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Introduction. The term N-semigroup was first employed in [2] to denote a com-
mutative, archimedean, cancellative, and non-potent semigroup. A commutative
semigroup S is called archimedean if for any a, € € S there exist a positive integer m
and an element € € S such that a™ = Cc. By “non-potent” we mean “without idem-
potent”. Such semigroups have been studied in papers [1], [2], [3], and [4]. In
particular [4] develops a method for representing N-semigroups as the cartesian
product of the additive non-negative integers and an abelian group, with a special
operation defined on this product. This representation will be briefly outlined.

As defined in [4] an index function or I-function is a non-negative integer valued
function defined on all ordered pairs (s, ¢) of the elements of an abelian group G.
The index function satisfies the following:

1. I(s,t) = I(t, s) s, teG.

2. I(s, t) + I(st,r) = I(s, tr) + I(t, r) for all 5,1, 7€ G.

3. For any s € G there exists a positive integer m, which depends on s, that I(s™, s) >
> 0.

4. I(e, €) = 1, where e is the identity of G.

Let J be the non-negative integers, let G be an abelian group, and let I(s, t) be an
I-function for G. The operation on J x G given by:

(1) (i, s)(J, t) = (i +j + I(s, t), st) defines a N-semigroup on J x G.

It is also shown in [4] that given any N-semigroup S, for any a € S there is an abelian
group S¥ and an index function I, both uniquely determined by a, such that S is
isomorphic to J x Sy (with I-function I,). Clearly, there are many distinct such
representations for a given S. It is also shown in [4] that the following is a partial
ordering on any N-semigroup S:

For x, y€ S, a € S and a fixed, one says x <yexEy and there exists a positive
integer n such that x = a"y.
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It is shown in [4] that the < ordering satisfies the ascending chain condition.
a
Elements maximal under the < ordering are said to be prime to a.
a
In the following S is a finitely generated N-semigroup.

1. The % Ordering. Definition 1.1. For x, y € S we have x 3y if and only if either
thereiszeSand y = zx or x = y.
The following is useful.

Lemma 1.2. Let x, z € T and N-semigroup. Then x + xz.

Proof. Suppose x = xz, then by substitution we have x = xz = (xz) z = x(zz)
and cancellation gives z = zz. This contradicts the non-potent property of T.

Lemma 1.3. > is partial ordering of S.

Proof. Forz, x, ye Sif x Y and y 3z then z = yz’, y = xz” and substitution

r

gives z = xz'z” and X%z Ify%x and xZy for sonne x #+ y then x = yz,
y = xz’ and x = xzz’ which is impossible by Lemma 1.2.

Lemma 1.4. The 3 ordering on S satisfies the ascending chain condition.

Proof, Since S is finitely generated we may remove redundant elements from any
finite generating set and obtain {al, Ayy ey a,,} as a minimal generating set. Suppose
distinct x; such that x; S$X2 5 X3 let x; = a%'... a¥, but x, = x,2,, z, €S
and x,z, = a¥'... akn = "R | gl R where K 4k = ky etc. and Kk} is the a;
exponent of x,. Clearly some k; has been reduced. Similarly x, = x;z; and since
the k; are finite and the q; finite in number our chain must terminate.

Elements maximal in the 3 ordering on S are called 7 maximal elements. We
may now show:

Theorem 1.5. The 3 maximal elements form a unique minimal generating set
for S.

Proof. Let {ay, a,, ..., a,} be any finite generating set for S. If x € S is 5 maximal
and x ¢ {a;, a,, ..., a,} then since x = T1a%* either some k; > 1 or k;, k; > 0 for at
least two i, j; i = j. In either case x = a;z for z € S which contradicts the definition
of 7 maximal element. On the other hand if some a; is not 3 maximal then we have
a; = yz for y, z € S. Expressing y, z in terms of the a; we have:

my

— oM
a}- =a; ...4a,

If a; fails to appear in the expression on the right we eliminate a; from the generating
set {a;}. If a; appears we have a; = a;z which contradicts Lemma 1.2.
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Corollary. The 5 maximal elements are maximal in any % ordering as defined
in the Introduction.

2. Normal Standard Elements. The following is required.

Lemma 2.1. S¥ has finite order for any a€ S.

Proof. Let {a;, ..., a,} be a generating set for S. Select any a € S, then a = Ild}".
It is shown in [4] that the order of S is equal to the number of elements in S prime
toa.In [2] p. 10 it is shown that for any x, y € S there are positive integers m, n such
that x™ = y". Thus, for all a;in {a,, ..., a,} there is a maximal positive integer n’ such
that a? is not equal to a times some element of S. Thus, the number of elements
prime to a in S is finite.

We may now make:

Definition 2.2. A normal standard element of S is any a € S such that S¥ has
minimal order.
That there are groups of minimal order is guaranteed by Lemma 2.1.

Definition 2.3. Let S and its corresponding I-function be a representation for S as
defined in the introduction. Choose x € S and let x have representation (p, r) in
terms of S, and I,.. (i.e. x = a"r, h = 0, r e S} (see [4]). We define J(x) as:

3(x) = plSe] + X1 1)
as i ranges over S..
I am indebted to Professor TAMURA for suggesting the following lemma.

Lemma 2.4. For x, y € S, where x = (m, s), y = (n, t) in terms of some S, and its
associated I,, x is prime to y if and only if m < I(t, t™'s).

Proof. Suppose (p, r) € S such that:

(p,7)(n, 1) = (p + n + I(r, 1), rt) = (m, s). By definition we then have r = 1~ 's
and p + n +I(t,t7's) = m. Thus, if m < n + I(t,t™%s), since p is always non-
negative, no such (p, r) can exist.

If m = n + I(t, t™'s) then choosing p = m — (n + I(t, t's)) we have:

(m — (n + I(t, t™1s)), t7's) (n, 1) = (m, s).

One then obtains:

Lemma 2.5. For all x € S, J(x) is the number of elements of S prime to x.

Proof. For any x € S with representation (m, s), x will be prime to y € S, where
y = (n, t), when m < n. There are exactly n|S;| such elements, since by fixing m
and letting n range through Sy, we obtain |S}| elements prime to (n, ). If m = n
then Iz, t7's) > 0, by Lemma 2.4. Indeed, if I,(t, t"'s) = k, then we have (n, a),
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(n+1,a),....,(n + k— 1,a) and only these of the form (m, a), prime to (n, b).

Thus the number of elements prime to (n, t) and where m > n is just Y I(t, t™'s),
as s runs through all S, but this is just Y I(t, i) as i runs through all Sj.

Clearly, the normal standard elements of S are those for which 3(x) is minimal.
To find such elements we may begin with any representation for S. We note that x is
a normal standard element only if, when x is represented as (n, s), n = 0. Thus, if we
construct a tabular representation of I, for S, those elements se S, such that
Y I(t, s) is minimal, as ¢ ranges over S, will give normal standard elements in the
form (0, s). Practically, one examines the rows of the I, table for rows with minimal
sum, one then uses these group elements to form normal standard elements.

One may partially characterize normal standard elements by:

Theorem 2.5. Every normal standard element is a 5 maximal element.

Proof. Let x € S be a normal standard element. Let us represent S by some S
and its 1,. If x = (0, r) in this representation and x is not 5 maximal then (0, r) =
= (0, s) (0, #), and from the definition of the operation S, I(s, t) = 0. Using property

(2) of the definition of I-functions and summing over i€ S, we have: Y I(s, 1) +
+ YI(st, i) =Y I(s, it) + Y I(t, i). I(s, t) = 0 and thus: Y I(r, i) = Y I(s, it) + Y I(t, i).
But Y I(r, i) is minimal and Y I(s, if) = 1 by property (3) of I-functions. This is
clearly a contradiction.

In [2] PETRICH obtains a representation for N-semigroups with two generators.
Using his terminology it is not difficult to show that an N-semigroup with two gene-
rators, in which n; > n,, has two 5 maximal elements but only one normal standard
element. Thus, the converse of Theorem 2.5, is not true.

3. An Isomorphism Theorem. Let S, S’ be two finitely generated N-semigroups.
We then have the following.

Lemma 3.1. Let the mapping H : S — S’ be an isomorphism onto; then, if a€ S,
is a normal standard element, (a)H € S’ is a normal standard element of S', S} is
isomorphic to Siyy and I, is identical to I 4.

Proof. x € S fails to be prime to a if and only if x ="y . a, x = ya. But (x) H =
= (y.a)H = (y)H (a)H. This shows that the number of elements prime to a in S
is not increased by a homomorphism. But an isomorphism onto implies an isomor-
phism H ™! from S’ to S and normal standard elements are preserved. One now need
only note that S} and S(}); are defined by multiplication of elements of S and S’ as
follows. If x, y € S are prime to a then we may represent classes of SF by x and y
and x.y (as elements of S) = z.a". But clearly (x)H . (y)H = (2)H (a)H". We
now note that I(x, y) = n the exponent of a in x . y = z. a". It is now clear that H
preserves the structure of S¥ and the values of I,.

We may now show:
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Theorem 3.2. S is isomorphic onto S’ if and only if S and S’ have a common
representation in terms of a structure group S* and it is corresponding I-function.

Proof. The only if portion of the above is immediate. But if S is isomorphic
onto S’ we may use Lemma 3.1 and any pair of normal standard elements a and (a)H
to obtain a common representation. .

Thus, in the case of finitely generated N-semigroups the general problems of iso-
morphism discussed in [3] may be solved by examining the representations in terms
of normal standard elements. This finite collection of representations may be used
as a canonical set of representations. Then if one has two N-semigroup representations
the method outlined in Section 2 may be used to construct the two sets of normal
standard representations. If these two sets have a non-empty intersection then the
two original N-semigroup representations really represent the same N-semigroup.
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