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Czechoslovak Mathematical Journal, 19 (94) 1969, Praha 

THE REPRESENTATION OF CARATHÉODORY OPERATORS 

Ivo VRKOC, Praha 

(Received September 25, 1967) 

The concept of Carathéodory operator was estabhshed in [1] and it was shown 
that the theory of Carathéodory differential equations can be built up in a similar 
manner to the classical one, if the right-hand side of differential equations contains 
a Carathéodory operator instead of functions which fulfil Carathéodory's conditions. 
In connection with this, the problem was posed (see [1]) whether every Carathéodory 
operator can be expressed by means of a function fulfilling Carathéodory's condi­
tions. This problem was solved in the affirmative for linear Carathéodory operators 
in [1]. We shall deal with this problem for general Carathéodory operators in this 
article. Using the concept of Nemyckij operator [2] we can put the problem in another 
wording: Is every Carathéodory operator equivalent to some Nemyckij operator? 

Definition and basic concepts. Let £„ denote «-dimensional Euclidean space with 
the norm |x| = max |x^|. Let G be a region in £„. Let /x be a regular nonnegative 

i 

measure defined on #", where J^ is a cr-field of subsets of the closed interval / = <0, 1> 
which contains all Borel subsets of / . In the following we shall use only measures 
fulfilling these conditions. Let #"* be the completion of #" for ji. We say that a set or 
a function are /i-measurable it they are J^^-measurable. 

Let У4 be a closed subset of/. Denote by C^ the space of all continuous n-dimension-
al vector functions f{t) = [/i(0? •••'/«(Ol «î fiî ed ^^ ^ such that f{t) e G for all 
t e Ä. We shall use the norm | |/ | |5 = sup \f{t)\. 

teA 

Let S^ be the set of all m-dimensional vector functions/(r) which are ju-measurable 
on A. We shall use the quasi-norm ||/| |^ = J^ min (l , \f{t)\) d/i. Denote by [ / ] the 
class of all equivalent functions with respect to this quasi-norm which contains / . 
The symbol [S]^ will be used for the space of the classes of equivalent functions 
from 5^. [S]^ is an F-space. For A = I WQ denote C^^ = С and S^ = S ([-S^] = 
= И), iMis = ii-r, ii-ir. = m 

Let A, В be closed subsets of / such that В a A and let a function f{i) be defined 
on A. The restriction / ^ of / to В is the following function: fß{t) = f{i) for t G В. 



Similarly we define the restrictions of vector functions and of classes of equivalent 
functions. 

Definition 1. A transformation T of the space С to the space [S] is called Carathéo­
dory operator, if the domain of Tis the whole space C, if Tis a continuous transforma­
tion and if for every closed interval J a I and for every couple of n-dimensional 
functions f ЩJ^ЩJ^^^ e С for which f/\t) = f/\t) we have {Tp% = 

Definition 2. An m-dimensional vector function h(t, x) ^ \_hi(t, x^,..., x„),,., 
..., йДг, Xi5..., x„)] fulfils Carathéodory's conditions, if it is defined on L x G, 
where Le #**, fi{L) = /г(/) and 

i) h(t, x) is a /i-measurable function of t on Lfor every n-dimensional vector x e G, 
ii) h{t, x) is a continuous function of x for every t e L. 
Carathéodory's conditions which are usually used require some kind of bound-

edness of h(t, x), but it is not necessary for the purpose of this article. 

Definition 3. Let T be a Carathéodory operator and h(t, x) be an m-dimensional 
vector function fulfilling Carathéodory's conditions. We say that the m-dimensional 
vector function h{t, x) represents the operator T, if T/ = l^h{t, f{t))] for every n-
dimensional vector function / from С 

The representation is called unique, if ii{{t :3 h(t, x) Ф g{t, x)]) = 0 for every 
representation g(t, x) of T. *̂ ^ 

Remark 1. For our purpose we can define Nemyckij operator as follows: A trans­
formation О : С -> [S] is called Nemyckij operator, if it is defined by Of = 
= [^(^?/(0)]' where h{t, x) fulfils Carathéodory's conditions [2]. It means that the 
question about the representation of Carathéodory operators is the question about 
the equivalence of Carathéodory and Nemyckij operators. 

First we shall formulate without proof a well-known theorem. If it is not necessary 
to point out the dimension of a vector function, we shall speak about functions only. 

Theorem 1. Let a function h{t, x) fulfil Carathéodory's conditions. Then the 
operator T defined by Tf = l_h{t,f{t)y]for every fe С is a Carathéodory operator. 

The purpose of this article is to prove the converse theorem, but first we shall deal 
only with the most important case when the measure fi is the Lebesgue measure. 

Tlieorem 2. Let T be a Carathéodory operator (where ц is Lebesgue measure), 
then a function h{t, x) exists which fulfils Carathéodory's conditions and which 
represents the operator T. The representation is unique. 

In the proof of Theorem 2 and 3 the notion /i-measurable means Lebesgue mea-
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surable. In the proof of Theorem 2 we shall need some auxiliary statement about 
implicit functions which we shall formulate as a theorem. 

Theorem 3. Let A be an analytic set in the Euclidean space En+m ^f points 
[xi, . . . , x^+,„]. Let В be the orthogonal projection of A on the stibspace E„ of points 
[х| , . . . , x„]. A measurable m-dimensional vector function h{xi,..., x„) exists such 
that [xi, ...,x„, /zi(xi, ...,x„),..., /z„,(xi,..., x„)] e Л/ог all [x^,..., х„]еБ. 

The connection of this Theorem with the theory of imphcit functions is very close. 
If we define g{z) = 0 for z e Л and g[z) Ф 0 elsewhere, we search for a measurable 
solution of g(x, h(x)) = 0. 

We shall use the following properties of analytic sets: 
i) every Borel set is an analytic set, 
ii) every analytic set is Lebesgue measurable, 

iii) the orthogonal projection of an analytic set is an analytic set, 
iv) the union of countable many analytic sets is an analytic set, 
v) the intersection of countable many analytic sets is an analytic set, 

vi) every analytic set is a range of a continous function (p(t) which is defined on Д 
where I is the set of the irrational numbers from /. If J is a subinterval of I, then 
the range of (pj(t) is an analytic set. 

The analytic sets are defined and the mentioned properties are presented in § 35 
Chap. Ill [3]. 

Now we pass to the proof of Theorem 3. The points mE„+^ will be denoted by z = 
= [x, j ] where x̂  = ẑ  for i = 1,..., n, yi = z„+£ for i = 1,..., m. By vi) there 
exists a parametric expression of A, i.e. there exists a continuous function z{t) = 
= [x{t), y{ty] on / such that A = {z :z = z{t) for some tel}. 

Let Ji, . . . , /„ , . . . be the Baire intervals of the first order, i.e. /„ is the set of numbers 
which are expressed by t = l/(n + rj), 0 ^ rj < 1. Let /„д,.. . , J„,s,... be the Baire 
intervals of the second order, i.e. 1„^^ is the set of numbers which are expressed by 

t = L ^ O^ri < 1, 
n + 

s + Tj 

Generally, /„1....,„^^1,1, ••• ̂ "i,...,nk-.i,s» ••• denote the Baire intervals of the k-th order. 
If X e J?, we denote by Од: = {̂  e / : x{t) = x), Q^ is obviously nonvoid and closed 
for every xeВ and 6x '^ ßx = 0 for x Ф x. We choose arbitrary numbers ci„^^^^^„j^ 
in /„i,...,nfc' Now it is all prepared to define the approximations of h{x). 

Definition of h^^\x): let xeB, then take the least index к such that 1̂  n Ox + 0 
and put h^^\x) = y{aj). The m-dimensional vector function h^^\x) has at most 
countable many different values. Obviously U'^\x) = y{a^ holds on the set, which 
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is the orthogonal projection of [z : z = z{t)^ teli} on E„. Generally, h^^\x) = 
= y(a^ holds on the set 

P{z:z = z{t), t e Is} -[JPiziz = z{t), f e / J , 
Ks 

where P denotes the orthogonal projection on £„. 
By ii), iii) and vi) the function /î ^̂ (x) is measurable. 

Definition of h^''\x). Let x e B, We choose the least index Uj, such that /„1,...,„^ n 
П 6^ Ф 0 and put h^^\x) == j(öf„i,...,„J. (The index щ^^ was chosen by construction 
of h^^~'^\x).) The function h^^\x) is also measurable. 

Now it remains to prove that h^^\x) converge to some h{x), [x, й(х)] e Ä, Choose 
a point xe B. According to the construction described above, we take the least 
index z'l such that /,-, n ß^ ф 0, the least index Ï2 such that Ii^j^ n g^ Ф 0 etc. 
Obviously h^^\x) = y(ai^ ^J. The points aji,...,!^ form a sequence in / such that 
^iu...,ii^hi„..,i^ for / è fc. As ai^ i^eli^^^j^ с J,-,,...,,-̂  (/f denotes the closure 
of if), there exists a = Hm cii^i^. Since a e Ii^,.,.jj^ for all /c:, the number a is irrational 

k-^oo 

and a 6 /. Since ĝ ^ n /ji,...,,-^ Ф 0, there exist numbers t^e Q^ r\ 1ц,...,1и-> ^^^ since 
the length of li^^,„j,^ converges to zero with fe -> со, numbers t^ converge to a, too. 
Since tk G Qx and Q^ is closed, we obtain a e Q^. It means x(a) = x. On the other 
hand h^^\x) = y{ai^^_ij) -^ y{a) and since z{a) = [x(a), j(^)] e Л we have proved 
that [x, /î ^̂ (x)] converge to a certain point from Ä, We can put h(x) = lim h^^^x) 

fc-*oo 

for all X e Б. The function h(x) is obviously measurable and [x, /г(х)] e Л. Theorem 3 
is proved. 

Now we return to Theorem 2. First, we shall prove the uniqueness of the represen­
tation. Let h(t, x) and g(t, x) be two representations of T, then for every 
X e G cz E„, h{t, x) = g(t, x) for almost all t. Let x„ be a sequence of all n-dimensional 
vectors from G which have all coordinates rational. Denote by ß„ the set of t for 
which there is h{t, x„) Ф g{t, x„) and by ß - i the set where h{t, x) or g{t, x) is not 
continuous in x. The sets ß„, and also the set Uß„ have measure zero. For ï e <0, 1> — 

n 

— и on there holds h{t, x) = lim h[t, x„) = hm g(t, x„) = g{t, x). 
и n-^00 n-»oo 

Our proof of Theorem 2 will be constructive, but before we pass to it we must 
prove several auxiliary lemmas. 

Lemma 1. Let T be a Carathéodory operator and A be a closed subset of <0, 1>. 
Then a continuous operator T^ exists which maps C^ into {S\A ^^d (Tf)^ = T^/A 
holds, where fe С andf^ is the restriction off to A, 

Proof. We shall prove that {Tf^^% = {Tf^^%, if f^'\f^^^eC, Л >̂ = f^\ 
Choose a sequence of positive numbers Ss,Ss-^0. Put As = 0(8^, A) r\ ф, 1}, 
where 0{8, A) is the closed e-neighbourhood of A. Each A^ consists of a finite number 
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of closed intervals /f. Define h ^ by: h^'\t) = f^\t) for t e A,. The function h%) 
can be extended onto the closed interval <0, 1> so that й̂ '> e С and \\h^'\t) -
- / ( i ) ( ( ) | | c= : ||й<»)(()-/(i>(f)||c^. Since /»>, /^^ ' are uniformly continuous and 

/ A ^ =/А\ we have lim \\h^"\t) - f^\t)\f = 0. As the Carathéodory operator T 
s->oo 

is continuous, we obtain hm Th^^^ ~ Tf^^\ If we recall the definition of h^^\t), we 
s-*oo 

conclude (W%, = {Tf^%, for all p and it yields {Th^%^ = {Tf^%^. As 
A <= A„ it is {Th^'\ = {Tf^\. This relation together with lim Th^'^ = V/^D 

implies the desired equality {Tf^% = (Г/^^%. 
Let / e C^. Obviously a function ö' e С exists such that g^^ = / . We define T^f = 

= ( T ^ ) ^ . According to the proved statement, this definition does not depend on the 
extension of/. 

Now, we prove that T^ is a continuous operator. Let /^"^ -^ /АУ /А\/А ^ ^л- We 
extend / 4 in an arbitrary way onto the interval <0, 1> so that this extension belongs 
to C. Denote such function by / . Further we extend the functions /^"^ so that /^"^ G С 
and ||/̂ "> - ff = ||/("> - / | | 5 . As Tis a Carathéodory operator, we have lim T^/^^ == 
= hm (T/("% = (T/)^ = rj^. 

n->-co 

Remark 2. The operators T^ are Carathéodory operators again. Particularly 
{ТА/А)В = 7i/j5 for closed Б, Л, Я с Л с / a n d / e С. 

In the next lemma we shall prove that the domain of Carathéodory operator can 
be extended. In this proof. Lemma 1 will be very useful. Denote by S^(G) the set of 
all n-dimensional vector functions f{t) which are defined and measurable on Ä and 
for which f{t) G G for ^ G Л is fulfilled. 

Lemma 2. Let T be Carathéodory operator, then the operators T^ exist for every 

closed subset A c: <0, 1> such that T^f == T^f for every f e C^, Г* maps the space 
SA{G) to [S]^. 

Further, lim T^f^'^^ = T^f, if f^"^ converge almost everywhere to f on A. 
и-*оо 

Proof. Let an n-dimensional measurable function/ on A be given. With respect 
to Luzin's theorem there exist open sets Б„ с: A, ii{B^ < 2~" such that/(^) is con­
tinuous on A — Bn- Since the sets A ~ B^ are closed, there exist operators T^-.^^ 
(Lemma l). We define g„ == Т^-Вп/л-Вп for t e A - B„ and Ö' = 0 for te B^, The 
blasses g^ form a fundamental sequence in [S]^ (cf. Remark 2). Since the space [S]^ 
is an F-space, there exists a limit g e И д . We put T* / = g. If/ is continuous on A, 
then the sets Б„ can be chosen empty and this impHes T^f = T^f We pass to the 
continuity of T*. Let /^"^ be a sequence of measurable n-dimensional vector functions 
which converges a. e. t o / o n A, Let a number г > 0 be given. By Egorov's theorem 
there exists an open set Б_ 1, Б_ ^ с: A, fi{B_ ^) < г/4 such that/^"^ converge uniformly 
on A — Б_1 . By Luzin's theorem there exists an open set JBQ, BQ CZ A, ju(5o) < e/4such 
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that/is continuous on л - i5o and there are open sets В„,В„ cz A,fi{B„) < e/2"^^such 
00 

that /(") is continuous onA ~ B„. Denote В = {J B„. Since /̂ »> are continuous on 
n = - l 

A ~~ в and /("> converge t o / uniformly on A - B, we obtain lim Т^-в/л-в = 
n-*oo 

= lim ТА-В/Л-В = ТА-В/А-В= Т*_В/Л-В- Ву definition of the quasi-norm on 

[S]^ we obtain l|T*/<"' - Г*/||^ g ||Г*_^,/«^ - Т*-в/л-вГл-в + 2в. We obtain 
easily Иш sup ||Г^/^"^ — Т'л/Цл й 2г and since в is an arbitrary positive number, 

Lemma 2 is proved. 

Definition 4. Elements of the class Tf will be denoted by (T/) (f). Carathéodory 
operator T is called bounded, if a constant M > 0 exists such that all elements 
(Tf) (t), for all / e C, fulfil: \{Tf) {t)\ S M for almost all t e I. 

In the three following lemmas, we shall deal only with bounded Carathéodory 
operators. Before we introduce the representative function we must define several 
auxihary functions. To every point [t, x] from <0, 1> x G we define 

(1) H{t,x) = Г(Тх*) (T)dT, 

where x* is defined by x*(̂ ) = x for all t e <0, 1>, (Tx*) (t) is an arbitrary element 
from the class Tx*. 

(2a) x{t,x) = limsnp^^^lAzJ^M, 
v->0+ T — ( 

where sup is taken over 
0 < IT - f] ̂  V, ||x - JII ^ V ; 

(2b) ' v(^x) = l iminfMlLü)^LJ^(^) , 
V - 0 + X — t 

where inf is taken over 

0 < IT - i] ^ V, \\x-y\\uv; 

(3) 4̂ -) = '%^^ 
St 

at all points where the derivative exists. 

Lemma 3. Let T be a bounded Carathéodory operator, then the function H{t, x) 
is defined on <(0, 1) x G, Lipschitz continuous in t, and continuous in both variables. 
The sets {[t, x] : Ài{t, x) ^ r}, {[t, x] : yi(t, x) ^ r} are analytic sets for every 
Ï = 1,..., П and every real number r. 

Proof. Since the operator Tis bounded, the integral in (1) exists and is independent 
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of the choice of (Tx*) (t) from Tx*. Since the operator Tis continuous, the function 
H{t, x) is continuous in x for t fixed. On the other hand, H(t, x) is Lipschitz con­
tinuous in t. From that foUov̂ s that H(t, x) is continuous in both variables. 

Denote e{t, x, y) = H{t, x + y). Function 0(r, x, y) is defined in the space Em^-i-
Let P denote the orthogonal projection of a set in £2«+! on the subspace £„+1 which 
consists from the points \t, x]. Obviously 

(4a) ^Kr) = { [ f , x ] : A ^ x ) ^ r } = 

л „ Гг T Ö / T , X, y) — eh, X,y)^ 1 1 1 ^ 1 ) 

)£ [ o<] i - i i ë i / t T — г fc fcj 

(4b) A(r) = {[^ x] : ylt, x)ur] = 

fe ( o<iT-r|̂ i/fc T — ^ к k) 

Since the sets in the brackets of P are Borel sets, A\{r) and ^2(0 ^̂ ^ analytic sets 
(cf. iii) and v)). 

Remark 3. Let Л be a closed subset of <0, 1> which consists of the set of disjoint 
closed nonsingular intervals /^ and from a set B, ц{В) = 0. Let f{t) be defined on A 
so that it is constant on 4 . Recalling the definition of h{t, x) (see (З)), we have 
SJX^, f{t)) dt = SilTiufiù (0 àt and obviously 

(5) f h{tj{t)) at = f (Т*Л) (t) dt = f (T*^)^ (0 d^ 
J^ JA JA 

where g is an arbitrary extension of/. 
N o w we shall prove a lemma from which it will immediately follow that h{t, x) is 

the desired representation of the bounded operator T. 

Lemma 4. Let T be a bounded Carathéodory operator, then /г({^ : 3 X{t, x) =j= 
Фм(^,х)}) = 0. *^« 

P r o o f . Denote by Л the set of points [r, x ] for which X{t, x) > ii{t, x). By (4a) 
and (4b) A = \J и {A\{r^ n A^ir^)), where r^, Г2 range over the set of all rat ional 

i Г1>Г2 

numbers r^ > Г2. The set A is analytic and its projection В on the axis t is also analytic. 
Assume /x(B) > 0; then there exists an index i and rat ional numbers r > q such tha t 
the or thogonal projection Б* of the set A^ = Al{r) П ^ Ц ^ ) on the axis t has a positive 
measure: fi(B^) > 0. By Theorem 3 there exists a measurable n-dimensional vector 
function f{t) such that [t, / ( ï ) ] e Л * for î e B\ Accordingly to Luzin's theorem the set 
D с Б* exists, JU(D) > 0 and f(t) is continuous on D. As Z) is measurable, a closed 
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set L e D exists, /i(L) > 0. Obviously/(r) is also continuous од L. For t e Lit 
holds 

(6a) l imsup^ ' ^^ ' ^b^^C^y) 

where sup is taken over 
v~*0+ T — t 

0<\T-t\uv, 1/(0 -y\,uv. 

H,(r, y) - HJU y) ^ 

where inf is taken over 

(6b) 
v->-0+ T ~ t 

0 < | T - r | ^ v , \f{t)~y\uv^ 

Let К с Lbe the set of all points of density of the set L. Evidently ju(K) = /i(L) Ф 0. 
Since the function Hi{t, y) is Lipschitz continuous in t, the relation (6a) and (6b) 
hold with an additional assumption that numbers т are from L. It means that to 
every t e К there exists a sequence of intervals with end points t and fy and a sequence 
of points у J such that \yj — f{i)\ -> 0, \ïj — г| -> 0, fj e L and 

(7a) Я,(х-,, у-,) - Я / ^ П ^ ^ _ 

For every ̂  е К there exists also а sequence of intervals with end points t, tj and a se­
quence of points fj such that \yj ~ f{t)\ -> 0, |TJ — |̂ -> 0, ~xj e L and 

(7b) ^ g^i^^b- ^̂ (̂ > î) ^ x(, + 2,) . 

The intervals fulfilhng (7a) will be called the intervals of the first type, the intervals 
fulfilling (7b) will be called the intervals of the second type. The intervals of the first 
type as well as those of the second type cover the set K. By VitaH's theorem there 
exists a set of disjoint intervals of the first or of the second type respectively which 
covers K. Denote these sets by Q^ ^nd Q^, We can assume that for intervals from Q^ 
and Ö„ \TJ ~t\S lis, \rj ~t\u 1/s, \yj - f{t)\ й 1/5, \yj - /(01 й 1/s holds. 

Now we shall define /i-dimensional vector functions P^\t) and P^t), Let т e /, 
/ eQ^, thQnf^^\t) is constant on / and/̂ ^X'̂ ) == У] where yj corresponds to / by (7a). 
For T which does not belong to any 1,1 e ß^, we choose/̂ '̂ ^̂ (т) within \f^^\T) - /(т)| ^ 
й 1/s. The definition of f^^\t) is the same as the former definition, with the only 
exception that the set Q^ is replaced by Qs and the points у s by y s- By Remark 3 (5) 
and (7a) 
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and by (7b) 

L (T*p))(Odr^'-±^Kb). 

On the other hand, f ^ and f^^\t) converge to f{t) and by Lemma 2 it should be 

lim Г (Т*/(^>) (г) dt = Hm Г (Г*7(̂ >) (О df = Г (Г*/) (г) dr. 

This relation with the previous inequalities implies that /i(L) = 0 and this contradic­
tion proves Lemma 4. 

We have still to complete the solution of the problem for bounded operators. 

Lemma 5. Let T be a bounded Carathéodory operator, then the function h(t, x) 
defined by (3) fulfils Carathéodory^s conditions and it is the representation of T. 
Function h{t, x) is bounded for almost all t. 

Proof. Since 

/ \ ^ 1- • c^i{^ + -̂ ^ A - Hi(t, x) ^ ,. Hh + At, x) ~ Eh, x) ^ yi{t;x) g hm mf —̂^̂  -^ "^^^—^ ^ lim sup -^ ^-^— ^̂^̂—̂  g 
At-*0 At At-^O At 

(see (2a) and (2b)) and by Lemma 4, we obtain that the derivatives dHJdt exist for 
almost all t (i.e. the set of t for which this derivatives exist for all x G G has measure 
one). As H{t, x) is Lipschitz continuous in t, h{t, x) must be bounded almost every­
where. If we take t from the set for which the derivatives exist, we have 

y it, x) й lim inf ^ M l i ^ й lim sup H ^ ^ ^ g h{U ^) 
y-^x dt y~*x dt 

and by Lemma 4 we obtain that the derivative is a continuous function in x for 
almost all t. We have proved that h{t, x) fulfils Carathéodory's conditions. 

We shall prove that h{t, x) is the representation of T. Let us define (as before) 
x*(r) = X for every x e G. By (l) and (3) Tx* = \Ji{t, x*(^))]. Let Д be disjoint, 
sehii-opened intervals which cover <0, 1>. Let f{t) be constant on every I^, then 
TiJh = VitJmi. (Lemma 1). By Lemma 2 we have Tjjj^ = T^fj^ = (T*f\. 
Let g eC and /̂ ^̂  be a sequence of vector functions of the type just described con­
verging to ^. By Lemma 2 we have 

[h{t, дШ = lim ih{t,f^^\i))-\ = lim Г*/<̂ > = Т*д = Tg . 
s->oo ^ s-* 00 

Lemma 5 is proved. 
Now we pass to the case of unbounded operators. To every class [/] from [S] we 

shall define a contracted class arctg [ /] . The class arctg [/] is the class of m-dimen-
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sional vector functions [arctg/i(^),..., arctg/^f)], where m-dimensional vector 
functions/(t) = [/i(^), -'.j/mCO] belong to the class [ /] . 

Definition 5. Let Г be a given operator. The contracted operator arctg Tis defined 
by (arctg T)f = arctg (Tf) for every / e C. 

Every contracted operator is bounded and arctg Tis Carathéodory operator, if T 
is Carathéodory operator. 

Since arctg T is bounded Carathéodory operator, there exists a function /г*(г, x) 
fulfilling Carathéodory's conditions, representing arctg T and bounded: |ft*(r, x)| ^ 
S Tijl. We shall prove that the projection В of the set A = {[t, x] : |/z*(r, x)\ = 
= njl] on the axis t has measure zero. By Lemma 3 and 4 the sets {[t, x] : \h*{t, x)\ ^ 
^ 7i/2 or /îf(f, x) does not exists} are analytic. It means that a measurable function/(t) 
exists such that [^/(0] e Л for teB, i.e. every function ((arctg T*)/) (t) from the 
class (arctg Г*)/fulfils |((arctg T*)/) {t)\ = njl almost everywhere on B. On the other 
hand T*/is an almost everywhere finite function. It means 1л[В) = 0. Now the repre­
sentative function of T can be defined as h{t, x) = tg h^(t, x). As /i*( ,̂ x) has the 
desired properties and for almost all t it is in the region of definition of tg, h{t, x) has 
also all the desired properties. 

Now we shall generalize Theorem 2 for a wider class of Carathéodory operators. 

Theorem 4 Let T be a Carathéodory operator. Providing that the measure from 
the definition of [S] is a regular nonnegative measure defined on #", where #" is 
a a-field of subsets of the closed interval I which contains allBorel subsets of I, then 
the statement of Theorem 2 is also valid. 

Proof. Let the measure be nontrivial, i.e. ju(/) > 0. Put a = /г(/) and F(t) = 
= jw(<0, ty)ja. The function F(t) is nondecreasing and continuous from the right, 
F(l) = 1. Denote À^ the points of discontinuity of F{t). Put fi^ = Mm F(t). The index к 

is of the first type if there exists t < Л^ such that fi^ = F(t), The indices which are not 
of the first type we shall call of the second type. Denote N the set of all points of 
discontinuity of F (t). The function F(t) generates the following transformation. To 
every po in tée / - N there corresponds the point F{t)eL To a point teN there 
corresponds a semi-open interval (ßk, P{t)y if к is of the first type and the closed 
interval </ifc, F{t)y if к is of the second type. The set of these intervals will be denoted 
by M. This point-transformation generates a transformation of subsets of /. Let A 
be a subset of J. Then the transformation of A is the union of transformations of 
points from A. Let câf be a a-field of Lebesgue measurable subsets of / and ^^ be a 
(T-field of Lebesgue measurable subsets of J which have the following property: if the 
set A contains a point t which belongs to an interval JeM, then A contains the whole 
interval J. Since the measure /л is regular and nonnegative, we obtain that to every 
/г-measurable set there corresponds an .â "̂*"-measurable set. The relation between a ju-
measure of a set A and the Lebesgue measure of the image U{A) is simply fi{A) = 
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= (XI{U[Ä)), where 1(В) is the Lebesgue measure of Б. To every ju-measurable function 
f{t) there corresponds an J^"*"-measurable function U{f) (t) defined by U{f) {F{t)) = 
= f{t) for tel, U{f) (t) being constant on intervals from M. (It may happen that this 
definition of U(f) (t) is not unique but only for a countable number of t). This 
transformation of functions maps the class of /x-measurable functions on the class 
of J^"*"-measurable functions. Finally to every Carathéodory operator T we shall 
construct an operator U{T) in the following manner: U{T)f == U(Tf). The operator 
U{T) is Carathéodory operator again but the corresponding measure is the Lebesgue 
measure. By Theorem 2 there exists the representation /io(t, x) of IJ{T), We must 
still prove that hç,{t, x) is cS'"^-measurable. However, it follows immediately from the 
fact that {U{T)f)j are constant functions for every J e M. It means that /zo(̂  ^) is 
a constant function in t (for fixed x) for t e J, J e M, The properties of the transforma­
tion и mentioned above yield that there exists a function h{t, x) fulfilhng Carathéodory 
conditions such that HQ^Î, X) = U{h{t, x)). Obviously the function h{t, x) is the re­
presentation of T. Theorem 4 is proved. 
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