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MULTIPLE LAPLACE INTEGRAL

JAN KUCERA, Praha
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In this paper we will build up a theory of multiple Laplace integrals analogous to
the L,-theory of Fourier integrals.
For brevity we use the following notation. If & = («y, a5, ..., &,) is a multiindex

n
(43

(o, non-negative integer, k = 1,2, ...,n), and x e R", then we write x* = [] x*,
n k=1

lo| = Y, o4 By E we denote the multiindex E = (1, 1, ..., 1). For a, b € R", we write

k=1

a < b, resp. a £ b, instead of a; < b, resp. ay < b, k=1,2,...,n. If a, be R",
.
a < b, we write {a, b)f = I1<as byy. If an integration of a function F on a set

{u eC":Reu = a}, where C is the set of all complex numbers and o € R”, is to be
performed then we use the notation [3*i° F(u) du.

Let us mention some results of the Fourier transform theory which will be needed
later. We will use the definition of Fourier transform proposed by Laurent Schwartz

in [3]: Let f € L,(R"); then
f f(x) exp (—2ni¢, x) dx > F(¢), R - oo,
{=R,R)E

converges in the topology of L,(R") to. an element F € L,(R") which is called the
Fourier image of f and denoted by Zf = F. Conversely, if F = Zf, f € L,(R"), then

f F(¢) exp (2mié, ) d¢ — f(x), R - oo,
{=R,RYE
in the topology of L,(R"). We write f = # ~'F.
Theorem A. Fourier transform Z :L,(R") — Ly(R") is a unitary mapping.
(By a unitary mapping we understand a homeomorphism of a Hilbert space onto

a Hilbert space which preserves the inner product).
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Theorem B. Let f e Ly(R"), a, b€ R", a < b; then

J £(x) dx = f (#f) (f)ﬁ exp (2nib,&,) — exp (2niat,) gc.
< R® k=1

ab>E 2ni&,

Definition. Let fe L;,(<0, o)), (locally Lebesgue integrable function on the
interval <0, co)"). If, for some u € C", the improper integral

(1) LO w)"f(x) exp (—u, x) dx

exists then we call it Laplace integral of f and denote it by £f. The mapping f - Zf
is called Laplace transform.

Now we recall some results of the Laplace transform theory for functions of several
variables.

Definition. We shall say that the integral (1) boundedly converges at a point u € C",
if the function

(p(a)zf f(x)exp (—u, x)dx, ae<0, )",
{0,a>E
is bounded on <0, o0)" and lim ¢(a) exists.

The set of all points u € C" at which (1) boundedly converges is called the domain
of convergence and denoted by ;.

Theorem C. ue % ;= {ve C": Re (v — u) > 0} = .

Theorem D. Let A, + O; then Lf is holomorphic on int X and for each multi-
index o we have

<;—u)a($f ) () = (=) 2(x*f(x)) (u), weintH,.

Theorem E. Let ue A, and let an ae(0, oo)" exist such that, for all multi-
indices a,

(ZLf) (uy + ayay, uy + aya,, ... u, + o,a,) = 0.
Then f(x) = 0 a.e. on <0, 0 )".

Theorem F. Let u € C" and the function

@(x) = exp (—u, x) f(&)dé, xe<0, o),

<0,x>E

be bounded on {0, )". Then {ve C": Re (v — u) > 0} = KA.
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Theorem G. Let a function f be locally absolutely continuous in the variable x,
on (0,00) for almost all (x,, X3, ..., x,) € (0, )"~ 1. Let us write g = 9f[0x, and let
ue A, Reu > 0. Then the integral Z(f(x) — f(0, x5, ..., x,)) (v) boundedly con-
verges for allve C", Re (v — u) > 0, and we have

(2)(0) = v L) = S0 %31 %)) ().

Lemma 1. Let y € R" and let a function F of n complex variables be holomorphic
for Reu > y and bounded on the set {u e C":Reu > 9} for each 3 > y. Let us
denote

n rot+ico
(2 ¢(x,a)=<%)f u?EF(u)exp (u,x)du, o>y, >0, xeR".
i

ag—iw

Then: 1) &(x, o) does not depend on o.
2) &(x, 0) = 0 for x ¢ (0, 0 )".

Proof. 1) Let 9 > y, 3 > 0. It is sufficient to show that &(x, 6) = ®(x, 9, 75, ...
..., 6,). Let, for instance, 3; > o,. For every R; > 0 we define curves in complex
plane by

ry ={u, :Reu, €{oy,9,), Imu,; =R},

r,={u:Reu; =9, Imu, e (—Ry, R},
Iy ={u;:Reu,eoy, %), Imu; = —R,},
r,={uy:Reu; =0, Imu; e (—Ry, RD}.

If we orientate the curves I',, r = 1, 2, 3, 4, appropriately, we get

J u~?E F(u) exp (u, x) du; = 0.
ryurauraurly

Let the constant x majorize the function |F| on the set {u € C": Re u = ¢}; then

|o(x, 0) — &(x, 34, 03, ..., 0,)| =

1 n ro2tio on+ioo
lim (—) J‘ e J' (I u~?E F(u) exp (u, x)) du
Rimo \27i) [ o, i on—ico \J I'1uls

n o 91 B aOkXk
2 (He"k*kj do ) limj Y <ot S im0,

(2m)y \k=2 0 02 + 12 Rivw )4, A2+ R T k=2 |0y Rivoo Ry

2) &(x, o) is continuous in x on R". Hence, it is sufficient to prove that &(x, ¢) = 0
for x ¢ 0, o0)". Let, for instance, x; < 0. Let us choose o, > max (0, y;), Ry > 0.

=

IIA
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Then if we put u; = R, exp (ip), Re uy = o4, we get

o1+ iRy
J uy 2F(u) exp (ugx,) du,| =

01— iRy

[}
J (R, exp (ip))™* F(R, exp (i), us, ..., u,) exp (x;R, exp (ip)) dp| =
-0

< Ie exp (x4R; cos @) do < % n
= 14v1 = .
R J-e R,

This implies that

a1+ i
J uy? F(u) exp (uyx,)du; =0 and &(x,0) =0.

o1—ioo

Lemma 2. Let the assumptions of Lemma 1 be satisfied. Let a function f € L;,,C(Rn)
exist such that

(3) o(x) = (J f(z) dz) dy, xeR",
<0,x>E <0,p>E
(here we write ®(x) = &(x, 6) due to Lemma 1). Moreover, assume that 9 G_JFJ,
§>193>0.
Then F(u) = (£f) (u), Reu > 9.
Proof. According to Theorem C the assumption 9 6.7_{; implies that {ueCn:

:Reu > 9} = A ;; consequently, by Theorem G, {u e C": Reu > 9} c #g. Let
us choose ¢ > 9; then

®(x) = exp (o, x)j (o + 2mit)™2E F(o + 2mit) exp (2nit, x) dt .
Rn

We have (o + 2mit)” 2% F(o + 2mit) € L,(R") and, according to the mentioned,
Fourier L,-theory,

4) exp (—a, x) ®(x) exp (—2mir, x) dx - F(o + 2nir)

R - o0
{—=R,R)E (O' + ZRiT)ZE, ’

in the topology of LZ(R"). Since we already know that the integral on the left side
of (4) converges, we can write :

(Zf) (6 + 2mit) = (0 + 2nit)** (L P) (o + 2mit) =
F(o + 2nit)

= (o + 2mit)*E.
( ) (o + 2mit)*E

= F(o + 2nir) .
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Lemma 3. Let the assumptions of Lemma 1 be satisfied. Let ¢ >y, 6 > 0, re
€ {1,2) exist such that [ |F(o + it)|" dt < + oo. Then there exists a function
fe L, (R")such that 6 € A ; and F(u) = (£f) (u), Reu > o.

Proof. We verify the assumptions of Lemma 2. First, let us show that
(5) (6 + it)"E F(o + it) e Ly(R").

This is trivial for r = 1; thus, let » > 1. Then, according to Holder’s inequality,

(o + it)®
This implies the existence of the derivative ¥(x) = (0/dx)® ¢(x) continuous on R,
vanishing on R" — (0, o), for which

(6) ¥(x) = j (o + 2nit) E F(o + 2nit)exp (¢ + 2mit, x) dt
Rn
holds. Further, we can write:

() ep(=0,x) ¥() = exp (=0, %) [¥() = T, x5, %) +
+ Y %(0,0, x5, ..., x,) — ... + (=1 ¥(0)] =

- j (o + 2nit)E Flo + 2nit) [] (exp (2nityxy) — 1) dt =
Rn k=1

—( Fo+ 2nir)ﬁ 2nit, & exp (2mitx,) — 1 dr
R k=1 0, + 27miT k=1 2miTy

In the case r = 1 it is obvious that we can differentiate (7) with respect to x and the
derivative (8/0x)t (exp (— o, x) ¥(x)) is continuous on R™.
In the case r > 1 we have

J IF(G + 2nir)‘2 dr =
Rn '

|F(o + 2mit)|"dr < + 00,
RPI

where % majorizes |F| on the set {u € C" : Re u = o}. Hence,

G(x) = F(o + 2min) [] —2% e L(RY),
k=1 0, + 2mit,

and, in accordance with Fourier L,-theory, there is a function g e LZ(R") such that
G =%g.
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According to theorem B,

" 2mi -1
J g(x) dx = j 6()[] 2P (2miTyxy) dt = &P (g, ) w(x) .
0,x)E R k=1

27iTy
Thus, we have proved the existence of a function fe L,,,C(R") satisfying (3). It
remains to verify that o € ;. From (5), (6) it follows that
lexp (— o, x) ¥(x)| < J‘ |(6 + 2mit)" F(o + 2mit)|dt < +o0, xeR",
RVI

and, according to theorem F, the assumption ¢ € & holds.

Lemma 4. Let y € R” and let a function F of n complex variables be holomorphic
for Reu > 7. Let an r € {1, 2) exist such that

(8) sup | |F(o + it)|"dr < +o0.
>y JRn

Then there exists f € Ly, (R") such that y € &, and F(u) = (£f) (u), Reu > y.

Proof. 1. Let y > 0 then according to Lemma 3 and Theorem E it suffices to
prove that, for every 9 > y, the function F is bounded on {u eC":Reu = 9}. Let
us choose u, Reu = 9, ee (0, min (% — 7)), ¢ = (01, 02 ..., 0)> & €(0,8), k =

k

=1,2,...,n. Let % = sup [ga |[F(c + i7)|" dz. Then
o>y

Fu) = (— (v~ w) P F(o) do = (- F(u + 0e*) do,
20i) ) o= | = e 21t} J ¢0,20yn

k=1,2,...,

(362 |F(u)| < (H J 0 dgk) F)| < <i> J [F(u + 0e™)|. 0" de de.
k=1Jo 2n €0,27)" X (0,e)n

Further we distinguish two cases: i. r = 1. Then

(1% |[F(u)] = (L) j |F(x + iy)| dx d¥ =
2n |(xk+iy1c)-nuk|§e

k=1,2

= ( 51; ) J‘I?_zﬁ( Lan(x + iy)| dy) dx < % (9"

k=1
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ii. r > 1. Then according to Holder’s inequality

(16 |[F(u)| = <i> j |F(u + 0e'®)| . @/ME . o1~ 1NEdg do <
21/ J(o,2m3m %<0,y

1\" . 1/r 1-1/r
(—) (f |F(u + 0e™)|" oF do dg) (J ofdo dQ) <
2n €0,27)nx<0,edn €0,27ynx (0,e)"
1Y n\1/r 2\n(1—-1/r) 2\n 2y tr
< (2—) (oe(2e))!" . (me?) = (1&%) <x (——)) .
b1 g

2. Letus puty, = (max (yy, 0), ..., max (y, 0)), y- =y, — y,and for Reu > y,
define a function G(u) = F(u — y_), Then according to the first part of this proof
there exists such g € L, (R") that y, € %, and G(u) = (Zg) (u), Reu > y,.

If we put f(x) = g(x)exp (—y-,x), x€R", then fe L, (R"), yeH, and for
Reu >y it holds (£f)(u) = (£g) (u + y-) = G(u + y_) = F(u). The proof is
complete. : ‘

I\

Definition. Let y € R". Then we denote L, , the set of all complex functions f,
measurable on 0, o), for which

)] Lo . If(x).l2 exp (—2y,x)dx < +o0.

By H, , we denote the set of all functions F of n complex variables, holomorphic for
Re u > v, for which

10 sup | |F(o + i7)|*dt < +o0.
(10) |F(o + ir)]

a>y R"
Lemma 5. Let y € R" be given. Then (L, ,) = H,,,.

Proof. 1. Let fe L, ,; then for ¢ > y we have

j |f(x)| exp (=0, x) dx <
{0,00)"

1/2

< ( J CEIES dx>”2 . ( I e (e =) dx) < +m.

Hence, y € 4, and, according to Theorem D, the function F = Zf is holomorphic
on the set {u eC":Reu > 'y}. According to Parseval’s equality for Fourier trans-
form,

(11) J F()[2 exp (=20, x) dx = (i) f |F(o + i0)]? de .
<0,00)m 2n) Jgn
Then the inequality (10) is an immediate consequence of (11).
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2. Let F € H, ,; then, according to Lemma 4, there is a function f e Ly,(R") such
that y € #, and F(u) = (£f) (u), Re u > 7. Then the inequality (9) follows imme-
diately from (11).

Lemma 6. Let y € R" be given. Then,
1. for every function F € H, , there exists a limit lim F(o + it) in the topo-

Or Yt
k=1,2,..., n

logy of Ly(R"). Let us denote this limit by F(y + it).
2. the function ¢(0) = [ga |[F(o + it)|? dt is continuous and nonincreasing in all
its variables on the set {c € R" : ¢ 2 y}. In particular,

sup | |F(o + it)|*dz =J |F(y + it)|* dr.
Rn

o>y Jpn

3. L, ,, resp. H, ,, is a Hilbert space with an inner product

(12) (f, ) = j S(6) g exp (=20, %) dx, figeLs,,
<0,00)"

resp.

(13) (F, G)y = G—) f F(y + it) Gy + i) dt, F,GeH,,.
) Jgn

Proof. 1. Let F € H, ,; according to Lemma 5 there is fe L, ,, Zf < F, and for
o > 7 the equality (11) holds. This implies that

[F(oy + it) — F(op + i1)|7,am =

= (2n)" B )ﬂ]f(x)l2 (exp (—oy, x) — exp (=05, x))*dx > 0,

2. This is an immediate consequence of (11).

3. The statement concerning L, , is obvious. Let us show that {_ with the
inner product (13) is complete. Let us have a sequence F, e H,» p's 1,2,..,
IF, = Folu,, >0, as p,q—> 0. Let us take f,eL,, such thay Zf, = F,
p=1,2,... Then

1\ . .
(14) IF, - F‘IHZIZ.V = Slir; <£) f |F(c + it) — F (o + it)|]? dv
o Rn
— sup J 1,(2) = £,)|? exp (~ 20, x) dx =
a>y <0,0)"

~ [ 10 10 exp (-2 0
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Hence, there is fe L, such that f, » f, p - oo, in the topology of L, ,. Then
Zf = F e H,, and from (14) ti follows that |F, — F||H,, - 0, p — co.

Theorem. Let y € R" be given. Then Laplace transform % : L, , - H, , is a unitary
mapping.
Proof. According to Lemmas 5 and 6 we have only to show that

f’ g eLZ,y = (f’ g)LZ,y = (’gf’ gg)Hl,v :

This, however, is exactly Parseval’s equality for Fourier transform f(x) exp (-7, x) -
- (Zf) (y + in).
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