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Introduction. Let V' be a matrix with positive diagonal elements and nonnegative
off-diagonal elements. If all principal minors of V are positive, the matrix V belongs
to an important class of matrices with many useful properties. In particular, V!
exists and ¥ ~! = 0. This class of matrices, which the authors denote by K, has been
extensively studied by different authors. A systematic account of the properties of
matrices of class K may be found in [1].

In a paper of KOTELIANSKD [4] the following comparison theorem has been
proved. Let Ve K and let U be a (complex) matrix such that |uy| = v;; and |uy| <
< |val; then |det U| = det V. The proof is based on an induction with respect to the
dimension of the matrix. In the present note which belongs to a series of papers de-
voted to the systematic study of the class K and its generalizations we intend to
investigate more closely inequalities of the above type. First of all, we use another
method of proof based on an exponential expansion which is independent of the
dimension and thus eliminates induction arguments. At the same time, this method
suggests a weakening of the hypotheses. The inequalities |u;| < [v| may be replaced
by a weaker hypothesis, roughly speaking the term-by-term inequalities may be
replaced by inequalities for cyclic products. Further, this method makes it possible
to analyse completely the case of equality.

Cyclic products appear already in the work of OSTROWSKI [5]. GOLDBERG |[2, 3]
seems to be the first to observe that two matrices with the same cyclic products have
the same principal minors.

1. Preliminaries. Throughout the whole paper, we shall denote by N the set
{1, 2, .. n} where n is a fixed positive integer. A matrix is a complex-valued function
on N x N or N' x N where N’ = N. If B is a matrix and i, k € N, we shall denote
by by, the value of this function at the point (i, k). The principal submatrix of a ma-
trix A on N x N whose rows and columns correspond to indices from N’ = N is
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denoted by A(N’). Given a vector (ay, ..., a,), we shall denote by diag {aj, ..., a,}
the diagonal matrix with a; on the main diagonal.

Throughout the present paper we shall be using the properties of two classes of
matrices, K and K,. We intend to list now the most important properties of these two
classes; for the proofs, the reader is referred to [1].

The class K, is defined as the class of those real-valued matrices 4 = (a;) which
satisfy a; < O for i = k and such that all principal minors of 4 are nonnegative.
Further, K is the class of those matrices from K, whose principal minors are positive.
It may be shown that a matrix 4 € K, which is nonsingular already belongs to K.

We shall use the following abbreviations. With each matrix 4 we associate two
real matrices M(A) and H(A) with elements m;, and h;, defined as follows

my = |ag| forall ik,
hy =|ay| if i=k and hy = —|ay| for i=*k.

We denote by H the class of all matrices 4 such that H(A4) € K. Similarly the class H,
is defined by the postulate A € H,, if and only if H(4) € K,.

A diagonal matrix D is one for which d; = 0 if i + k. If D is a diagonal matrix
for which d;; > 0, we shall frequently call D a positive diagonal matrix.

If x is a vector, we shall also denote by M(x) that vector the coordinates of which
are the moduli of the corresponding coordinates of x. The identity matrix will be
denoted by I. If B is a matrix we denote by o(B) the set of all the eigenvalues of B,
by |B|, the spectral radius of B, i.e. max |4| for A € ¢(B). If B is nonnegative, we
denote by p(B) the Perron root of B so that p(B) = |B|,. We shall also use the follow-
ing result on nonnegative matrices.

(1,1) Let A be a nonnegative matrix. Let B be a (complex valued) matrix for
which M(B) < A. Then
|Bl, < p(4).

Suppose further that A is irreducible. Then equality is attained if and only if there
exists a diagonal matrix D with M(D) = I and a complex unit ¢ such that B =
= ¢DAD™ . In particular, equality implies M(B) = A, so that B > 0 implies B = A.

Proof. To prove |B|, < p(A), take an arbitrary A € o(B) so that there exists a non-
zero vector x for which Bx = Ax. Hence

(1) |2] M(x) = M(Ax) = M(Bx) £ M(B) M(x) £ AM(x).
Suppose further that |4| > p(A4). Since p(4) = |4|,, the series ). (|4|~* 4)* is con-
k=0

vergent, its sum is nonnegative and equals (I — |4|~* A)~". Since (4 — |2]) M(x) =
>0, we have also — |A| M(x) = (I —|4|7* 4)™" (4 — |A|) M(x) 2 0 which is
a contradiction.
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Suppose now that |B|, = p(4) and that 4 is irreducible. It follows from (1) that
() p(A) M(x) £ A M(x).
According to the Perron-Frobenius theorem there exists a positive vector y with
y'A = p(A) y'. Hence, using (2),
() M(x) < A M(x) = 2(4) ' M(3):
since )’ > 0 and p(4) > 0 it follows that
(3) p(A) M(x) = A M(x).

Since M(x) 2 0, x + 0 and A is irreducible, it follows that M(x) > 0. Further,
by (1),

(A) M(x) < M(B) M(x) £ A M(X) = p(A) M(3) |
whence M(B) M(x) = A M(x). Since M(B) < A and M(x) > 0, it follows that
M(B) = A.

Since M(x) > 0 there exists exactly one diagonal matrix D for which x = D M(x);
clearly M(D) = I. Hence

eD™'BD M(x) = p(A) M(x)
for a suitable ¢ with |e| = 1.
Denote by W the matrix eD™'BD. We have M(W) = M(B) = A and
W M(x) = p(4) M(x) = A M(x) = M(B) M(x) = M(W) M(x) .

Since W M(x) = M(W) M(x) and M(x) > 0, it follows that W = M(W) = A. The
proof is complete.

(1,2) Let A€ K, be irreducible. Then all proper principal minors of A are
positive.

Proof. If A happens to be nonsingular, the conclusion follows from the fact that 4
already belongs to K.

Suppose now that A is singular. It follows that A is of the form A = p(P) — P
where P is an irreducible nonnegative matrix. Let M be a proper subset of the index
set N. The present theorem will be proved if we show that p(P(M)) < p(P) Indeed,
p(P) > p(P(M)) implies A(M) = p(P) — P(M)e K. Let us denote by P the matrix
defined as follows:

P = pu if both indices i, k belong to M ,
Pa =0  otherwise .

It follows that 0 < P < P and that p(P(M)) = p(P). Since P < P, we have p(P) <
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< p(P). Suppose that p(P(M)) = p(P) so that p(P) = p(P). By (1,1), P = P which
is a contradiction since M =+ N and P is irreducible.

(1,3) Corollary. Let A € K, and let M be a proper subset of the index set N.If A(M)
is singular then A is reducible and singular.

2. Irreducible components. In the sequel we shall use frequently the well-known
fact that every matrix may be rearranged into a block triangular form with inde-
composable matrices on the block diagonal. Since these questions are usually treated
rather casually in the literature and since we shall need a somewhat more precise
statement of this and related facts we include, for the convenience of the reader,
a section devoted to the precise description of these decompositions.

In the present section we intend to collect the combinatorial prerequisites which
will be necessary for the formulation of the main result. We shall adopt the method
of [6]. Everything which follows can, of course, be also expressed in the language of
graph theory; the method using additive mappings of sets, however, seems to be
more appropriate for the study of iterates of graphs.

Let ¢ be a relation on N (a subset of N x N). If A = N we denote by ¢(A) the set
of those k € N which satisfy [a, k] € ¢ for a suitable a € A. In this manner ¢ may be
regarded as an additive mapping of exp N into exp N. The set of all relations on N
with a composition defined as the superposition of additive mappings of exp N into
exp N will be denoted by G(N). -

We shall denote by 6 the relation of identity, defined by the diagonal of N x N, i.e.

[x,y]eé ifand onlyif x=y.

Also, it will be convenient to set ¢° = & for each ¢ € G(N). For every relation ¢
there exists a transitive relation t(¢) such that (i) ¢° U ¢ < (o), (ii) if  is any transi-
tive relation containing ¢ and ¢°, then ¥ o (). It is easy to show that t(¢) may
be described as follows: [x, y]et(¢) if and only if there exists a nonnegative
integer p such that y € ?(x). If ¢ is a relation, we denote by ¢” the transpose of ¢,
defined as follows: [x, y] € ¢” if and only if [y, x] € ¢. It is easy to see that 7(¢”) =
= 7(¢p)" for any relation ¢. The intersection t(¢) N 1(¢)" = ©(@) N (") is easily
seen to be an equivalence. We shall denote it by &(¢).

A mapping ¢ € G(N) is said to be irreducible if ¢(P) = P implies that P is either
void or P = N. Note that, for n = 1, every relation ¢ is irreducible.

First of all, we shall prove a lemma which will be useful in the next section.

(2,1) Let ¢ € G(N) be irreducible, let z be a fixed element in N. Then there exists
a relation y € G(N), ¥ = ¢ and a function h on N with the following properties:

1° h(x) is a nonnegative integer for each x € N;
2° h(z) = 0;
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3° for each ye N, y + z there exists exactly one x such that [x, vley and
h(x) = h(y) — 1.

This relation  has the property that whenever y e N, y #+ z then there exists
a unique sequence kg, ki, ..., k, of elements in N such that ky = y, k, = z and

[kiv1> kiley, i=0,..,r—1.
The numbers h(y) and r satisfy the relation h(y) = r.

Proof. We shall construct such h and . We put h(z) = 0. Let y + z. It follows
from the irreducibility of ¢ that y e (pj(z) for some positive integer j since otherwise
the set P consisting of all elements of the sets ¢(z), i = 0,1, ... which satisfies
¢(P) = P would be nonvoid and different from N. We define then h(y) as the least
integer j with that property. To construct ¥, denote first by N;, j = 0, 1, ... the set
of all elements z of N with h(z) = j. Assign to each element y % z of N exactly one
pair [x, y] in the following manner: if y € N; then x is one of the elements in N;_,
for which [x, y] € ¢. All pairs [x, y] for ye N, y # z, form then the relation . It
is obvious that h and ¥ have the properties 1°—3°. To prove the remaining assertions,
observe that k,; is uniquely determined; if k, #+ z, k, is uniquely determined etc.
Since h(ko) = h(y), h(k,) = h(y) — 1 etc., we obtain that this process will stop with
k, = z where r = h(y) since then h(k,) = h(y) — r = 0. The proof is complete.

Let us turn now to the investigation of reducible relations. We shall begin with the
definition:

(2,2) Definition. Let ¢ € G(N). A subset M = N is said to be an irreducible
component of ¢ if the following two conditions are satisfied:

1° the mapping ¢ is irreducible on M (there is no nonvoid proper subset P of M
such that

o(P)n M < (P);

2° M is maximal with respect to property 1°.

2,3) Let C, and C, be irreducible components of ¢. If C; n C, £ O then
C, =C,.

Proof. It suffices to show that ¢ is irreducible on C,; U C,, i.e. satisfies condition 1°
in Definition (2,2). Let P be a non-void proper subset of C, U C, such that ¢(P) n
N (C, U C,) = P. Let us show that either P n C, is a non-void proper subset of C,
or P n C, is a non-void proper subset of C,. Since P = (P n C,) u (P n C,), the
case PN C; = P n C, = Qisimpossible and soisthecase PN C, = C;, PN C, =
=C, Let now PNnC; =0, PN C,=C,. Hence C;nC, =C, n(PnCy) =
= (C; n P) n C, = @ which is a contradiction. The case P " C, = §and P n C, =
= C, is similar. We have thus shown that one of the sets P n C; is a proper non-void
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subset of the corresponding C;. Without loss of generality, assume that 0 & P n
N C, # Cy. Then

(PN C)nCycp(P)nCy=(p(P)n(C,uCy))nCycPnCy,

which is a contradiction with the irreducibility of ¢ on C,. Hence ¢ is irreducible
on C, u C,. The proof is complete.

(2,4) Let M be a class of the equivalence &(¢). Then M is an irreducible com-
ponent of ¢.

Proof. Let P be a non-void subset of M such that ¢(P) n M < P. Let us show
first that the inclusion @(P) n M < P implies ¢(P) n M < P for each natural k.
We prove this by induction. The assertion is true for k = 1 by our assumption. Sup-
pose now that 9(P) n M < P and x € ¢**!(P) n M. Then there exists a p e P and
a y such that x € ¢(y), y € ¢(p). Since [x, p] € &(¢), there exists a nonnegative j
such that p e ¢/(x); hence y e ¢**/(p) so that [x, y]ee(p) and ye M. It follows
that ye (p"(P) N M so that, according to the induction hypothesis, y.€ P. Hence
xe@(y) = o(P)n M < P. Let i e M. Take a p € P. Since [p, i] € &(¢), there exists
an exponent k such that i€ ¢“(p) " M < ¢(P)n M < P. Hence P = M and M
is irreducible. Suppose now that M’ > M, M’ £ M. Let x be a fixed element in M, m
a fixed element in M’ — M. Since M is a class of &(¢) = 1(¢) N ©()", at least one of
the relations [x, m] e ©(¢) and [m, x] € (@) is violated. In the first case, the set
P = (¢°(x) U @' (x) U @*(x) U ...) " M’ does not contain m. Clearly ¢(P) n M’ <
< P so that ¢ is not irreducible on M’. Now let [m, x] € 7(¢) be violated. Then
Q = (¢°(m) U @'(m) U 9*(m) U ...) " M’ does not contain x and ¢(Q) " M’ <
< Q. Hence ¢ is not irreducible on M’ and the proof is complete.

(2,5) Theorem. The set of all irreducible components of @ coincides with the
system of all classes of the equivalence

&(e) = o) n1(o)" .

Proof. It follows from (2,4) that the set & of all classes of the equivalence &(¢) is
contained in the set € of all irreducible components of ¢.

Now let C € . Since the union of the family & equals N, there exists a set E€ &
which intersects C. By Lemma (2,3), C = E and % < &. The proof is complete.

(2,6) Definition. Let ¢ € G(N). Let E be an equivalence on N. We shall denote
by N/E the set of all classes of the equivalence E. If a, b € N/E, we write a € ¢%(b)
if there exists an element x € a and an element y € b such that x € ¢(y). It is easy to
see that ¢F € G(N/E).

We shall prove now a lemma.
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(2,7) Let ¢ € G(N). Then the following three conditions are equivalent:

1° for any x € N and any natural k we have
x 0 Hp(x) = x) = 90,
2° for any x € N and any natural numbers k, m we have

x 0 oMo"(x) - x) =0,
3° &(@) is the identity.

Proof. 1° — 2°. Suppose that condition 1° is satisfied and that x € *(p™(x) — x)
for some x € N. Suppose that m is minimal with respect to this inclusion. It follows
that m = 2. We have x € ¢*(y) where y € ¢™(x) and y is different from x. Further,
there exists a z € ¢(x) such that y e 9™ *(z). Now z must be different from x since
otherwise y € " *(x) — x which contradicts the minimality of m. It follows that
z € ¢(x) — x. At the same time x € ¢*(y) = ¢**™!(z) whence x € ¢**"~(p(x) — x)
which is a contradiction.

2° — 3°. Suppose that [x, y] €&(p) for some x + y. Since [x, y]et(p) and y # x,
we have y € ¢”(x) for some p = 1. Since [y, x] € 7(¢), we have x e ¢%(y) for some
g 2 1. Hence x € ¢%(¢”(x) — x).

3° - 1°. Suppose that ¢(¢) = & and that x € p*(p(x) — x) for some xe N and
some natural k. It follows that x € ¢*(y) for some ye ¢(x) — x. We have thus
y # x and x€¢"(y) so that [y, x]et(p). At the same time ye ¢(x) so that
[x, y] € ©(e). It follows that [x, y] € &(¢) and x =% y which contradicts the assump-
tion &(¢p) = 4.

(2,8) Definition. A relation ¢ € G(N) is said to be weakly acyclic if it satisfies one
of the conditions of the preceding proposition. )

The next step in our considerations will be the proof of the fact that, for each
¢ € G(N), the quotient relation ¢** is weakly acyclic. First of all, we shall need two
simple lemmas.

(2,9) Let ¢ € G(N) and let E be an equivalence relation on N. Then, for each
natural number k,

((Pk)E — ((PE)k .

Proof. We shall use induction. The case k = 1 being obvious, suppose that
(¢%)F = (¢")* and that a e (p**1)F b. It follows that there exist x € a and y € b such
that x € ¢***(y). There exists a z € N with x € ¢(z) and z € ¢*(y). Denote by ¢ the
class of the equivalence E which contains z. We have then a € ¢®c and ce (") b;
according to the induction hypothesis this implies ¢ € (¢*)* b whence a € (F)<*1 p,
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(2,10) Let ¢ € G(N) and let E = &(¢). For each natural number k
(@ < (¢")F U (P )E U ...

Proof. Obvious for k = 1. Suppose the theorem proved for k and let a € (qu)k“ b.
It follows that there exists a ¢ € N/E such that a € ¢®c and ¢ e (¢®)* b. According to
the induction hypothesis this implies ¢ € (¢**™)" b for a suitable m = 0. Hence there
exist elements xea, zec, z'€c and y e b such that x € ¢(z), z’' € ¢**™(y); since
[z, z'] € E = ¢(p), we have z € ¢’(z’) for some j = 0. Taken together, these yield
xe (pj+1(z') - (pj+1+k+m(y) so that

ae ((pk+1+(j+m))E b.

(2,11) Let ¢ € G(N). Let E be the equivalence corresponding to the decomposition
of ¢ into irreducible components, E = ¢(¢). Then ¢* is weakly acyclic.

Proof. Using (2,10), it is easy to show that
1(9%) = U (¢ = U (¢*)* = ((9))" -
k20 k20

To show that ¢ is weakly acyclic, it suffices to prove that &(¢¥) is the identity.
We have the following inclusions:

W(0") 0 (0" = (0") 0 2((¢7)") = (2(0))" 0 ((0")" -

If we show that (1(¢))* n (1(¢"))* < (1(¢) N (¢™))" the proof will be complete
since (1(¢) N ©(@"))E = &(¢)E and this is the identity. To prove the inclusion (z(¢))* N
A (d@"))E = (x(@) N 1(97))E consider a pair [a, b] € («(@))* 0 (x(¢"))". It follows
that there exist elements x € @ and y € b such that [x, y] € @(¢); further, there exist
elements x’ € a and )’ € b such that [y, x'] € t(p). We have thus [y, y'] e e(9) =
< 1), [y, x] e (e), [x', x] € &(p) = ©(¢) whence [y, x] € 7(¢), the relation 7(¢)
being transitive. It follows that [x, y] € &(¢) so that [a, b] € (¢(@))* so that a = b.
The proof is complete.

(2,12) Theorem. Let M be a finite set and let ¢ € G(M) be weakly acyclic. Then
the elements of M may be arranged in a sequence my, ..., m, in such a way that
i < j implies m; non € ¢(m,).

Proof. I. Observe first that for a weakly acyclic ¢ there exists at least one element m
such that mnone ¢(M — m). To see that suppose that me (M — m) for all
me M. Choose an element p, € M. There exists a sequence p;, P3, ..., such that
pi-1€¢(p;) and p;—y + p;, i =1,2,... Since M is finite, there exists an index j
such that p; = p, for some k > j. Since p; + p)-+1, we have k > j + 1. Now p; €
€ ¢(p;+1)sothat[p;.,, p;] e 7(¢); on the other hand, Piei€@ i Y (py) = @71(p))
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whence [p;, p;+1] € ©(¢). We have thus both [p;. 1, p;] € W(¢) and [p;, p;.,] er(o).
This is a contradiction with the assumption that ¢ is weakly acyclic.

II. The proof will proceed by induction with respect to the number r of elements
in M. If r = 1, the assertion is true. Let now r > 1 and suppose the theorem proved
for r — 1. According to I, there exists an m such that m non € (o(M - m) Denote
by M’ the set M — m and by ¢’ the relation induced on M’ by ¢. Clearly ¢’ is weakly
acyclic so that the elements of M’ may be arranged in a sequence my, ..., m,_, in such
a way that i < j implies m; non € ¢'(m;). Define m, = m. It is easy to see that this
ordering of M satisfies the conditions of the theorem. The proof is complete.

(2,13) Theorem. Let ¢ € G(N). “Then the set of all irreducible components of ¢
may be arranged in a sequence M, ..., M, in such a way that i < j implies (p(Mi) N

Proof. An immediate consequence of the preceding two propositions.

Let us conclude this section with some terminological conventions concerning the
combinatorial structure of matrices.

If A is a matrix of order n (a function on N x N), we shall assign to it a certain
@ € G(N) (a subset of N x N) by the following postulate: [i, k] € ¢ if and only if
ay + 0. This ¢ will be called the combinatorial structure of A. It is éasy to see that
the matrix A is irreducible (indecomposable) if and only if the corresponding ¢ is
irreducible. According to (2,13), the irreducible components of ¢ may be arranged
in a sequence My, ..., M, in such a way that i < j implies ¢(M;) n M; = 0. This
has the following meaning for the matrix A: If pe M;, ge M}, i < j then a,, = 0,
i.e. A can be brought to the block triangular form by such a permutation of rows and
columns in which the indices of M; follow the indices of M; for j > i. The diagonal
blocks of A are then irreducible. In the next section, we shall use the obvious fact

that det A is equal to the product [ | det 4(M;). The matrix A, = (d,,) with d,, = a,,
i=1

if p, q belong to the same irreducible component of ¢, d,, = 0 otherwise, will be
called the block-diagonal part of 4. The sets M; will be shortly called irreducible
components of the matrix A. We shall also speak about the decomposition of the
matrix A into irreducible components by which we mean the decomposition of the

corresponding ¢.

3. Cyclic products. In this section we shall define a new inequality for matrices.
Instead of comparing them term by term we shall compare cyclic products. It is
immediate that this inequality is invariant with respect to diagonal equivalence. The
main result consists in showing that, under certain hypotheses, this new inequality
reduces to the ordinary one after suitable diagonal transformations.

Let us begin with some terminology. An arbitrary sequence of indices iy, ..., i,, €
€N, m > 1 will be called a path. If i; = i, this path will be called a cycle, a cycle
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(il, e i,,,) is said to be simple if the indices iy,..., i,_, are different from each
other. If B is a matrix and P a path, P = (iy, ..., i,,), we define B(P) as the product

B(P) = bi,i,biyiy - bi,,._,i,,.-

If P is a cycle, the product B(P) will be called a cyclic product. If P, and P, are two
paths such that the end point of P; coincides with the initial point of P, we define
PP, as the path iy ... ipjy ... jp if Py = (ig, .0 ip)y P2 = (Ji1s -vus fin)-

It follows that, for any matrix B,

B(P1P2) = B(Pl) B(Pz)-

If G € G(N) we shall use the expression ““a path P in G” for paths (iy, ..., i,,) such
that all [ij, i; 1] belong to G. Similarly, if 4 is a matrix, a path in 4 will be one for
which all [i;, i;. ] belong to the ¢ € G(N) corresponding to A. It follows that A(P) =
=+ 0if Pis a path in A4.

(3,1) Definition. If 4 and B are two matrices we write A = B and we say that A4 is
weakly greater than or equal to B if, given any cycle C, both A(C) and B(C) are
real and A(C) = B(C). ,

In particular, it follows from this definition that, for each i, both a;; and b;; are
real and a;; = b;;. :

The inverse relation will be denoted by g .

The relation ; is transitive but not reflexive. The intersection of the relation é

w
and of its inverse will be denoted by =. It is easy to see that = is an equivalence in
the set of all matrices all cyclic products of which are real.

The relation g has the following properties.

B2 IfA i B and D is any nonsingular real diagonal matrix then
AD 2 BD, DAZ DB, AD > DB, DA> BD, D'AD>B, 4> D 'BD.
If4 é B then A(M) é B(M) for each M < N.

Proof. Obvious.

(3,3) Let A and B be complex matrices such that 0 < B é A.If B is irreducible
then there exists a diagonal matrix D such that B < D™1AD.

Moreover, if A itself is real then the matrix D may be chosen real, if A is non-
negative, D may be chosen nonnegative. If M(A) = B, the matrix D may be chosen
in such a manner that M(D) = I.
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Proof. Let B be irreducible. We shall show first that then b, + 0 implies a;, + 0.
This is clear for i = k. If i + k, it follows from the irreducibility of B that there
exists a path P = (k, ..., i) in B. If P' = (i, k), we have 0 < B(PP') £ A(PP') =
= A(P) A(P’) so that a;, = A(P’) % 0.

Denote by C the matrix with elements

ey = bylay if by +0,
¢y =0 if by=0.

It follows that for any cycle P in C (and in B as well) the inequality 0 < C(P) < 1is
satisfied.

We shall construct a matrix D = diag {d 1 <o d,,} satisfying our condition. Define
d, = 1. Let k # 1. Denote by S, the set of all paths (1, ..., k) in C in which every
index occurs once at most. Since Sy is nonvoid, there exists a P € S, such that |C(P)| =
2 |C(P')| for any P’ € S;. Let us show that C(P) is uniquely determined. Assume that
|C(P)| = |C(P,)| for some Py €S,. Since C is irreducible, there exists a path P,
in C with the initial point k and endpoint 1. We have now 0 < C(PP,) £ 1, 0 <
< C(P,P,) = 1 whence

C(P) = C(PP,)/C(P,) = |C(P)| |C(P,)|/C(P,) =
= |C(P1)| IC(P2)|/C(P2) = C(P1P2)/C(P2) = C(Pl)-
This enables us to define d; by d, = C(P). It follows that d;, % 0 so that the matrix
D = diag {d,, ..., d,} is nonsingular.
To show that
0<B<D'AD
or, in  other words,

0<b, <d la,d

u uvv 1

observe that this last inequality is obvious if a,, = 0 or if u = v. Suppose now that
a, +0and u + v. Ifu + 1, d, = C(P) for some P € S,. Hence, if E = (u, v)

|

¢w| = |C(PE)| .
Suppose first that v does not belong to P. Then,
|d,| 2 [C(PE)| = |d.| [c.| -

This inequality is also satisfied if u = 1. Now, if v belongs to P, we can write P =
= P,P, where P, € S,. Hence

|4.] 2 |C(P,)] 2 |C(P1P2E)| = [C(PE)| = |d.| [eu

as well.
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From the inequality
|4.] 2 |d.] [eu
it follows that
0 = byy = |d 7" || |d,] -
Let us show now that

" [l

dvl = du—lauudv s

if a,, = 0 and u + v.

Let first u # 1 # v. As before, let E = (u,v), P = (1, ..., u), d, = C(P). Further,
let P be an arbitrary path in C of the form (v, ..., 1), P, a path in S, such that d, =
= C(P,). Now, PEP being a cycle,

C(PEP) = |C(PEP))|.
By the same reason,
C(PIF) = IC(P1F)|
so that
C(PE)/C(P,) = |C(PE)/C(P,)| .
Hence
ducuvdu_1 = lducuudv_ll

which implies

An easy modification shows that this is true in the case u = 1 or v = 1 as well.
The proof of the first part of the theorem is complete.

To prove the remaining assertions, it suffices to observe that the matrix D defined
above has the mentioned properties.

(3,4) Let Q be a complex irreducible matrix. Then the following conditions are

equivalent:
w

1°0= 0,

2> M(Q) = 0,

3° @ = U™ M(Q) U with M(U) =1,

4° Q = D™ M(Q) D for a nonsingular diagonal D,

57 Q = M(Q).
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w
Proof. If 0 = Q, the cyclic products of Q are real and nonnegative. It follows

immediately that M(Q) § Q. If 2° is satisfied, it follows from (3,3) that there exists
a nonsingular diagonal D such that M(Q) < D~*QD. Hence M(Q) < D™'QD =
= M(D~'QD) = M(D)~* M(Q) M(D). The first and the last matrices in this chain
have the same Perron root. Since M(Q) is irreducible, it follows from (1,1) that
M(Q) = M(D)™* M(Q) M(D) so that M(Q) = D~*QD as well. Now M(Q) being
irreducible, the only diagonal matrices commuting with M(Q) are scalar multiples
of the unit matrix. We may thus suppose that M(D) = I. This proves 3°. The implica-

tion 3° — 4° is formal, 4° — 5° by definition. If 5° is satisfied, we have Q z M(Q)z 0
w
hence Q = 0.
(3,5) Let P and Q be two complex matrices; suppose that Q is irreducible. Then
the following two statements are equivalent:
w
102 Q=P

2° there exist two nonsingular diagonal matrices D, and Dp such that both
D;'QD, and Dy'PDy are real and

0 < D;'QDy < Dy 'PD,.
Proof. Since 0 é 0, it follows from (3,4) that there exists a nonsingular diagonal
matrix D such that M(Q) = D~QD. Since Q é P, we have
D~1QD £ D-'PD
so that
0<M(Q) £ D'PD.

The matrix M (Q) being irreducible it follows from (3,3) that there exists a nonsingular
diagonal D, with

M(Q) < D;'D™*PDD, .
Together with the preceding inequalities this yields
0 <D™ 'QD £ Dy*'D'PDD,

so that it suffices to take Dy = D, Dp = DD,

(3,6) Let P, Q be two matrices such that P = Q. Suppose that one of them is
irreducible. Then P and Q have the same combinatorial structure.

Proof. The relation P £ Q clearly implies M(P) = M(Q). Suppose that Q is
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irreducible. Then M(Q) is irreducible as well and 0 < M(Q) < M(P). 1t follows
from (3,3) that there exists a positive diagonal matrix D with

M(Q)< D *M(P)D.

It follows that g; # O implies p; # 0. In particular, P is irreducible. Using what
has been proved above, it follows that p; =+ 0 implies g, + 0 and the lemma is
established.

(3,7) Let A and B be matrices such that A = B. Then the decompositions of N
into irreducible components with respect to A and B coincide. Moreover, for each
M < N, we have det A(M) = det B(M).

Proof. Let N = N, u ... U N, be the decomposition with respect to A4. It follows

that the matrices A(N;) are irreducible. Further, B(N;) = A(N;) so that B(N,) is
irreducible by (3,6). It follows that, for a fixed i, N; is contained in one irreducible
component M of N with respect to B. The same consideration shows that A(M) is
irreducible so that N; = M. Hence both decompositions coincide. The rest follows
easily from the fact that the determinant may be expressed in terms of the cyclic
products.

(3,8) Let P and Q be two matrices such that at least one of them is irreducible.
Let P = 0. Then the following two statements are equivalent:

1°P 20,
2° there exists a nonsingular diagonal matrix D such that

P=D"1QD.

Moreover, if Q is nonnegative as well, D may be chosen positive. If M(Q) = P,
then D may be chosen with M(D) = I.

Proof. The implication 2° — 1° being obvious, it suffices to prove 1° — 2°,

According to lemma (3,6) both P and Q are irreducible. Since 0 < P _g_ Q and P
irreducible, there exists, by (3,3), a diagonal matrix D such that

P<D'QD.
Further, we have
0<DQDZQZP

and D™1QD is irreducible. It follows, again from (3,3), that there exists a diagonal D,
with D™1QD £ Dy 'PD,. Combining this with the preceding inequalities, we obtain

0<PZD'QD £ D;*PD,.
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It follows from (1,1) that P = Dg'PD, so that P — D~1QD and the proof is com-
plete.

If Q itself is nonnegative then, according to the corresponding assertion in (3,3),
D may be chosen positive.

If M(Q) = P then the last assertion in (3,3) yields that D may be chosen with
M(D) =1.

(3,9) Let P and Q be matrices such that Q is irreducible and 0 < P < Q. If
P Z Qthen P = Q.
Proof. According to (3,8), there exists a diagonal matrix D such that

P=D"10D.

Hence p(P) = p(Q) so that, by (1,1), P = Q.
In the following theorems complex matrices with real cyclic products will be char-
acterized.

(3,10) Theorem. Let A be an irreducible complex matrix. Then the following
properties of A are equivalent:

1° All cyclic products of A are real.
2° There exists a diagonal matrix D with M(D) = I and a real matrix R such that

A=D"'RD.
3° There exists a real matrix R such that
A=R.
4° A= 4.

Proof. Assume 1° and let us show that 2° is fulfilled. Denote by ¢ the relation
in G(N) corresponding to 4. Since A is irreducible, it follows from (2,1) that there
exists a relation ¢; < ¢ such that to each ye N, y + 1 there is exactly one xe N
such that [x, y] € ¢, while [x, 1] ¢ ¢, for any x € N. Let h, be the corresponding
function on N from (2,1). If we apply the same theorem to AT and transpose the
resulting relation, it follows that there exists a relation ¢, c ¢ such that for each
y €N, y # 1 there is exactly one x € N such that [y, x] € ¢, while [1, x] ¢ ¢, for any
x € N. Let h, be the corresponding function on N from (2,1).

We shall define step by step the diagonal elements d; of D and elements r; of R in
such a manner that the conditions

(a) |di| =1 for ieN,

(b) ry is real for i, ke N,

(c) ay = d;'ryd,fori,keN
will be satisfied.
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Putd, = 1 and r,, = ai; for all i € N. To define d; for j > 1 and r;; for (i, j) € @1,
we shall use induction with respect to hy(j). If hy(j) = 1 then [1, j] € ¢, and we put

riy=layl, d;j=ayri}.

If hy(j) > 1 and d, as well as r;, has already been defined whenever h,(k) < h,(j)
and (i, k) € ¢,, we put for [m, j] e ¢,

= - -1
Py = |am] s d; = dpayraj -

This can be done since hy(m) < h,(j).

The definition of r,, for p + g and [p, q] ¢ ¢, as well as the checking of (b) and (c)
will proceed by induction with respect to h,(q). If h,(q) = 0, hence g = 1, we define

rp1 = G, A(P)/R(P)
where P is the unique path in ¢, from 1 to p. It follows from the construction of R(P)

that
A(PYR(P) = d,

so that (c) as well as (b) is satisfied for i = p, k = 1.

Suppose now that [p, g] ¢ ¢, that hy(q) > 0 and that all r;; for which h,(j) <
< h,(g) have already been defined. Then we put

T'pg = Gy A(Py) A(P;) (R(P,) R(P,))™*

where P, is the unique path in ¢, from 1 to p and P, the unique path in ¢, from g
to 1. This is possible since all elements in R(P,) have already been defined. However,
[, q] forms together with P, and P, a cycle in G. Since a,, A(P;) A(P,) is real and
R(P,), R(P,) are real, r,, is real as well. Further,

A(P))/R(P,) = d,, A(P,)R(P,) =d,’

so that (c) is fulfilled for i = p, k = q.
This completes the proof of the implication 1° — 2°, The proof of 2° — 3° as well

as of 3° > 4° and 4° — 1° is an immediate consequence of the definition of =.

(3,11) Let P and Q be two matrices such that at least one of them is irreducible.
Then the following two statements are equivalent:

1°P = Q;

2° there exists a real matrix R such that both P and Q are diagonally similar
to R.

Proof. The implication 2° — 1° being immediate, it suffices to prove 1° — 2°.
If 1° is satisfied, P and Q have the same combinatorial structure by (3,6). According
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to (3,10) there exist real matrices R and S and diagonal matrices D, and D, such that
P = D;'RD, and Q = D;'SD,. The matrices R and S have also the same combina-
torial structure. Denote by B the matrix defined as follows:

by = rufsy for s; +0,
bik = 0 fOI‘ Sik = 0 .

According to our assumption 1° the cyclic products of the matrix B are equal either
to 1 or 0. Denote by H the matrix for which h;, = 1if g3 + 0and h;, = 0 otherwise.

Clearly B = H so that there exists, by (3.8), a diagonal D with B = D™'HD. It
follows that r;, = s;d; 'd, whenever s; & 0. We have thus

P=D{'RD,, Q= D;'D(D"'SD)D™*D, = D;'DRD'D,.
The proof is complete.

(3,12) Let P and Q be two matrices. Then the following two statements are
equivalent:
1° Py

2° P and Q have the same decomposition into irreducible components and there
exists a real matrix R such that both Py, and Q, are diagonally similar to R;
here, Py and Q, are the block diagonal parts of P and Q.

~ Proof. A consequence of (3,7) and (3,11).

(3,13) Corollary. Let P and Q be two matrices such that P = Q. If one of the
matrices P, Q is nonsingular then so is the other and P™* Z Q~1,

Proof. The first part follows from (3,7). Let P™* exist and let the block diagonal
parts P and § be diagonally similar to a real matrix R. Then R~ exists and all the
three matrices P, Q and R have the same decomposition into irreducible components.
The inverse matrices P~* and Q~* have then also the property that their block diago-

nal parts are diagonally similar to R™*. By (3,12), P~! Z Q™' and the proof is
complete.

4. Inequalities for determinants. Now we are ready to attack the main problem.

(4,1) Let A and B be matrices such that A > 0 and M(B) é A. Then |Bl, £ p(4).
If B is irreducible and p(A) € o(B) then B = A.

Proof. Let N = N, u ... U N, be the decomposition into irreducible components
with respect to B. Using (1,1) it is easy to see that p(4(N;)) £ p(4) for each i. Since
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B|, = max |B(N )|.» the first part of the theorem will be proved if we show that
[B(N:)|s < P(AN })) for each i.

Let i be fixed. Observe first that M(B) < A implies M(B(N) = A(N)) by (3,2)
By (3,3), there exists a diagonal matrix D; such that 0 < D;* M(B(Ni)) D,< A(N,).
Hence

BV, < [M(BV)), = |7 M(BN) P, = p(4(N)
by (L,1).
" Suppose now that B is irreducible and p(4) € (B).

Since M(B) ; A, it follows from (3,3) that there exists a positive diagonal matrix D
such that

D*M(B)D=A.
If we write C = D~ 'BD, we have
0<M(C)=D"'MB)D< A
and
|Bl, = [Cl, = p(M(C)) < p(4) = |B|, .

It follows from (1,1) that M(C) = A and that there exists a diagonal matrix G and
a complex unit ¢ such that

G~ 1CG = ¢4 whence ¢4 = G 'D7'BDG.

Since p(A) € 6(B) = o(C) it follows that & p(4) € o(A4). If h is the index of imprimi-
tivity of A4, we have ¢" = 1. (See [7].) Since the lengths of all cycles in A are divisible

by h we have finally B = A.

(4,2) Theorem. Let A and B be matrices such that A = 0 and M(B) é A. Let
|4], = p(4) < 1. Then

|det (I — B)| = det (I — A4).

If p(A) < 1 then equality is attained if and only if B = A.

If p(A) = 1, then the following conditions are equivalent:

1° equality is attained (so that both determinants are zero);

2° there exists an irreducible component M of A such that p(A(M)) =1 and
B(p) = A(M);

3° there exists an M which is an irreducible component for both A and B and
p(4(M)) = 1, B(M) = A(M).
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- In particular, if A (or B) is irreducible then equality is attained if and only if
B Z A.

Proof. Consider first the case p(4) < 1. Since M(B) é A it follows from (4,1)
that |B|, < p(4) < 1. Hence the series

‘ log(I — B) = — (a;B + a,B> + a3B* +..))

is convergent where a; = 1/i. We note that a; > Ofori = 1,2, ...

lIA=

Let s be a natural number and let k4, ..., k, be arbitrary indices in N. Since M(B)
é A, we have
1) Re B(ky, ..., kg, ki) S |B(ky, ..., kg, kq)| < A(ky, ..., ks Ky)
Further, let us recall that, for each s,

trB = Y B(ky,..., kyky).
ks

Kiseees
Using these facts, we obtain
|det (I — B)| = |exp (— tr (a;B + a,B* + ...))| =
=exp(—Retr(a;B + a,B> + ...)) =

.....

.....

=exp (—tr(a;4 + a,4% + ...)) = det(I — 4).

Suppose now that |det (I — B)| = det (I — A). It follows from the preceding chain
of inequalities, from the fact that a; > 0 and from the inequalities (1), that

e

Re B(ky, ..., ks kl) = ]B(kl, ceu kg k1)| = A(ky, ..., ks, kl)
for each finite sequence k4, ..., k,, so that

0 é B(kl, ooy ks, kl) = A(kl, ey ks, kl) .
Hence

0SB2A.

Let us take up the case p(4) = 1 and prove now the equivalence of conditions 1°,
2° and 3°. The implication 3° — 2° being obvious assume 2° and let us prove 1°,
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Since M(B) < A the decomposition of B into irreducible components is a refinement
of the decomposition of 4. Since A(M) is irreducible and B(M) £ A(M), B(M) is
irreducible as well so that M is also an irreducible component for B.

Now it suffices to show that I — B(M) is singular. This, however, follows from

B(M) = A(M) whence
det (I — B(M)) = det (I — A(M)) =0.

It remains to prove the implication 1° — 3°,

Suppose that |det (I — B)| = det (I — 4) = 0. Let N, U ... U N, be the decom-
position into irreducible components with respect to B. Since det (I — B) equals the
product []det (I — B(N))), it follows that there exists a component H such that
det (I — B(H)) = 0. We intend to show that H is also an irreducible component with
respect to A and that det (I — A(H)) = 0. Since M(B(H)) < A(H) and p(A(H)) <
< p(4) £ 1it follows from the first part of the theorem that

0 = |det (I — B(H))| = det (I — A(H))2 0.

Hence det (I — A(H)) = 0. According to (3,3), A(H) is irreducible. Denote by M’
the irreducible component of 4 which contains H. Suppose that M’ + H. The matrix
I — A(M’) belongs to K, since p(A(M’)) < 1. Since I — A(M’) is irreducible, it
follows from (1,2) that det (I — 4(M)) > 0 which is a contradiction.

We have thus shown that 1 = p(A(H)) belongs to o(B(H)). By (4,1), it follows
that B(H) = A(H). The proof is complete.

(4,3) Let A and B be matrices such that A = 0 and M(B) < A. Let |A|, = p(4) <
< 1. Then

|det (I — B)| = det (I — 4).
If Aisirreducible then equality is attained if and only if

M(B) = 4
and
B = F~'AF

where F is a diagonal matrix with M(F) = I.

Proof. Since M(B) < A, we have M(B) é A4 so that theorem (4,2) can be applied.
Hence

|det (I — B)| = det (I — 4).
Suppose now that A is irreducible and that equality is attained.
It follows from (4,2) that 0 é B £ A. According to condition 5° of (3,4), B £ M(B)
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so that M(B) = A. Since M(B) = A as well, it follows from (3,9) that M(B) = A.
According to (3,8), B = F~'AF where F is a diagonal matrix with M(F) = I. The
rest is easy. :

(4,4) Let P and Q be two matrices such that P is nonnegative and M(Q) é P.
Then

1° 10|, < p(P);

2° if P is irreducible then |Q|, = p(P) if and only if there exists a nonsingular
diagonal matrix D and a number ¢ with |e| = 1 such that Q = eD~'PD.

Proof. The first part follows immediately from (4,1).

To prove 2°, suppose that P is irreducible. It suffices to prove the only if part.
Accordingly, let |Q|, = p(P). The matrix P being irreducible, p(P) > 0. Denote by A
the matrix (1/p(P)) P, by B the matrix (1/4) @ where 4 is an eigenvalue of Q such
that |1 = |Q],.

From 0 < M(Q) < Pt follows that 0 < M(B) < A. At the same time det (I -
— B) = det (I — A) = 0 and p(4) = 1. Since P is irreducible, 4 is irreducible as
well so that, by (4,2), we have 0 < B % A. 1t follows from (3.8) that 4 = D™'BD
for a suitable nonsingular diagonal matrix D. Hence Q = eDPD ™! where ¢ = A/p(P)
is of modulus 1.

The main result forms a strengthening of a well known comparison theorem due
to Koteljanskij [4]. If U is a complex matrix and V a (real) matrix, Vin K, such that
|uy| = v;; and |uy| < |va] for i + k then |det U| = det V. We prove this under
weaker hypotheses and present a complete discussion of the case of equality. To
simplify notation, we shall use the following abbreviations: if A is a matrix, we
write AP and AY for the diagonal and off-diagonal parts of A4 respectively.

(4,5) Theorem. Let U be a complex matrix and let V be a matrix in K,. Suppose
that
w
M(U®) z M(V"), M(U") < M(VM).
Then
[det U| = det V.

Denote by U, and V, the block-diagonal parts of U and V respectively correspon-
ding to the decompositions into irreducible components.
If det V = O then the following conditions are equivalent:

1° |det U| = det V;
2° the decompositions of U and V into irreducible components coincide and

U, = D,V,D,
for a suitable pair of diagonal matrices Dy and D, such that M(D,Dz) =1
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Moreover, if M(UY) < M(V"), the matrices D; and D, may be chosen with
M(D,) = M(D,) = 1.
If det V = O then the following conditions are equivalent:

1° |det U| = det V;
2° there exists an M which is an irreducible component for both V and U such
that det V(M) = 0 and

U(M) = D, V(M) D,
for suitable diagonal matrices D, and D, such that M(D,D,) = I.

Moreover, if M(UY) < M(V™), the matrices Dy and D, may be chosen with
M(Dy) = M(D) = L.

Proof. Define the matrices A and B by the formulas
[—-B=(U""'U, I-A=D"'V
where D = M(UP).
It follows that by; = 0 and a;; = 1 — (v;y/|us]) = 050 that 4 = 0. Since M(UY) <
é M(V™), we have obviously M(B) é A.
Since Ve Ko, I — A belongs to K, as well so that p(4) < 1. By (4,2), we have
|det (I — B)| = det (I — A)
whence
|det (UP)™* U| = det D™V
Since |det UP| = det D, this implies
|det U| = det V.

To investigate the case of equality, let us distinguish two cases. First, let det V & 0
so that p(4) < 1. Assume that

det U| = det V.
It follows that
|det (I — B)| = det (I — A).

w
By (4,2), 0 < B = A. From (3,12) it follows that the matrices A4 and B have the
same decompositions into irreducible components and, for some diagonal matrix F,
we have

By = F™*A,F
where A, B, are the corresponding block diagonal parts of 4 and B. Now,

(UP)*Uy=I-By=F*(I— Ay)F = F "D 'V,F
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whence
U, = UPF~1D"1V,F .
1t suffices therefore to take D, = UPF~*D"! and D, = F.

Moreover, if M(U") < M(VY), it follows that M(B) < A and M(B,) < 4, as
well. By (3,9), M(B,) = 4, so that, by (3,8), F can be chosen in the manner that
M(F) = I. If we take D, and D, as above, we shall have M(D,) = M(D,) =1I as
asserted.

The converse implication is obvious.

Assume now that det ¥ = 0 so that p(4) = 1. Since the implication 2° - 1° is
obvious, assume that 1° is fulfilled. Then

det (I — B) = det(I — 4) = 0.

According to (4,2), there exists an M which is an irreducible component for both 4
and B such that p(4(M)) = 1 and B(M) = A(M). Hence

I — B(M) =1 — A(M)
so that
(UP(M))™* U(M) = (M(UP(M))™* V(M) -
By (3,11), there exists a diagonal matrix D, such that
(U(M))™H U(M) = D3 (M(UP(M))™* V(M) D; .
Hence
U(M) = D, V(M) D,
where
= UP(v) D5 (MU

Since M(D,D,) = I(M) 2° is fulfilled.

If M(U") < M(V™), we have M(B) < A so  that M(B(M)) £ A(M). Since
p(A(M)) = |B(M)| = 1, it follows from (1,1) that M(B(M)) = A(M). On the other
hand, B(M) = A(M) = M(B(M)) implies, by (3,4), the existence of a diagonal
matrix U with M(U) = I such that B(M) = U™ *M(B(M)) U = U~*4(M) U. Hence

' 1 - B(M)=U"YI- AM)U,
, (U(M))™! UM) = U (M(UPM)))™ V(M) U
so tha

o U(M) = D, V(M) D,
where

D, = UT'UP(M) M(UP(M)))™*,
D,=U.
Since M(D4) = M(D,) = I, the proof is complete.
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(4,6) Corollary. Let Ae H,. Then
|det A| = det H(A) .
Let A be irreducible. Then, equality is attained if and only if
A = D, H(A) D,

for some matrices Dy, D, with M(D,) = M(D,) =I.
If A is reducible and nonsingular then equality is attained if and only if

Ao = Do, H(Ao) Dy,

for some matrices Doy, Do, with M(Dy;) = M(Dy,) = I where A, is the block
diagonal part of A.

If A is reducible and singular then equality is attained if and only if there exists
an irreducible component M and matrices Dy, D, such that M(D,) = M(D,) =
= I(M) and

A(M) = D H(A(M)) D, .

Proof. It suffices to take U = 4, V = H(A) in theorem (4,5).
Let us conclude with an easy consequence of the preceding theorem.

(4,7) Corollary. Let A € H,, be irreducible. Then all proper principal minors of A
are different from zero.

Proof. An immediate consequence of (4,5) and (1,2).
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