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COUNTABLY COMPACT AND PSEUDOCOMPACT PRODUCTS
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(Received April 18, 1968)

Following FroLIk we use € [resp. B] to denote the class of spaces X such that
X x Y countably compact [resp. pseudocompact] whenever Y is. In the first section
we show that countably compact k-spaces (indeed, countably compact spaces in which
each non-P-point is a k-point) are in €. Corresponding results for pseudocompact
spaces are given in the second section and in the third section we prove that the
class B is closed under arbitrary products.

1. COUNTABLY COMPACT SPACES

In this section, all hypothesized spaces are assumed to be T;. Recall that a space X
is called a k-space provided each subset of X which meets every compact set in a rela-
tively closed set is itself closed, and that associated with each space X there is a unique
k-space kX having the same underlying set and the same compact sets as X. (The
space kX is formed by adjoining to the topology on X all those subsets whose comple-
ments meet each compact set in a relatively closed set.) When X is a T;-space, kX is
also a Ty-space; in fact, the identity map from kX to X is always continuous.

Let €* denote the class of spaces X with the property: Each infinite subset of X
meets some compact subset of X in an infinite set. FROLIK shows in [4] that the class
of completely regular spaces in €* is precisely the class, Py, of spaces each closed
subspace of which is in 9. Thus our first result implies that P = € N PB. The con-
tainment is proper: this is shown, using the continuum hypothesis, in [6]; for an ‘
example which does not use the continuum hypothesis, let X be a space in €\P ([6]
also contains a construction of such a space and apply the construction we give in
2.3. The resulting space, Y, is clearly in € n B but not Py.

1.1. Theorem. If X is in €* and Y is countably compact then X x Y is countably
compact.

1) This paper is an outgrowth of a pair of results in the author’s Ph. D. disseration, which was
written at the University of Rochester under the direction of Professor W. W. COMFORT.
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Proof. Suppose X x Y contains a countably infinite closed discrete subset
{(x,y,)} let K be a compact subset of X such that K n {x,} = {x,,} is infinite ({x,}
must be infinite since Yis countably compact) and note that since K x Yis countably
compact, {x,,, y,,)} must have a cluster point.

The value of the theorem above derives from the fact that many common countably
compact spaces are in €%, as the next theorem shows. Since sequential spaces (as well
as Frechet spaces and locally compact spaces) are k-spaces, Theorems 1.1 and 1.2
combine to generalize Corollary 1.10.1 of [2].

1.2. Theorem. A space X is in €% if and only if kX is countably compact. Thus
each countably compact k-space is in €%,

Proof. If kX is countably compact, then any countable subset which meets each
compact set in only finitely many points must be closed and hence, since each count-
able closed set is compact, finite. Conversely if kX contains an infinite closed discrete
subspace D, then D n K must be finite for each compact subset K of X.

We call a point x in X a k-point if each open subset of kX which contains x is
a neighborhood of x. Clearly X is a k-space if and only if each point in X is a k-point.
Recall that a point x in X is called a P-point if each G; containing x is a neigh-
borhood of x. The following result should be compared with Tamano’s Theorem 2
of [8] or our Theorem 2.2.

1.3. Corollary. If X is countably compact and each point of X is either a P-point
or a k-point then X is in €%,

Proof. If N is a countable subset of X whose intersection with each compact set
is finite, then N is closed (X\N is a beighbourhood of each k-point and no P-point
in X\N can be in the closure of N) and therefore finite.

2. PSEUDOCOMPACT SPACES

Henceforth hypothesized spaces are assumed to be completely regular (HausdorfF).
A k-space X is characterized by the propety: A function with domain X is continuous
if its restriction to each compact subset of X is continuous. A space is called a kg-space
if it has this property for real-valued functions, or equivalently, for functions with
completely regular range. Associated with each (completely regular) space X there is
a unique (completely regular) kg-space, ki X having the same underlying set and the
same compact subsets as X. (The space kX has the smallest topology making con-
tinuous each real-valued function on X whose restriction to compact subsets is
continuous.) In general, the set-identity maps: kX — kg X — X are continuous but not
open; that is, X need not be a kg-space and kX need not be completely regular.

A reasonable pseudocompact analog of the spaces considered in section 1 are the
spaces with the property: Each infinite collection of disjoint open sets has an infinite
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subcollection each of which meets some fixed compact set. We denote the class of
spaces with this peoperty as PB*. Frolik studies this class briefly in [4], where he
shows that * < B. While we have not been able to decide if * is the class of
spaces X such that kzX is pseudocompact, it is true, as the next theorem shows, that X
is in P* when kX is pseudocompact. Thus pseudocompact spaces which are locally
compact, or Frechet, or sequential, etc., are in P*.

2.1. Theorem. A kg-space is pseudocompact if and only if it is in B*. Thus if kX
is pseudocompact, X is in P*.

Proof. Clearly any space in B* is pseudocompact. Suppose X is a kg-space which
is not in P*, and let {U,} be a countable collection of disjoint open subsets of X such
that for each compact K < X, K n U, = 0 with only finitely many exceptions. For
each n let f, be a continuous real-valued function which maps X\U, to zero and some
point in U, to n, and set f = ) f,. Then f is continuous on compact sets, hence con-

tinuous, and f is unbounded so X is not pseudocompact. The final statement follows
from the fact that continuous (completely regular) images of members of * are in P*.
Combined with Frolik’s result (that P* = PB) the theorem above generalizes
a number of theorems including Tamano’s result [8, Proposition 2] that each pseudo-
compact k-space is in $B. In the same paper Tamano shows, as Theorem 2, that X is
in P* if each point of X is either a “k-point” or a P-point. Tamano’s definition of
a k-point is less general than ours (his assertion that each point of a k-space is
a “k-point” is erroneous) but the theorem remains true using our definition of k-point.
In fact, calling a point x in X a kg-point if each real-valued function on X which is
continuous on compact sets is continuous at x, we have the following result.

2.2. Theorem. If X is pseudocompact and each point of X is either a P-point or
a kg-point, then X is in P*.

Proof. Suppose X is not in B*, let {U,} be a countable collection of disjoint open
sets only finitely many of which meet any single compact set and construct an un-
bounded function f as in the proof of Theorem 2.1. Since f is continuous on compact
sets it is continuous at each kg-point of X, and f is continuous at P-points in X\U,U,
since it is zero on a neighborhood of such a point. Finally, since f IU,, = f,, f is con-
tinuous on U,U, and therefore f is continuous. Since X is pseudocompact, this is
a contradiction so X is in B*.

Recall that a closed subspace of a k-space is a k-space and that each closed sub-
space of a space in € is in €. The following construction shows that a pseudocompact
kg-space need not be a k-space (and need not be countably compact). It also shows
that a countably compact kg-space need not be in €.

2.3. Construction. Each completely regular space can be embedded as a closed
subspace of a pseudocompact kg-space, and each countably compact completely
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regular space can re embedded as a closed subspace of a countably compact
kg-space.

Proof. Let X be a completely regular space, let ¥, be a cardinal greater than the
cardinality of X such that « > 0 is a non-limit ordinal, let w, be the smallest ordinal
of cardinality ¥, and let Y = (BX x o,) U (X x (o, + 1)) topologized as a sub-
space of fX x (o, + 1).

To see that Y is a pseudocompact kg-space, let f be a real-valued function on Y
whose restriction to each compact subset of Yis continuous; then f is continuous on
the locally compact subspace fX X w, and also, for x in X, on the compact subspaces
{x} x (w, + 1). But since f must be eventually constant on {x} x w, for each x
in fX, and since N, > card (,BX), there exists an o, in w, such that, for each x in X,
f is constant on ({x} x [0, ®,]) N Y. From this it is clear that f is continuous and
bounded. Thus Yis a pseudocompact kg-space.

It remains to show that Y is countably compact if X is. But since the closure of
each countable subset of w, is compact, w, and hence fX X w, is countably compact,
so this is clear.

3. INFINITE PSEUDOCOMPACT PRODUCTS

There are several theorems having the form: A product of pseudocompact spaces is
pseudocompact if all but one of the factors has Q. For instance, [5, Theorem 4]
with @ = “locally compact™ or Q = “each point is either a P-point or has a count-
able neighbourhood base” and [7, Theorem 2] with Q = “sequentially compact”.
Restating these theorems as: Each product of spaces having Q is in P, we see that
the best possible result of this type is:

3.1. Theorem. The class B is closed under arbitrary products.

The proof of this theorem will use Frolik’s characterization [4, Theorem 3.6] of
members of P: A space X is in P if and only if each infinite disjoint family of non-
empty open subsets of X contains an infinite subfamily {U,,} which satisfies (oc),
where («) is the condition: For each filter & consisting of infinite subsets of N,

Nc(UU,)=*0.

N’e® neN’
We will also use the following observations.

3.2. Lemma. Let {U, : n € N} be a family of subsets of X, with multiple indexing
allowed.

(i) If {U,} satisfies («), then so does each subfamily {U,, :neN'} for N N
infinite.
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(ii) If {U,} satisfies (a), if S is any finite collection of subsets of X and if {S,} is
any indexing of {U, U S} by N, then {S,} satisfies ().
(iii) If @ is a filter of infinite subsets of N and x is in the closure of J U, for

neN’
each N' in @, and if {V,} is a family of subsets of a space Y which satisfies («), then
there exists a point y in Y such that (x, y) is in the closure of U U, x V, for each N’
in ®. neN”
(iv) If X is in B and each U, is nonempty and open, then for some infinite N' = N,
{U, : ne N'} satisfies (o).

Proof. Parts (i) and (i) are trivial. For (iii), let # be a neighborhood base for x
and let ¢ = {S(B,N'):Be %, N'e ®} where S(B,N')={neN :Bn U, + 0}.
Evidently @’ is a filter consisting of infinite subsets of N, so there exists a point y in Y
which is in the closure of |J ¥, for each S in ¢’. But then for N’ in @, (x, y) is in the

neS

closure of U U, x V, since for B x B’ a neighborhood of (x, y) with B in 4%,

neN’
B’ AV, % 0 for some n in S(B, N') and hence (B x B') n (U, x V,) + 0.

To prove (iv), choose x; in U; = U, ; if each neighborhood of x; meets all but
finitely many of the U,, we are done; otherwise there exists an open neighborhood
V, € U, of x, and an infinite subset N, of N such that V; n U, = 0 for each nin N,.
Proceeding inductively, choose n, in N, _,, and x, in U, . Either each neighborhood
of x, meets all but finitely many of the sets U, with n in N, _, or there exists an open
neighborhood V; € U,, of x, and an infinite subset N, of N, _ suchthat ¥, n U, = 0
for each n in N. If the induction continues, we get an infinite disjoint family {V,} of
nonempty sets. Since X is in B, some infinite subfamily of {V,,}, and hence some
infinite subfamily of {U,,} must satisfy («).

Proof of Theorem 3.1. Since a product space is pseudocompact if and only if
each’ of its countable subproducts is pseudocompact [5, page 370], a product space
is in P if and only if each of its countable subproducts is in . Thus it suffices to
consider a countable product, say X = []X;, of members of .

1

Let 2 be any infinite collection of nonempty open subsets of X; we may suppose
that 9 = {U,} where each U, = [JU; with every U; open and, for each n, all but

finitely many of them equal to X ;. Do so.

Using part (iv) of the lemma, choose infinite subsets N; of N with N; € N;_, such
that {U, : ne N,} satisfies (x). Choose n; in N; and (using part (ii) of the lemma)
assume that for j < i, n; is in N;. To see that {U,, : i € N} satisfies (o), let & be any
filter consisting of infinite subsets of N and choose, inductively, x, in X, so that

k
(%4 -, X) Is in the closure of J [ U}, for each N’ in @. (This can be done by part
jeN’ i=1
(ii) of the lemma.) Then for x the point (x;), x is in the closure of U U,, for each N’
in 0. JeN?
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In view of Theorem 3.1 and the difficulty one usually experiences in trying to sue
Frolik’s characterization of members of f to determine if a given space is in B, it is
reasonable to ask: Is P the class of products of some conveniently describable sub-
class of B? An obvious candidate for the “conveniently describable subclass™ is B*;
but as we shall see B* is itself closed under products. To show this we need the follow-
ing result.

3.3. Lemma. A space X is in P* if and only if for each collection {U, : ne N}
of nonempty open subsets of X, some compact subset of X meets U, for infinitely
many n. »

Proof. That spaces with this property are in §$* is trivial, so suppose X is in P*
and let {U,:n eN} be any countable collection of nonempty open subsets of X.
Choose open sets V, with cl ¥, < U, and, without loss of generality, suppose that

N V, = 0 for each m. If for some m and each n > m, N\ V; + 0, then we may sup-

n>m i=m

pose that for some n; > m W; = int (V,,\V,,) is not empty (since otherwise a point
in ¥,, would be in the closure of each V, for n = m and would therefore be in infinitely
many of the U,) and similarly that for n, < n, < ny... W; =int(¥,,_\V,,) is
nonempty. Since X has P*, some compact subset of X meets infinitely many of the
sets W; and hence infinitely many of the U,. On the other hand, if for each m there

n
exists an n > m such that () ¥; = 0, then there exists a smallest such n, say n(m),
n(1)—1 e n(n(1))—1
and the sets W, = N V;,, W, = [\ V, etc. are disjoint, so again there exists
i=1 i=n(1) N
a compact subset of X which meets infinitely many of the W, and hence infinitely many

of the U,,.

3.4. Theorem. The class B* is closed under arbitrary products.

Proof. Since the defining property of * need involve only countably many basic
open sets, and hence only countably many coordinants, it suffices to consider the
case X = [[X, with each X, in P*. Let {U,,, :meN} be a countable family of non-

empty open subsets of X, say U,, = [[U} with each U} open and, inductively, choose
N, € N,_, and compact K, € X, such that for me N,, Uy n K, & 0. Choose n;
in N; and x;; in UY and set K} = K; U {x;;:j < i}. Then K = [[K} is compact
and meets each of the U, so X is in P*.

We might mention that the (possibly improper) subclass of B* consisting of all
spaces X for which kzX is pseudocompact is also closed under arbitrary products,
as is the class of all pseudocompact kg-spaces. The proofs of these results depend
upon a deeper study of kx-spaces than is appropriate to this context, and will be given
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elsewhere. Returning to the problem of representing B as a class of products, we
introduce a subclass of ¥ which is, at least formally, broader than B* and which
may also be considered to be a pseudocompact analog of the spaces considered in
section 1. Let B** denote the class of spaces X with the property: If & is an infinite
family of disjoint nonempty subsets of X, then for some compact subset K of X and
some infinite subfamily 2’ of &, each neighborhood of K meets all but finitely many
of the members of 2’. Our final two results show that ** is a proper subclass of P
and that P** is also closed under arbitrary products.

3.5. Theorem. B* = P** < B and each product of members of P** is in P**.

Proof. That P* < P** is obvious. Also, P** is contained in P since for X in P**
and Y pseudocompact, X x Y is pseudocompact: If {U, x V,} is a collection of
nonempty open subsets of X x Y with {U,,} disjoint, if K is a compact subset of X
each neighborhood of which meets all but finitely many of the U,, and if y is any
cluster point of {V,}, then for some x in K, (x, y) is a cluster point of {U, x V,}
(otherwise K x {y} can be covered by finitely many neighborhoods W; x W;. of
(x; y) such that (U W) n U, = @ whenever (ﬂW) N V, % 0). Finally, that P** is

closed under arbxtrary products follows by a dlagonahzatton argument similar to
that in the proof of 3.1. (Generalizing Glicksberg’s proof of the corresponding result
for pseudocompact products, one sees that it suffices to consider countable products.)

We might mention that the special case of the result PB** = P obtained by re-
placing K by a single point is Theorem 5 of [1]. (Actually, this result is stated for
lightly compact spaces, which are spaces in which each disjoint family of nonempty
open subsets has a cluster point, and with no separation assumptions. However, our
Theorems 3.1 and 3.3, and their proofs, remain true if we drop all separation
assumptions, provided pseudocompact is taken to mean lightly compact and, in 3.1,
P is .replaced by the class of spaces which, except for complete regularity, satisfy
Frolik’s characterization of the completely regular members of ‘B.) :

3.6. Example. P** = P.

We first note that BN\N contains a dense subset P of cardinality 2° such that each
compact subset of P is finite and SN\(N U P) is dense: Assuming the continuum
hypothesis we could take P to be the set of P-points of BN\N; otherwise let P, be
a dense subset of ﬁN\N of cardinality 2° whose complement is also dense, index the
collection of countable subsets of P, whose closures are contained in P, as {C, :
:o€ W} where W is the least ordinal of its cardinality, and choose inductivelly
points p, and p, in P, such that p, is an accumulation point of C, which is not in
U Cy U {pg, ps} while p, is not in {p;: B < a} — this is always possible since

B<a
card (cl C,) = 2° while card W < 2¢. The set P = Po\{p, : «€ W} has the desired
properties.
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Now let I be the unit interval; let S be the set of sequences {s,} in I such that
each s, is rational or each s, is irrational; and, for s = {s,} € S let P, be the copy in
clyrxmy{(s, n) :n €N} of P or BN\(N U P) according as the s, are rational or irra-
tional. Set X = IxN u U P, topologized as a subspace of (I xN). Then X is in P

seS
(indeed, except that we have been more particular about our choice of P, X is Frolik’s
example of a space in P\P*).

To see that X is not in P**, suppose K is a compact subset of X\(I x N) each
neighborhood of which meets all but finitely many of the open sets I x {n} and let
7# 1 B(I x N) - BN be the extension of the projection m:I x N —» N < BN. First
suppose there exists a point x, in P\n#(K); then there exists a closed neighborhood, U,
of n’(K) which does not contain x,. Let U’ be the inverse, under n*, of U; then U’ is
a closed neighborhood of K and for each rational sequence s, P, is not contained
in U’. Tt follows that U’ cannot contain all but finitely many of the terms of any ratio-
nal sequence, which contradicts our assumptions on K. Hence P < n(K), so for
each x in P there exists a sequence of rationals s such that the point in P, cor-
responding to x is in K. But since there are only ¢ rational sequences and K n P is
finite for each rational sequence s, while the cardinality of P is 2, this is impossible.

References

[1] R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr.: On Properties Characterizing Pseudo-
compact Spaces, P.A.M.S. 9 (1958), 500— 506.

[2] S. P. Franklin: Spaces in which sequences suffice, Fund. Math. 57 (1965), 107—116.

[3] Z. Frolik: The topological product of two countably compact spaces, Czech. Math. J. 10 (85)
(1960), 329—338.

[4] Z. Frolik: The topological product of two pseudocompact spaces, Czech. Math. J. 10 (85)
(1960), 339— 348.

[5] 1. Glicksberg: Stone-Cech Compactifications of Products, Trans. Amer. Math. Soc. 90
(1959), 369—382.

[6] Takesi Isiwata: Some Classes of Countably Compact Spaces, Czech. J. Math. 14 (89) (1964),
22—26.

[7]1 R. M. Stephenson, Jr.: Abstract 653— 144, Notices, Amer. Math. Soc. 15 (1968), 119.

[8] H. Tamano: A note on the pseudocompactness of the product of two spaces, Memoirs of the
College of Science, University of Kyoto, Series A, XXXIII (1960), 225—230.

Author’s o-ldress: Worcester, Mass. 01610, U.S.A. (Clark University).

397



		webmaster@dml.cz
	2020-07-02T21:23:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




