9,(f,)) is a ¢-basis of
the fiber o/,. A sheaf ./ is called differentiable if to any x € Q there exists a local
¢-basis around x and ¢-dim &, is constant on Q.

Definition 9. A point x € J' is called regular if dim D = k. The set of all regular
points in J* will be denoted by J*.

Proposition 7. J' is an open subset of J'. The proof is obvious.

Proposition 8. Let [; = I, = 0 be integers. Let xeJ", yeJ", y = nj\(x). Then
xeJh.

Proof. Let V and W be coordinate neighborhoods of points &=gn}(x) and 7" (x)
with coordinates (y?,..., y™) and (x!,...,x") respectively. On (n§”)~* (V x W)
there is the associated coordinate system (x%, y% ¥%,..., y5,. 1, m) j=12. As
yeJ"” we can find an open neighborhood V; < V of ¢ and differentiable vector
fields X4, ..., X, defined on V such that g{X,), ..., g{X,) € # and vectors (X?),, .-

.» (XP), are linearly 1ndependent In terms of the associated coordinate system we

can write (see § 3) X' = Z pdX,), X~ Z piX,), 1 < r < k. Hence it is clear that

the vectors (X ) - (X : )x are linearly 1ndependent and therefore x e J'.

Now let f: M’ — M be a differentiable mapping, and let us denote by f* T(M)
the induced bundle of T(M) under f (see [4], p. 18, Def. 5.3). We denote by 7(M’, f,
M) the sheaf of germs of all local cross sections of the bundle f* T(M). Let us define
a subsheaf #(M', f, M) = F(M’, f, M) in this way: let £ € M', g{(7) € (M, f, M)
where 7 is a local cross section defined on an open neighborhood U, of &; gg(r) €
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e #(M', f, M) if and only if there exists a local cross section o of T(M) defined on an
open neighborhood U, of f(&) such that on some neighborhood U = Uy n f~Y(U,)
of ¢ there is 7| U = (f*0) | U (for the definition of f*c see [4], p. 19, Prop. 5.10).
F(M', f, M) =« 7(M', f, M) is obviously a subsheaf of vector spaces.

Proposition 9. Let o be a local cross section of the fibered manifold (M x B, p, B)
defined on an open neighborhood W of a € B. If dim & (W, q - 6, M) < k then for
every l 2 Othereisji(c) e J' — J'.If all structures are analytic and if dim F (W, q o
o 0, M) = k then there exists | = 0 such that ji(c) e J".

Proof. For any I = 0 let (x%, y* ¥}, ..., ,..;) be the same associated coordinate
system as in the proof of the preceding proposition. Let X, ..., X, be differentiable
vector fields defined on an open neighborhood of ¢ = (g - ¢) (a) such that (g4(X,), ...
..» 94(X,)) is a basis of &,. In terms of our coordinate system we can write X; =
= a(8/oy"). If dim F (W, q - o, M) < k then there exists a non-zero vector (44, ..., 4)

k

such that ) (a%. q o 6) =0, =1,..., m, on a neighborhood of a. By mere taking
i=1
the derivative we get from the last equality

0= (Zl(a ©q00))a= Zl Z oy (7))

ox'

for all integers r = 1. It is immediately clear that the vectors X}, ..., X} are linearly
dependent for any I > 0.
In the second part of the proof all structures are supposed to be analytic. Let
dim # (W, q o o, M) = k and let us suppose that for every / = 0 the vectors (X} Dt -+
.» (X3),1, where x! = ji(o), are hnearly dependent. Let us denote by B! = R* the
set of all vectors (4,, ..., 4) such that Z 2{X}), = 0. B' = R*is obviously a non-zero
’ i=1
subspace. Let I; = I,. In terms of our coordinate system we can write X' = X +

151
+ Y p{X)), 1=i<k, and hence it is clear that B* < B". According to our assump-
j=h+1 ©
tion dim B' = 1 and therefore () B' is a non-zero-subspace, i.e. there exists a non-
1=0

k
zero-vector (2, ..., 4,) such that Y A(X},. = 0 for all I = 0. Let us write again
i=1

X;=ad! (6/6y”), 1 =i £ k. From the last equality it follows immediately

T (LMo g0 =0

oxit .,

for all r = 0, all admissible r-tuples (iy, ..., i,) and n = 1, ..., m, and hence we have

k
Y A{a’ o q o 6) = 0 on a neighborhood of a. But this is the contradiction.
i=1 .

462



Let us denote by D’ resp. &' resp. /' the restriction of D' resp. &' resp. &7 to J*.
Clearly D' is a differentiable involutive distribution on J* (see [1], pp. 86, 87, Def.
2,3,5).

Proposition 10. 7" is a ¢-closed differentiable sheaf.

Proof. It is quite obvious that & is ¢-closed (even &7 is p-closed). According to
([1], p- 89, Theorem 1) to any x € J' there exists its coordinate neighborhood U < J*
with coordinates (u’, ..., u"™) where n; = dim J' (as a differentiable manifold) such
that the k-tuple (8/0u", ..., 8/0u") is a basis of D' on U. It is immediately clear that
(u**1, ..., u™) is a local @-basis of &' on the neighborhood U.

Proposition 11. Let fy, ..., f,,—x be differentiable functions defined on an open
set U = J' such that for any xeU there is g(fy),.--» 9x(fu,—s) € #'. For any
xeU let the germs g(f1)s ..., 9(fn,—1) be @-independent. Then the (n, — k)-tuple
(fis -+ fa,—x) is @ @-basis of &' on U.

The proof is obvious.

Let U < J' be an open subset and let (x’, y* 3%, ..., ¥5,..;,) be an associated co-
ordinate system on U. Let f be a differentiable function defined on U. The formal
derivative % f is a function defined on (n;"!)™* U in this way: if x = j;" (o) e
e (n}*)"1 U, where o is a local cross section defined on an open neighborhood of
ay € B, we set

000 = (7 06@)) -

For the further properties of formal derivatives see [2], p. 15. Let us keep the just
used notation for the next proposition.

Proposition 12. Let y = n}*!(x) and let g,(f) € &' Then g (0%f) e 7.

Proof. Let & = gny'(x) and let X, ..., X; be differentiable vector fields defined
on an open neighborhood of ¢ such that g«X,), ..., g{X,) is a basis of F,. As
9,(f) € o7 there exists a neighborhood U’ < U of y on which Xif = ... = Xif = 0.
Let 'h,,...,*h, be the local 1-parameter groups generating the fields X, ..., X;
respectively. For x’ = j;*'(¢) e (n;*!)™* U’ and for all j = 1, ..., k there is

XN () = 5 @1 ) () ]emo = [N 8O0 =

_ii__a_-tjo =_é_i1_.lj0 =_6_ ' _
= [axif(]b(( h?) 0'))b=bo]t=o por l:dtf(],,( h,a)),=o:|b=bo ™~ (Xjf)b=bo 0

and the proposition immediately follows.
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. C .
&'+ 1 in this way: g:NeZ", where f is a differentiable

Let us define a subset K < fxeJ'*1, belongs to K if and only if

function defined on an open neighborhood o '
there exists either a differentiable function f’ defined on an open neighborhood of

J = 71*1(x) such that g,(f")€ " and g(f) = 9:f"» m*1) or a dliferent}able
function f” defined on an open neighborhood U of y and an associated coord'mate
system (x, % y%, ..., y% i) on U such that g(f") e 7" and for some 1 <i<n
there is g,(f) = g.(0%f")- K = F'*1 is clearly a subsheaf of sets. Let us deno~te
by p7" the smallest p-closed subsheaf of '** containing K. The subsheaf of ps/’,
which is obviously a sheaf of rings, will be called the formal prolongation of '
Proposition 12 gives us immediately the inclusion pe/’ = o7'*1. For x e J' let us
denote by Q,J' the subspace of T,(J') which is the kernel of the mapping (n]_ )y :
: T(J") » T,(J'~*) where y = nj_(x). Let # = &' be a subsheaf. Similarly as in
[2] (p. 13, Def. 3.4) we introduce the subspace CL(%) < Q. J". Let Xe Q. J'; X €
€ Ci() if and only if for any differentiable function f defined on an open neigh-
borhood of x and such that g.(f) € # there is Xf = 0. If x € J' and if (f}, ..., f,,-s)
is a local @-basis of </ on a neighborhood of x, then obviously X € Q,J' belongs
to Ci(s/")if and only if Xf; = ... = Xf, _, = 0. In terms of an associated coordinate
system we can write X = Y'a$, ,(8/dy}, ;). where the sum is taken over all admis-
sible I-tuples (iy, ..., i;). Clearly X e Cy(<#") if and only if Y a} _;(0f;[0)%,..:) (x)=0
forallj = 1,...,n; — k. The reader can easily verify that for x e J* there is Cy(/") =
= Q.J'n DL

Definition 10. A point x € J' is called proper if Ci(s/') = 0. The set of all proper
points in J' will be denoted by J*.

Proposition 13. J' is an open subset of J'. The proof is obvious.

Proposition 14. Let [, > I, = O be integers. Let xe J", yeJ", nji(x) = y. Then
xeJh, .

Proof. Let & = (gn{) (x) and let X, ..., X, be differentiable vector fields defined
on an open neighborhood of & such that go(Xy), ..., g«(Xy) is a basis of F,. Let
zeJ"*! be such that n}2*!(z) = y and let (x, y% V5 - % Vi, i) and (X5, 3% V55 -
eees ¥} iay+1) D€ associated coordinate systems defined on an open neighborhood
of y and z respectively. In terms of our coordinate systems we can write X ?*! =
=X%+ p,.:(X;), j=1,..., k. Taking Xe c;”:(a?’z“) = Q,J"" A DEY! we

k k

have obviously X = )" A(X7*"), = Y A(X%), + Y. 4;pp,+1(X;), where (4, ..., &) €
j=1 j=1 =1 %
e R*. But according to the fact that X € Q,J'»** there must be ) A(X}?), = 0 which
j=1

implies 1; = ... = 4 = 0, for y e J”. Thus we have X = 0 and now the assertion
follows easily.
Let us denote by D' resp. @' resp. /" the restriction of D' resp. &' resp. <" to J'.
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Proposition 15. Let x € J! and let f,, ..., f,,—, be differentiable functions defined
on an open neighborhood U of x such that (fy, ..., f,,—i) is a local ¢-basis of of*
on U. Let (x, y, ¥5, ..., ¥5,..1,) be an associated coordinate system defined on U.
Let ye J**Y, nj*(y) = x. Then we can choose a subsystem S’ of the system S =
={fjom™, 0%f;i=1,...mj=1,...,n, — k} such that S' is a local ¢-basis
of o/*** on an open neighborhood of .

Proof. For ve U, we(nj*')™* U we introduce matrices

B’(v) - ( 6(f1, "'anx—k) )) , p B’(w) — ( 6(f,- ° ”f“a 6;‘;f,—) )w_

a(xi, ya’ L] yz...i, a(xi’ yus ey yaitl,..i,“)

As the functions f, ..., f,,—; are g-independent on U the matrix B'(v) has for every
v e U maximal rank. The matrix p B'(y) can be obviously written in the following
way

B'(x) i 0

Bl+1(y) i §1+1(y) '

Let us set a = n_,(x). We can verify in the same way as in [2] (p. 17, Prop. 4.3)
that under the fundamental identification (see [2], p. 6) there is C;“(pa/‘) =
= (CY") @ T)") n (Q.J' ® S*(T))). Because x € J' there is Ci(#") = 0 and from
the last formula we have C,*'(p#/') = 0. But this means nothing else than that the
matrix B'*!(y) has linearly independent columns. Thus by removing a certain
number of rows from the n(n; — k) last ones of p B(y) we get a matrix B'*!(z) of
type (n;+1 — k, n;44), which has maximal rank. And now according to Proposition 14
our assertion is obvious.

p B(y) =

5. PSEUDOGROUP ASSOCIATED TO THE SHEAF

Let I be a pseudogroup on M (see [3], p. 8, Def. 1.1). For every integer | = 0 we
associate with I' a pseudogroup I'' on J' defined in the following way. Let 4* be the
set of local diffeomorphisms of J* such that Y € A" if and only if there exists ¢ e I
such that y = ¢'. Now we define I'’ to be the smallest subpseudogroup of the pseudo-
group of all local diffeomorphisms of J* containing 4".

Definition 11. I'’ is called the I-th prolongation of I.

A sheaf # induces a pseudogroup I'(#) on M in the following way (see also [3],
pp. 9, 10). Let © be the set of local diffeomorphisms of M such that ¢ : U, —» U,
belongs to @ if and only if there exists a local 1-parameter group of transformations
h,:U; x (—¢,€) > M and t,e(—¢, &) such that a) if X is a differeniiable vector
field generated by h, on h(U; x (—¢, &) then for any e h(U, x (—s¢, ¢)) there is
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9dX)e #,b) h,(U,) = U, and h,, = ¢. We define I'(F) to be the smallest pseudo-
group on M containing ©.

Definition 12. I“(F/") is called the pseudogroup associated to the sheaf F.

Definition 13. Let Q be a differentiable manifold and let I be a pseudogroup on Q.
A differentiable function f defined on an open set U = Q is called I'-invariant if and
only if for any ¢ e I' : U; — U, such that U;, U, < U thereis f | Uy = (f| U,) - 0.

Proposition 16. A differentiable function f defined on an apen set U < J' is
I'(F)%-invariant if and only if for any x € U there is g,(f) € "

Proof. Let f be I'(#)-invariant. Let x € U and let U’ = U be an open neighbor-
hood of x. Let X be a differentiable vector field defined on U’ and lying in %' generat-
ed by a local 1-parameter group of transformations h, : U’ x (—¢, ¢) — J* such that
h(U’ x (—¢,¢)) = U. As h,e I'(F)! there is f = f o h, and so Xf = 0 on U’. Thus f
lies in 7"

On the contrary let f liein «7*. Obviously it is sufficient to prove that f is @-invariant.
Let h,: U’ x (—e&, &) > J', where U’ < U, a local 1-parameter group of transforma-
tions such that h(U’ x (—¢, ¢)) = U and let us suppose that the differentiable vector
field X defined by h, on h (U’ x (—¢, ¢)) lies in /", Let us consider the function
h(x,?) = f — foh,defined on U’ x (—¢, ¢). As f lies in /' there is 0h/0t = —Xf =
= 0 on U’ x (—¢, ). Obviously h(x, 0) = 0 for all x € U and therefore h(x,t) = 0
on U’ x (—¢,e), ie. fis I'(#)-invariant.

Definition 14. Let Q be a differentiable manifold and let # = 2(Q) be a subsheaf
of rings. Let ¢ : U; » U,, where U, U, = Q, be a local difftcomorphism. ¢ is
called a local automorphism of & if for every x € U, the mapping ¢F : Boixy = D
assigning to g,(f) € B, an element g,(f o ¢) € 2, is an isomorphism of &,
onto 4,.

Proposition 17. Let ¢ : V, — V,, where Vi, V, = M, be a local diffeomorphism
and let ' : Uy — Uy, where U; = (qny) ™' Vi n J' (i = 1, 2) be the restriction of ¢'
to U,. Let us suppose that /' is a local automorphism of s/*. Then for every I' = |
the mapping ¥ : (n}')™* U, — (n}')~1 U, which is the restriction of ¢ to (n;')™* U,
is a local automorphism of /"'

Proof. Clearly it is sufficient to prove our assertion for I’ = [ + 1. With regard
to the local character of the problem we may suppose that on U; and U, there are
associated coordinate systems (x%, )% y5, - Vi) and (x4 3% 5%, . V5
respectively such that 7% ¢ = y* for all « = 1, ..., m. Then there is obviously also
P2 i o W' = ¥%., for all admissible k-tuples (iy, ---» i), where k = 1, ..., I. Further
we may suppose that there is a local ¢-basis f1; ..sfu—xand fi, ..., f, _, of ' on U,
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and U, respectively and even such that f;o Y’ = f;, forall j = 1,..., n; — k, for y'
is a local automorphism of /" !, The reader can easily verify that there is (0%f;) o

o' = &% f; and from this our assertion immediately follows.

Let U < J'be an open set and let (x°, %, ¥5,, ..., ¥%,..1,) be an associated coordinate
system on U. Let X be a differentiable vector field defined on U such that (n’ ), X =
= 0. We are going to define a differentiable vector field pX on (n}*')™* U, which
we shall call the formal prolongation of X. In terms of the associated coordinate
system we can write

1
X =a"— + a'l’l i _a_
oy" k=1 oyt

11 *ire

b

where a", a],_;_ are differentiable functions on U. We define
a i(k) a
X =a"— + ) 0% (a4} .,
p ay Z ( 1eerlle— l)a "1‘ lk

If X = Y', where Y is a differentiable vector field on gng(U), then we can easily
verify that there is pX = Y'*1.

Proposition 18. Let h, : V x (—¢,&) > M be a local 1-parameter group of trans-
formations and let ¢ € V. Let us suppose that for some 1 = 0 there exist x € J*
such that qni(x) = ¢ and an open neighborhood U of x such that U < (qm§)™*
and hi(U x (—¢,¢)) = J'. For every te(—¢,¢) let h;| U be a local automorphism
of /' Then there exist an open neighborhood V' = V of & and 0 < ¢’ < ¢ such
that for every te(—¢',¢) there is h,| V' € I(F).

Proof. It is obvious that we may suppose that there exist differentiable vector
fields X4, ..., X, on h(V x (—¢, &) such that (X, ..., X,) is a local basis of # on
h{(V x (—e&, €)). We may also suppose that there is an associated coordinate system
(X5 Y% Y5 oo ¥ii) on U = hYU x (—&,¢)). Let X be a differentiable vector
field on h(V x (—¢,¢)) generated by the 1-parameter group h,. As h} are local
automorphisms of &#! we can see (accordlng to proposition 17) that for all I’ 2 I the
vector ﬁeld X" defined on (n})™* U lies in D¥. Thus for any I > I we can write

Zf XY, where fj. are uniquely determined differentiable functions on
(ﬂz) i U It can be easily seen that for any I’ > I'there is f} = fion},j=1,..., k.
Therefore we have pX' = Z(f’ om ) Xt On h(V x (—e¢,¢)) let us write X =
= a"(0/oy"), X; = a"(a/aY") j=1,..., k. We have
1 r S
Zf’(a" +Y ) 04} puiess O )

6 n r=1s=1 6y°"...6y°" e "6 H

'1 odr.
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k 1(1) sty l s” 9
,,____+ax Ha:x tﬂs _ =

r—sl

k I+1 r asarl - 6
=Y fila +2 Y = Hiw +
j=1 * oyh, .

r=1s= 16y

r=2s=1

k I+1r F]
s T {ena s 3 5000 T, )
Jj=1 y o ayu

PAGRASEEN=P

llMa-

where [J stands for the term which remains unchanged. But with respect to the

k
equality pX' =Y (f}on;*') X;** there is [] = 0 and from this last equality we
Jj=1

have for example

k 1 r o a I F]
Een (ot 5, 5 e i ) =0,

ayil.uir"

where the sum is taken over all admissible r-tuples (iy, ..., i,) where r = 1,.
Now on the basis of this equality we have

k e ol . k o i 1 r &5a” - 0
YOENXi= Y@M =+ Y L Hix =0,
=1 i=1 oy" ! : yi,...i.

... 0y

which with respect to the linear independence of X1, ..., X; on U implies 8% f; = 0
on (nj**)"* U for j=1,..., k. In the same way we can prove that 0% f} = 0 on
(ri*Y)"*Uforalli = 1,...,n;j = 1, ..., k. Thus the functions f1, ..., f} are constant
and the field X' lies in #'. Likewise X on qn§(U) lies in & and from this our assertion

immediately follows.
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