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INTRODUCTION

In this paper there is studied the system 91(6) of all subsets N of an ordered set G
fulfilling the axioms: (I N) for x, ye N, x =% y there does not exist ze G, z < x,
z £ y; (ILN) N is maximal with respect to the property described in (I R). A set N
with these properties is called a layer of the ordered set G.

We defined the ordering < on the system 9(G) as follows: For Ny, N, € %(G)
we have N; < N, if and only if to any element n, € N, there exists at least one
element ny € Ny suchthat n; 2 n,. A particular case of the system 9(G) is the ordered
system of all decompositions on some set which can be identified with the ordered
system of all equivalences on the same set. In [3] 2.7, it is shown that the ordered set
#(Q) (2(Q)) of classes of compactifications (relative compactifications) of a non-
compact space Q, is a particular case of a system R(G), too.

In the first section there are introduced the basic algebraic concepts and the nota-
tion which will be used in the following. In Section 2, there are studied the properties
of a system 9Y(G) ordered by means of the relation <X for an arbitrary ordered set G.
In Section 3, there are studied these properties under a supposition that the set G’ =
= (0) @ G is an upper, or lower semilattice. Here o denotes a symbol different from
the elements of the set G and @ denotes Birkhoff ordinal sum. The Section 4 is
devoted to the study of properties of an ordered system 9(G) under the assumption
that G’ is a distributive lattice. In 4.7, there are introduced sufficient and necessary
conditions for M(G) to be distributive or modular lattice, under an assumption
that G’ is a distributive lattice. I do not know a solution for the general case.

1. FUNDAMENTAL ALGEBRAIC CONCEPTS AND NOTATIONS
In the paper, there are used current concepts and theorems from the theory of

ordered sets. Instead of the term “a partially ordered set” we shall use the term
‘“an ordered set”. For two ordered isomorphic sets X and Y we shall write X = Y.
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A dually ordered set in respect to an ordered set X will be denoted by X. An ordered
set (X, <) will be called down-directed if for x, y € X a z € X exists such that z < x,
z < y.

LetI # 0. The Cartesian product X, ¢ € I will be denoted by PX (¢ € I). The symbol
[IX.(¢ € I) will denote the cardinal product of ordered sets X, ¢ € I.

Under a lower (upper) semi-lattice we understand an ordered set in which any
pair of elements has an infimum (supremum). A complete lower (upper) semi-lattice
is an ordered set in which any non-void subset has the infimum (supremum).

Let (S, <) be a semi-lattice (lower or upper) with the least element o. An atom of
the semi-lattice S is an element a € S such that a = oand 0 < b < a, implies b = g
for each b € S.

A semi-lattice S will be termed atomic if for any element s € S, s # o there exists
at least one atom a of the semi-lattice S such that a < s.

A semi-lattice S will be called strongly atomic if for s;,s, €S, sy + 0 + 5, F 5,
thereis 0 # {a|a < s;,ae A} + {a|a <s,, ae A} + 0, where 4 is the set of all
atoms of the semi-lattice S.

In this paper, G will stand for a non-empty set ordered by a relation <. x < y
for x, ye G will denote that x < y and z=x or z=y for zeG, x <z < y.
A(g), g € G, denotes the set {t|te G, t < g}. In section 3 and 4, G' = (0) ® G
holds, where o is a symbol different from all elements of the set G and @ denotes
Birkhoff’s ordinal sum ([1]) Infima and suprema in G’ will be, as usual, denoted

by A ’ A, Vv ’ V'
2. SYSTEM OF LAYERS R(G) FOR AN ORDERED SET G

Definition 2.1. A set M S G has the property (k) (in a set G) if for xe M, y e M,
x % y we have A(x) n A(y) =

Definition 2.2. R(G) is the system of all subsets N of G fulfilling the following
axioms:

(L) N has the property (h).

(I N) N U (z) fails to have the property () for ze G — N.

A subset N with the properties mentioned in the definition 2.2 is called a layer of
the ordered set G.

2.1. Let M = G have the property (h). Then, there exists at least one layer
N € R(G) such that M < N.

Proof. Let us denote the system of all subsets A < G possessing the property (h)
and fulfilling the relation 4 = M by 2. If we order the system 2 by means of inclu-
sion, it follows from Zorn’s lemma that there exists a maximal element N € °. We
have N € 9%(G) and M < N.
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2.2. 0¢ R(G), R(G) * 0.

Proof. From the axiom (II R) it follows that 0 ¢ N(G). From 2.1 we can get
N(G) + 0.

2.3. A set M < G fulfils the axiom (IL N) if and only if to every g € G there exist
elements me M and g' € G such that g’ < g, g9’ < m.

Proof. Let M < G. If the given condition is satisfied, then evidently M fulfils the
axiom (II 9). If the set M fulfils the axiom (ILN) and g € G — M, then from the
axiom (II 91) there follows the existence of an element g’ € G and m € M with the
mentioned property. If g € M, then we get the mentioned condition for m = g’ = g¢.

Definition 2.3. For N, € %(G), N, € R(G) we put N; < N,, if for every n, e N,
there exists at least one element ny; € N, such that n, = nz.’)

2.4. The relation =< is an ordering.

Proof. Reflexivity and transitivity are evident. Let Ny < N,, N, < N, hold for
Ny, N, e R(G). For n, e N, there exists n; € Ny such that n, = n,. Furthermore,
nj € N, exists such that n; < nj. From the axiom (I 9) it then follows that n, =
= n; = ny. Thus N, & N,. Similarly it turns out that N, < N,.

2.5. Let N,N, € ‘JZ(G), N; X N,. Then, for any n, e N, exactly one element
ny € Ny exists such that ny = n,, and for any n} € N, at least one element n, e N,
such that ni = nj.

Proof. The first part of the assertion follows from the axiom (I 9). Let nj € N,.
By 2.3, nyeN, and g’ € G exist such that g’ < n}, g’ < n5. Since N; < N,, so
n} € N, exists such that nf = nj. From the axiom (I 9) it follows at once that
n; = n}; from this the assertion follows.

2.6. Let Ne R(G), M < G have the property (h). Let for any element ne N
at least one element m € M exist such that n < m. Then M € %(G), M X N.

Proof. Let g€ G. By 2.3, g’ € Gand n € N exist such that g = g', n = g'. Accord-
ing to the assumption there exists m e M, m = n. Consequently m = g’, g = g’ and
by 2.3 we have M € R(G). Evidently M < N.

Example 2.1. Let P & (. Let G be the set of all non-void subsets of the set P,
ordered by means of inclusion. Then R(G) represents the set of all decompositions
on P ordered in such a way that the decomposition (P) is the least one.

1y The relation = can be introduced in the same way among all subsets of the set G. In this
case, however, the relation need not be an ordering but is a quasiordering.
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Example 2.2. Let P # 0 be a topological T,-space (or more generally Cech’s
B-space). 2) Let G be the set of all non-void closed sets of the space P ordered by means
of inclusion. Then MY(G) is the set of all closed decompositions on the space P,
ordered in such a manner that the decomposition (P) is the least one.

Example 2.3. The ordered set #(Q) (%(Q)) of classes of compactifications (relative
compactifications) of a non-compact space Q and the set R(I(Q)) are isomorphic,
where 1(Q) denotes the set of all proper filters on Q without a cluster point ([3], 2.7).

2.7. N(G) possesses the least element if and only if G is a cardinal sum of sets
with the largest elements.
The set N, of all these largest elements is then the least element in ‘R(G)

Proof. I. The above condition is equivalent to the condition that to any g € G
there exists a maximal element m € G such that m = g and the set of all maximal
elements of the set G has the property (h). This set of all maximal elements of the set G
is then the set N.

11. Suppose that Ny is the least element in M(G). For g € G there exists, by 2.1,
N, e R(G), g e N,. Since Ny < N, then m € Ny, exists such that m = g. If m is not
maximal, then m’ € G exists such that m’ > m. According to 2.1 N,,.€ R(G), m’ €
€ N,,.. Since Ny < N,,., then m” € Ny exists such that m” = m’. From this it follows
that m” > m; m, m"” € N, which is a contradiction. Consequently, m is maximal.
For that reason, for any g € G there exists a maximal element m € G such that g £ m,
m € Ng. Hence, the above condition follows.

III. Suppose the above condition is satisfied. Then N, e R(G). For N e R(G),
n € N there exists m € N, such that n < m. Thus Ny < N.
Thereby the assertion is proved.

2.8. N(G) has the largest element exactly if for any element g € G a minimal
element m on the set G exists such that m < g.

The largest element of the system N(G) is then the set of all minimal elements of
the set G.

Proof. L. Suppose N, is the largest element in N(G). For g € G there exists by 2.1
N,e ‘R(G), ge€N,. Since N, <X Ny, by 2.5 there exists at least one element m € N,
such that g = m. If m is not minimal, then m' e G, m’ < m. According to 2.1,
N,,,,e‘ﬁ(G), m' € N,,.. Since N, X Ny, by 2.5 there exists at least one element
m” € N, such that m’ = m”. Then m” < m; m", m e N, which is a contradiction.
m is therefore a minimal element of the set G.

) Cech’s B- -space is a topological space fulfilling the following axioms: 0 = 0, (¥) = (x),
XSX, XS Y=XxC< Y (2D
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II. Let us suppose that the above condition is fulfilled. Let us denote N, the set of
all minimal elements. Evidently, N, fulfills the axioms (I %) and (II R); consequently
No € R(G). Let N eN(G) and let nye Ny, — N. Since (ny) U N fails to have the
property (h), n € N exists such that n = n,. Thus N, = N.

Thus, the assertion is proved.

Let I % @ and for tel let N, e %(G). Put F(N,,1el) = {N|NeR(G), N =N,
for each ceI}. Put A(s) = NA(s(x)) (t€I) for se PN, (teI). Denote SN (tel) =
= {s|seBN,(te]), A(s) + 0}.

2.9. Let I + 0, N, € %(G) for any element te I. Then F(N,,vel) *+ 0 if and only
if for an arbitrary element g € G, se S,N(t€1) and g’ € G exist such that g' € A(s,)
and g' £ g.

If (N, vel) + 0, then FN,, cel) = [[R(A(5)) (s € SN, (t 1))

Proof. For the sake of simplicity let us denote SN (tel) = S, FN,,tel) = §,
and in the case © # 0 let us denote [ [(A(s)) (se SN, (teI)) = [].

I. a) For Ne &, ne N there exists s € © such that n e A(s). Actually n, € N, exists
for any ¢el such that n < n, (because N = N,). Putting s(t) = n,, we have se
€PN, (tel) and n € A(s), and consequently s € S.

b) For s,s'€ S, s + 5" we have A(s) N A(s') = 0. Actually ¢, € exists such that
s(to) = s'(to) and if an element x € A(s) N A(s") existed, then x < s(t), x < 5'(to).
This is a contradiction, because s(t,), s'(to) € N,

IL. Assume that for an arbitrary element g € G there exists s,€ S and g'€ G
such that g’ € A(s,) and g’ < g. Then & =+ 0. Put ¢(f) = Uf(s) (se S) for fe].
Then ¢(f) € G.

a) Let fe[] and let x, y € (f), x # y. Then s,, s, € S exist such that x e f(s,) €
< A(s,), y€f(s,) € A(s,). If z € G exists such that z < x, z < y, then according to
Lb s, = s,. Then we have z € A(s,) which is a contradiction because f(s,) € N(A(s,))
and x, y € f(s,). Thus a set ¢(f) fulfils the axiom (I 9).

b) Let there be fe[] and g € G. According to the assumption, s,€ & and g’ € G
exist such that g’ € A(s,) and g’ < g. Since g’ € A(s,) and f(s,) € R(A(s,)), so by 2.3
there exist g” € A(s,) and nef(s,) such that g" < g’, 9" < n. We have g"€G,
neo(f), g" < n, g" < g and according to 2.3 the set ¢(f) fulfils the axiom (IL N).

c) Let fe[]. From ILa and ILb it follows that ¢(f) € R(G). Let n € ¢(f). Then
there exists s, € & such that n € f(s,). Since f(s,) S A(s,), then n < s,(¢) for any te L.
Thus, ¢(f) = N, for any ¢ e and therefore ¢(f) € &-

d) Let f,g e[, f + g. Then s, exists such that f(so) + g(so)- Since f(s) <
< A(s), 9(s) = A(s) for any s € &, it follows from Lb that ¢(f) # ¢(g). Consequent-
ly ¢ is a one-to-one mapping of [ | into the set .

e) Let Ne §, se S. Let us put f(s) = N0 A(s). The set f(s) possesses evidently
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the property (k) in A(s). For g € A(s) there exist by 2.3 g’ € G and n € N such that
g' < g, g < n. We have g’ € A(s) and by La and Lb we have also n € A(s). f(s) e
€ N(A(s)) follows from 2.3. Thus fe[] and since ¢(f) £ N, we have ¢(f) = N
as a consequence of La.

f) Let f,g €[], f < g. Then for any element se & we have f(s) < g(s); conse-
quently o(f) < ¢(g)-

g) Let N,N'e §, N < N'. According to ILe, N n A(s), N’ 0 A(s) € R(A(s)) for
any element s € ©. For n’ € N’ n A(s), (s € ©), n € N exists such that n’ < n. From La
and Lb it follows that n € N n A(s). Thus, for s € S we have N n A(s) < N’ n A(s).
It follows from ILe that ¢~ }(N) < o~ *(N).

¢ is therefore an isomorphism between the sets [ | and §.

III. Let § =+ 0, g € G. Then there exists N € §. By 2.3 there exist g€ Gand n e N
such that g’ < g, g’ < n. According to La s, € S exists such that n € A(s,). Since we
have g’ € A(s,), the mentioned condition is satisfied.

Thus the assertion is proved.

2.10. Let I & 0. A set {N,, vel}, N, e R(G) has a supremum if and only if

(1) for an arbitrary element ge G there exist s,e SN,(tel) and g' € G such
that g' € A(s,) and g’ < g,

(2) for any element s e SN (v €1) the set R(A(s)) has the least element.

Then sup N (tel) = UM(s) (se SN (tel)), where M(s) is the least element of
the set W(A(s)) which is equal to the set of all maximal elements of the set A(s).

Proof. I. Conditions (1) and (2) are equivalent to the statement saying that the
set {N,, €I} has a supremum (by 2.9 and due to the fact that the cardinal product of
ordered sets possesses the least element if and only if each of its factors has the least
element).

IL. Let there exist sup {N,, ceI}. Then according to 2.9 the set [[R(A(s)) (s €
€ ©N (v 1)) has the least element M. If ¢ is an isomorphism described in II, proof
2.9, then sup {N,, te I} = (M) = UM(s) (s e SN (v I)). The set M(s) is the least
element of the set M(A(s)) and by 2.7 it is equal to the set of all maximal elements of
the set A(s).

For Ny, N, € ®(G), Ny > N, will denote that N, > N, and, for N € R(G), N, =
= N = N,, we have either N = N, or N = N,.

2.11. Let N, € R(G). Then the following assertions are equivalnent:
(A) N, e N(G) and N; > N,,

(B) N, = (Ny — A(xo)) U (xo), where the element x, € G — N has these proper-
ties:

(@) A(xo) 0 Ny € R(A(xo)), .
(B) A(x) "N, ¢ R(A(x)) for xe G — Ny, x < x,.
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Proof. L. Let ye G, N, = (N; — A(y)) u (y), g€ G — N,. We shall show that
in this case N, U () fails to have the property ().

According to 2.3 there exist g’ € G and n € N such thatg = g',n = g'. If n ¢ A(y),
then (g9) U N, fails to have the property (k). If n e A(y) then g’ < y; consequently
(9) U N, also fails to have the property (h).

IL. Let N, € %(G), Ny = N,, yeN,. Then N = (N, — A(y)) v (y) € R(G) and
we have N; = N = N,.

Actually, the set N fulfils, according to I, the axiom (II RN).Ifa,beN,a + band
a#+y b, then a,beN,, and therefore A(a) N A(b) = 0. If aeN and a *+ y,
then a € N; — A(y) and there exists a’ € N, such that @’ = a. Evidently a’ # y and
consequently A(a’) n A(y) = 0; from this it follows that A(a) n A(y) = 0. Thus the
set N fulfils the axiom (I ). Hence, N € 9%(G). Evidently N; = N = N,.

IIL Let ye G, A(y) n Nye R(A(y)), N, = (Ny — A(y)) U (¥). Then N, € R(G)
and we have N, <X N,.

Inded, the set N, fulfils, by I, the axiom (ILRN). Ifa, be N,,a # banda + y % b,
then a, b e Ny; thus A(a) N A(b) = 0. If ae N and a + y, then ae N, — A(y). If
there exists ce A(a) n A(y), then according to 2.3 there exist de A(y) and ne
€ A(y) n Ny such that d < ¢, d < n(A(y) n Ny e R(A(p))). Then d £ a, d < n,
a,ne Ny, a &= n which is a contradiction. Consequently, N, fulfils the axiom (I ﬂl);
thus N, € R(G). Evidently N, < N,.

IV. Let N, = (N; — A(y)) U (¥) € N(G) where y e G. We are going to show that
then A(y) n N, e R(A(y)).

The set A(y) n N, has the property (h) in G; consequently it possesses the
property (k) even in the set A(y). Thus the axiom (I R) is valid. For g € G there exists,
by 2.3, g’€ G and ne Ny such that g’ < g, g’ < n. If g € A(y) then g’ € A(y) and,
since N, € 9(G), we have n € A(y). Then n e A(y) n N, and from 2.3 it follows that
the set A(y) N N, € R(A(y)).

V. Let (A) hold. According to IL N, = (N; — A(x,)) U (xo) where xo € N, — N;.
According to IV, the element x, fulfils the condition (). If x < x,, x ¢ N, and A(x) N
A Ny € R(A(x)), then by II[, N = (N; — A(x)) U (x) € R(G) and we have N < N,.
Since, N = N,, then N = N,, and consequently x = x,. Thus (B) holds.

VL Let (B) be valid. By IIl we have N, e ®(G) and N, < N,. Let N e 0(G),
N, < N X N,. For xe N — A(xo) we have x € N;. Suppose x € N n A(x,). Then
x < xo. According to II, N’ = (N; — A(x)) U (x) € RR(G) and according to IV we
have A(x) N N, € R(A(x)). From the definition of the property (§) x € N, follows.
Thus N = N, and N = N, follows from the axiom (II %) which means that N, < N,.

Hence, the assertion is proved.

Definition 2.4. 1(G) = sup card N(N € R(G)).
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2.12. (a) 1 < 1(G) < card G.

(b) The following assertions are equivalent:
(A) G is down-directed,

(8) 1(6) = 1,
(©) G = N(G).

Proof. The assertion (a) follows from 2.2. Evidently the assertion (A) implies (B)
and (C) follows from the asertion (B).

Suppose that G = 9%(G) and denote ¢ the corresponding isomorphism G on ‘JT(E)
Let a,be G, a # b and let g € G. By 2.3, n, € ¢(a), g’ € G exist such that g’ < n,,
g’ £ g. According to 2.3, n, € ¢(b), g" € G exist such that g” < g’, g” < n,. Let us
put s,(a) = n,, s,(b) = n,. Then s, € ¢(a) x ¢(b), g" € A(s,), g" < g. According to
2.9, N € R(G) exists such that N > ¢(a), N = ¢(b). Since ¢ is an isomorphism G on

R(G), then ¢ '(N)e G, ¢ '(N) = a, ¢ (N) £ b are valid; consequently (A) holds.

3. SYSTEM OF LAYERS (G) FOR A SEMI-LATTICE G’

3.1. Let G'?) be a lower semi-lattice. Then N(G) is an upper semi-lattice. For
Ny, N, € W(G) we have sup (N4, N,) = U(ny A ny)(nyeNy, ny €Ny ng A ny > 0).

Proof. Let N\, N, € ER(G). According to 2.3, g’ € G and n, € N, exist for an arbi-
trary element g € G such that g’ < ¢, 9’ < n;. By 2.3, g” € G and n, € N, exist such
that g” < ¢’, 9" < n,. Let us put 5,(1) = ny, s,(2) = n,. Then s,e N; x N,, g"¢€
e A(s,), 9" £ g.

Let se Ny x N, A(s) = 0. Then s(1) A s(2) is the largest element of the set A(s)
and, according to 2.7, the set (s(1) A s(2)) is the least element of the set R(A(s)).

From 2.10 the mentioned assertion follows.

3.2. Let G’ be an atomic complete lower semi-lattice. Then N(G) is a complete
upper semi-lattice. For I # 0, N, e R(G) («eI) we have sup N,(tel) = U(An,(c €
el)(n,eN,, An(tel) > o).

Proof. Let I = 0, N, e R(G) for tel. Let g € G. Then an atom a € G’ exists such
that a < ¢. Since a is a minimal element of the set G, then, by 2.3, for any ¢ € I there
exists n, € N, such that n, = a. Let us put s5,(1) = n,. Then s, € SN, (tel) and we
have a € A(s,), a £ g.

Let s € SN,(t€1), n, = s(¢) for ¢ € 1. Then the element n = An,(t €1) is the largest
element of the set A(s). According to 2.7 and 2.10 we have sup N,(¢€I) and sup N (¢t €
el) = U(An(tel))(n,eN, Anftel) > o).

denotes Birkhoff’s ordinal operation of addition (see [1]).
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Remark. The assumption on atomicity cannot be omitted in the assumptions of the
assertion 3.2. If, namely, 9(G) is a complete upper semi-lattice, then it possesses the
largest element and from 2.8 it follows that G’ is atomic.

Definition 3.1. Let M < G. Let us put agb for a, b € M if there exist an integer n
and x;€M, z;€G for 1 £i < n such that z; £ x;, z; < x;,4, where x; = a,
X,+1 = b. The relation g is an equivalence. The decomposition on the set M cor-
responding to this equivalence will be called the g-decomposition on the set M. If G
is an upper semi-lattice and card M < N,, the set ¢(M) will stand for the set
U{Vm(m e R)} (R € %), where £ stands for the system of all classes of the g-decom-
position on M. (For M = @ we have ¢(0) = 0). For an integer n we define recurrently

0/(M) = 0(g,-1(M)), where go(M) = M.

3.3. Let G be an upper semi-lattice; N, N, € (G), card N, + card N, < X,.
Then there exists a non-negative integer 1 such that ¢(N; U N,) = inf (N,, N,).

Proof. Put M = N; U N,. In the case that the set g,(M) fails to have the property
(k) for a nonnegative integer k, then we have card g,(M) > card ¢, ;(M). Hence,
from this it follows that a nonnegative integer [ exists such that g,(M) has the property
(k). From 2.6 it follows that ¢,(M) € R(G), /(M) X Ny, ¢(M) X N,.

Let Ne R(G), N X N, N < N,, r € ¢(M). Let us put for a nonnegative integer ,
e{M) n A(r) = M,. For any x € M,(n nonnegative integer), y € N exists such that
x < y. For, if this were not the case, then the least nonnegative integer m existed
such that this assertion would fails to hold. Since N < N;, N < N,, we have m > 0.
Let x € M,,. Then x = V(t € T,) where T is a class of the g-decomposition of the
set g,,_ 1(M) which is also a class of the g-decomposition of the set M,,_;. According
to the assumption, for any te T,, there exists, notwithstanding, y,€ N such that
y, = t. Evidently for ¢, € T, we have y, = y,.. Thus, y, = x for any t € T, which
is a contradiction.

Thus, x, € N exists such that x, =r. Consequently N < ¢(M) from which ¢(M) =
= inf (N4, N,) follows. \

3.4. Let M, M, < G have the property (h) in G and let T be a class of the
g-decomposition of the set My U M,. Then card T < 1(G) + 1.

Proof. Let t, € T. For t € T there exists an integer n > 0 such that we have t; € T,
x;eGfor1 <i<nand x; £ t;_y, x; £ t;, where t, = 1. Let us denote d(f) such
a least integer n for t = t,, and for t = t, let us put d(¢) = 0.

Let te T — (t). Then the set {t'|#' e T, d(¢') = d(f) — 1, g € G exists such that
gst,g= t} is nonempty. Let us choose some element a(t) from this set. The set
{9]9€G,g < a(),g < t}is nonempty and let us choose some element b(t) (=b(f))
from this set and put B = b'(T — (t,)) (= {b(x) | x € T — (t,)}).

Put (ty, t;) = Lfort,,1,e M; U M, ift;,t,€ M, or t,,1,€ My, oty 1) = —1
in the opposite case.
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Since the sets M,, M, have the property (h) in G we have {y |y Z b({)} n T =
= {a(r), t} for t € T — (t,), and ¢(a(f), f) = —1. Hence, it follows that for a(f) =% ,
we have ¢(a[a(f)], f) = 1; consequently b[a(f)] # b(t), because a[a(f)] =+ ¢. Thus,
b is a one-to-one mapping of the set T — (t,) on B.

If there existed different elements f, 1, € T — (t,) and g € G such that g < b(t,),
g = b(t,), then we should have g < t,, g < t,, g < a(ty), g < a(t,) from whence
o(ty, 1) = —1. Since ¢(a(ty), t;) = @(a(t,), t,) = —1, we have o(a(t,), t;) =
= ¢(a(t,), t,) = 1; from this ¢, = a(t,), t, = a(t;) follows. Thus t; = a[a(t,)]
which is a contradiction. Thus, the set B has the property (h) and consequently
card B £ 1(G); from this, furthermore, the inequality card T < 1(G) + 1 follows.

4. SYSTEM OF LAYERS 9(G) FOR A DISTRIBUTIVE LATTICE G’

In this Section G’ 3) is a distributive lattice.

4.1. Let Ne N(G), a, be N. Then for ¢ < a v b, ce N we have either ¢ = a or
¢ = b.

Proof. If a+c=+b, then anc=bAc=0. Thus c=cA(avb)=
= (¢ A a) v (¢ A b) = o, which is a contradiction.

4.2. Let Ny € (G). Then, the following assertions are equivalent:

(A) N, eN(G), N, < Ny,
(B) N, =(N, — {a,b}) u(a v b) wherea,beN,a = bor N, = (N, — (c)) u
U (d) whered e G, d 3~ ¢, c€ N, and (c) € N(A(d)).

Proof. I. Let (B) be valid. If N, = (N; — (¢)) u (d), where d€ G, d 3> ¢, ce N4,
(c) e R(A(d)), then A(d)n N, = (c) and for xe G — Ny, x < d we have A(x) n
N N, = 0. According to 2.2 we have A(x) n N ¢ R(A(x)) and from 2.11 N, € B(G),
N, < N, follows.

Let us suppose that N, = (N, — {a, b}) U (x,) where a,be Ny, a + b, x, =
=a v b. Since a + b, we have x,€ G — N,. According to 4.1, A(xy) "N, =
= {a, b}. If there exists ¢ € A(X,) such that the set {a, b, ¢} has the property (k) in
the set A(x,), then it has the property (k) in the set G as well, and by 2.1, N € 0(G),
N 2 {a, b, c} exists. According to 4.1 we have ¢ = a or ¢ = b. Thus, A(xo) " N, €
€ N(A(xo))-

Let xeG — Ny, x <x,. Then we have A(x)nN,; < A(x,) n N, = {a, b}.
Having A(x) n N; = 0, then, by 2.2, A(x) n N, ¢ R(A(x)). If A(x) " N, = {a, b},
then x, = a v b < x which is a contradiction with the supposition. If A(x) " N; =
=(a), then x =xoAx=(avbax=(@arx)v(bax)=av(bax).In
the case of validity of b A x = o we would have x = a € N, which is a contradiction
with the assumption. Consequently b A x > 0. Asa A b = o, theset {a,b A x} S |
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< A(x) is two-element and has the property (h) in A(x). Thus, (a) ¢ R(A(x)). If
A(x) n Ny = (b), then it can be shown, in the same way, that (b) ¢ R(A(x)). Con-
sequently A(x) n Ny ¢ N(A(x)).

The assertion (A) follows from 2.11.

IL Let (A) hold. By 2.11 x, € G — N exists such that N, = (N; — A(x,)) U (x,).
If A(xo) "N, = {a, b}, where a = b, then according to I we have N = (N; —
—{a,b}) U (a v b) e N(G), N <K N,. Since a v b < xo, then N = N,. Thus
N, = N.

If A(xo) N Ny = (c), then by 2.11 (¢) € R(A(x,)). For x€ G, ¢ < x < x, we have
according to 2.11, (¢) = A(x) N Ny ¢ R(A(x)); thus y € A(x) exists such that y A ¢ =
= 0. As y € A(x,) is valid, too, (c) ¢ R(A(x,)) which is a contradiction. Thus x, > c.

Since N, < N, we have, according to 2.5, A(x,) n N; = 0, consequently (B) holds.

43. For 1 £i <4 let be N;e W(G), sup(N,,N;) = N,, inf(N,, N;) = N,,
Ny 3 N,. Then N; - N,.

Proof. I. Let N, = (N, — {a, b}) u(c) where a,beN,, a+b, c=a v b.
Since Ny = N3, d, ee N5 exist such that d = a, e 2 b. If d = ¢, then ¢ < d, and
consequently, N, = N;, which is impossible. Thus d =+ e.

Let us put N = (N3 — {d, e}) U (d v e). According to 4.2 we have N e 9(G).
N<N;. WehavecAa(dve)y=(crd)v(cneyzavb=cthusc<dve,
From this it follows that N < N,.

IL Let N, = (N, — (¢)) u(d), where deG, d> ¢, ceN, and (c) e N(A(d)).
Since N3 X N, e € N5 exists such that e 2 c. If fe A(d v e) f A e = o exists, we
havefromfvdsdvefvd=(fvdar(dve=(fardvdv(frev
v (d A €) = d; thus f < d. Since (c) € R(A(d)), there exists, according to 2.3, g’ €
€ A(d), g’ + osuchthat g’ < ¢, g’ <'f. Then g’ < eas well, which is a contradiction
to f A e = o. Consequently (e) € R(A(d v e)).

Let xeG, e<x=<dve Then csdAre<dAarx=<da(dve=d As
d>c, we have either c=d Axord=d A x.Ifc=d A x,thene=cvVv e=
=(dax)ve=(evdar(evx)=(evd Ax=x If d=d A x, we have
x = d;thus x = d v e, from whence x = d v e follows. If e = d v e, thend < e
and consequently N, > N,. Then sup (N,, N3) = N, # N, which is a contradiction.
Thus e < d v e, and consequently e < d v e.

According to 4.2, N = (N5 — (€)) U (e v d) e R(G), N < N;. Evidently we have
N X'N,, too.

IIL. By 4.2, I and 1, N € %(G), N < N3 and N < N, exists. From this N X N,
follows and consequently N = N, or N, = N;. If N, = N,, then N, > N3, and
consequently N, = N,, which is impossible. Thus Ny, < N;.

The assertion is proved.
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44. Let M = {m |‘me G, m not being the largest element in G, m A x > 0
for every element x € G}. The following assertions are equivalent:

(A) For any set N e %(G) which is not the least element in 9(G), there exists
N’ € N(G) such that N' < N.

(B) For any element me M, m’ € G exists such that m’ > m.

Proof. I. Let (A) hold and let m € M. Then (m) € 0(G) and, according to 2.7, (m)
is not the least element in N(G). For this reason N’ € N(G), N’ < (m) exists. From
4.2 it follows that N’ = (m'), where m’ € G, m’ > m.

II. Let(B)hold and let N € :(G), N not being the least element in R(G). If card N >
= 2, then by 4.2, N'e (G), N’ < N exist. If card N = 1, then N = (m), where
m e M, according to 2.7. Thus m’ € G, m’ > m exists. From 4.2 it follows that (m’) €
€ N(G), (m") < (m).

4.5. For Ny, N, € W(G), card N, + card N, < N, we have o(N; U N,) e R(G),
(N, UN,) = inf (N, N,). We have Vk(k e K) + Vk'(k' e K') for different classes
K, K’ of the g-decomposition of the set N, U N,.

Proof. If K, K’ are two different classes of the g-decomposition of the set N, U N,,
then Vk(k e K) A VK' (k'€ K') = o, because we have k A k' = o for ke K, k' e K'.
Consequently, o(N, u N,) has the property (k) in G and the first assertion follows
from 3.3.

4.6. Let N,e WG) for 1 <i <4, N, =sup(N, N;), N, = inf(N,, N3),
card N, + card N3 < N,. Then we have v, = v, A v3, v, = v, V V3, where v; =
=Vn(neN;) forl1 £i <4

Proof. From 3.1 v, = v, A v; follows. Given n, € N,, n, € N, exist such that
n, < ny. From this it follows that v, = v,. In the same way, it turns out that v, = v;.
From 2.6 it follows that (v, v v;) e R(G) and (v, v v3) X N,, (v v v3) X N,
Thus (v, v v3) < N, from which v, v v3 = v, follows. Consequently vy = v, v v3.

4.7. N(G) is a distributive lattice if and only if 1(G) = 2; W(G) is a modular
lattice if and only if 1(G) < 3.

Proof. I Let 1(G) £ 2. According to 3.1 and 3.3, %(G) is a lattice. Let 4, B, Ce
e N(G), S; = sup {4,inf(B, C)}, S, = inf {sup (4, B), sup (4, C)}. For proving
that R(G) is a distributive lattice it is sufficient to show that S; = S,.

According to 4.5 we have S, = g(sup (4, B) Usup (4, C)). Let neS;. Then,
by 3.1, we have n = a A d, where a€ 4, d einf (B, C). According to 4.5, d =
= Vi(t e T), where T'is a class of the g-decomposition of the set B U C. By 3.4 we
have card T £ 3. From 2.3 it follows that T B & @ & T n C. Thus we can assume
that T = {b,, b,, ¢}, where by, b,e B and ce C. Consequently n = (a A by) v
vV(aAby)v(anc)>o.
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a) Let a A by =a A b, =0. Then n=a A cesup(4, C), according to 3.1.
Consequently, n’ € S, exists such that n’ = n.

b) Let us assume that a A by > o.

a) Let a A ¢c=o0.1fa A by = a A by, then n = a A by esup (4, B) according
to 3.1. Consequently, n' € S, exists such that »n’ = n. If a A bynon Z a A b,,
thena A b, > oand (a A by) A (a A b,) = o, because by = b, and consequently,
b, A by, = 0. By 2.3, a’ € A exists such that a’ A ¢ > o. Hence it follows that the
set {a A by, a A by, a’ A ¢} = G is a three element set and possesses the property
(h) in G which is a contradiction.

B) Let a A ¢ > o. Since b; and ¢ belong to the same class T = {b,, b,, ¢} of the
o-decomposition of the set B u Cand b; = b, or by A b, = 0, wehave b, A ¢ > o.
Ifa A by A ¢ = o,then according to 2,3, there exists a’ € A suchthata’ A b; A ¢ >
> o. Evidently a = a’, thusa A @’ = 0. Then theset {a A bj,a A c,a’ Ac} =G
is a three element one and has the property (h) in G which is a contradiction. Thus
a A by A ¢ > o. From this it follows that a A b, a A ¢ belong to the same class
of the g-decomposition of the set sup (4, B) U sup (4, C), because by 3.1 we have
a A byesup(A4,B), a A cesup(4,C). Consequently, n’e S, exists. such that
nzZanaAb,n =anec

If a A b, > o, then it can be shown in the same way that n” € S, exists such that
n"ZaAby,, n"=Zanc Sincen =Zanec, n =anc we have n' = n”"; thus
n<n.

Ifanb,=othenn=(aAb)v(aac)<n

In this way it has been shown that S; = S,.

IL. Let 1(G) £ 3. Let us assume that N; e R(G), 1 < i <5 exist such that
N{>N3>N,> Ns, sup (N, 3)—sup (NZ,N4) Nl,mf Nz, 3) inf (N,, N,) =
= Ns. Let us put N; = {nl, nb, ni}, where ni, ny, nieG, 1 £i £5. We can
suppose that nj < nf =nj, nj=n} <nf<n} for 1 £j<3 Let us put

0; = V n for 1 i <5. According to 4.6 we have g, A 03 = g, A 04 = 0y,
=1

0,V 03 =0, V 6, = 05. Furthermore o, = 64 A 065 =0, A (0, v 03) = (04 A

A 6y) Vv (64 A 03) =0y vV 03 = 65 Thus o, = g5.

Let card N, = 2. Since N3 > N,, we can suppose that n} < nf, n} # nj. If
nt + n3, wehave n} = n{ A (n} v n3 v n3) = n{ A o, = n{, which is a contradic-
tion. Thus n} = n3. From this n} = n3 follows. If n} = n3, then n} = n} A (n} v
v oni v n‘Z‘) =nt Ao, = n‘f, which is a contradiction. Consequently nd % nl.
According to 3.1, nj = n} A nf and n} = n? A n3 If it were n? = n2, then n} =
= nj A n§ = nj, which is impossible because n; < n3, nj < nd dlld nd =+ ni.
Consequently ni # n3. Since ny = n% # n3, we get nj non = nj, n non = nj and
n1 A n3 =n3 A nj =o. According to 3.1, nf A nj =0 or n? A n; €N, for

k,1 < 3. Thus,n; And=mn; Any=n3 Any=n} Any=nlaAni=ninA

Anf o and n A n} > o holds if and only if n} = nj (i = 1,2, 3), and n} A
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A n3 > o if and only if n; = nj (j = 1, 3). From this it is easy to see that the sets
{n, n}} and {n3, n3} lie in different classes T; and T of the g-decomposition of the
set N, U N;. According to 4.5, n] = Vi(te Ty) + Vi(t € T;) = n3, which is a con-
tradiction.

Consequently, card N, = 1, so that n} = n} =n§ = g,, n} = n} = n} = o,.
Since o, = g5, we have card N5 = 2. We can suppose that n3 % n3 # n3. Then
ni < n! % nl is valid. According to 3.1, n A g, = n}, n3 A 6, = n} and n? A
A 04 = ni. Thus ni + n? + n3. Consequently n; A nj =o0 or n? A n; €N,
holds for 1 < k, 1 < 3 by 3.1. From this it is easy to see that the sets {n, nj} and
{n3, n3} lie in different classes T; and T, of the g-decomposition of the set N, U Nj.
According to 4.5, n] = Vi(te T;) + Vi(t € T,) = n3 which is a contradiction.

From this, from 3.1 and 3.3, it follows that 9(G) is a modular lattice.

IIL. Let 1(G) = 3. Then there exists a set Ny € %(G) which contains mutually
different elements a, b, ¢. Let us put N, = (N, — {a,b})u(a v b), Ny = (N, —
—{a,c})u(av e N,=(N, —{b,c))u(bvec)Ns=(Ny—{a,bvc})u(av
v bvc) By 42, N;e N(G) for 2 <i £ 5. Evidently, Ny X N,, N5y < N;. Let
N <X N,, N X N;. Then n, n, € N exist such that n;y =2 a v b, n, = a v c. Since
n, = a, n, = a, we have n; = n,, from whichn, = a v b v c follows; consequent-
Iy, N £ N, which means that N5 = inf (N, N;). From 3.1 we get that sup (N,, N,) =
= sup (N3, N,) = N,. Since N, = N, we have sup {N,, inf (N,, N;)} = N, whereas
inf {sup (N5, N,), sup (N3, N,)} = N,. Consequently, R(G) fails to be a distributive
lattice.

IV. Let 1(G) = 4. Then there exists a set Ny € %(G) which contains mutually
different elements a, b, ¢,d. Let us put N, = (N, — {a,b})u(a v b), N; =
=N, —{c,d)u(cvd),N,=(Ny—{a,c})u(av c) Ns=(N,— {b,d}) v
ubvd),Neg=(Ns—{avbevd)u(@vbvevd)=(N,—{abcd})u
(@av bvevd).By42 N;eR(G) for 2 £ i <6, and evidently, Ng < N,, Ny =
=< N,. Let NXN,, NXNs. Then n, n,,n;eN exist such that n;, = a v b,
n,=ave nyg=bvd. Since ny 2a, ny =2b, n, Za, ny = b, we have n;, =
= n, = n3, from whence n; = av bv cv d follows; consequently, N < N,
which means that Ng = inf(N,, N5). According to 3.1, sup (N3, Ns) = N;. We
have N, = N, > N; = Ng. As sup {N3, inf (N,, N5)} = N3 &= N, = inf {sup (N,
Ns), N,}, 0(G) is not a modular lattice. ’

Thus the assertion is proved.
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Remark. If G is the set of all non-void subsets of a set P & @ ordered by means of

inclusion (see example 2.1), then the assertion 4.7 is known and can be proved without
difficulties.
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