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DECOMPOSITIONS OF THE PLANE INTO SETS,
AND COVERINGS OF THE PLANE WITH CURVES¥)

FREDERICK BAGEMIHL, Milwaukee

(Received April 12, 1967)

This paper provides complete answers, involving the position of the cardinal
number of the continuum in the scale of alephs, to the following two questions con-
cerning the plane.

Let s and ¢ be integers with s = 2 and ¢ = 0. Given s directions in the plane, can
the plane be decomposed into s sets such that every line having the j th of the s given
directions intersects the j th set in less than ¥, points?

The answer is: if, and only if, 2% < N, ,_,.

The plane is not the union of finitely many curves. It is, however, the union of
enumerably many curves, but the “y-axes” of these curves may make up enumerably
many different directions. Is the plane the union of at most ¥, curves, each of which
has its ““y-axis” in one of s given directions?

The aswer is: if, and only if, 2% < N,,,_,.

We now proceed to a more precise and formal treatment of these matters.

Denote by P the set of all points in the Euclidean plane. Supposet that 0,, 0,, ...
is an ordinary finite or infinite sequence of distinct unsensed directions in the plane,
and that m,, m,, ... are cardinal numbers. We define the relation

P =E(0y; <m) U Ey(0,; <my)u...

to mean that P is the union of the sets Ey, E,, ..., where, for j = 1, 2, ..., E; intersects
every straight line with direction 0; in fewer than m; points.

Consider the following propositions, where n is a natural number and k =
=0,1,2,...,n + 1:

(H,) 2™ = N, ;
(Qﬁ) P= E1(01; <N u E2(92§ < Nk) V...V En+2-k(0n+2—k; < Nk) 5
(B::) P = El(ol; <Ry U Ey(0,; < Nk+1) U VE 1 (0425 < Nn+1)'

*) Supported by the U.S. Army Research Office-Durham.
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We are going to prove the following theorems concerning decompositions of the
plane:

Theorem 1. Let n be a natural number, and suppose that 0,,0,,...,0,,, are
n + 2 distinct directions in the plane. Then

(H) = (0" (k=0,1,...n+1).

Theorem 2. Let n be natural number, k be any one of the numbers 0,1, ...,n + 1,
and 0,0,,...,0,,,_, be n + 2 — k distinct directions in the plane. Then

(B2) = (H,) .

Since it is evident that (Qf‘,) = (Bﬁ), we have, as a consequence of these theorems,

Corollary 1. (H,) < (Q¥) (n = 1,2, ...; k=0, 1,...,n + 1).

For k = 0, Theorem 1 becomes a theorem proved by DAVIES [2, p. 278].

For n =1 and k = 1, Corollary 1 reduces essentially to a result obtained by
SIERPINSKI [ 5, pp. 9, 10].

For n =2 and k = 1, Theorem 1 is formally analogous to a theorem about
Euclidean three-dimensional space proved by Sierpifiski [6, p. 6, Theorem 3].

For k = 0, Theorem 2 is a special case of a theorem proved by Bagemihl [1,
Theorem 1] which in turn generalizes a result due to Davies [2, p. 277].

Call a set C of points in the plane a curve, if every line with some fixed direction 6
intersects C in exactly one point; we shall then call 8 an axial direction of C.

MAZURKIEWICZ proved [4] that P is not the union of finitely many curves.

Proposition (Q1) is equivalent (see [5, pp. 11, 12]) to the assertion that, if 0y, 0,
are two distinct directions, then P is the union of enumerably many curves, each of
which has either 0, or 0, as an axial direction; this assertion, in turn, is equivalent
[5, p. 12] to (H,), in view of Corollary 1 for n = 1 and k = 1.

Davies has shown [3], without the use of any assumption concerning 2% that P
is the union of enumerably many curves.

Now we observe that for k = 1,2, ..., n + 1 the proposition (Q) is equivalent to
the following proposition:

(C¥) P is the union of at most N,_, curves, each of which has one of 0y, 0,, ...
ves 0,4 2_1 as an axial direction.

Hence, in view of Corollary 1, we have
Corollary 2. (H,) <= (CH)(n=1,2,..;k=1,2,..,n + 1).
If we take k = 1in Corollary 2, and take into account the theorem of Mazurkiewicz

quoted above, we obtain the following result about covering the plane with enumer-
ably many curves:
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Corollary 3. For n = 1,2, 3, ..., P is the union of enumerably many curves, each
of which has one of n + 1 distinct directions as an axial direction, if, and only
if, (H,) is true.

For n = 1, Corollary 3 reduces to the second result about curves quoted above.

We turn now to the proofs of Theorems 1 and 2.

Proof of Theorem 1. As we remarked earlier, the case k = 0 has already been
proved. Furthermore, for k = n + 1, Theorem 1 is obviously true. Hence we may
assume that 1 < k < n.

As we noted before, the theorem is true for n = 1. Suppose now that n > 1 and
that we have proved the validity of the implication

(Hm) = (Q’,‘n) (k =1,..., m)

for every natural number m < n. We shall show that

(H)=(0%9) (k=1,..,n),

and this will complete the proof of Theorem 1 by induction.

Instead of assuming (H,), we may assume that 2%° = X,. For if 2% < N, then
(H,-,) is true; in view of our induction hypothesis, (Qk_1) is true, for k = 1, ..., n;
and evidently (Q%Z}) implies (Q%) (k = 1, ..., n).

Assume, then, that 2% = N,. For k = n, (Q}) asserts that

P = E,(0;; < 2%) U Ey(0,; < 2™,

and (essentially) according to Sierpiiiski [5, p. 9, Lemma], this is true. Hence, we
may further restrict ourselves to establishing the truth of (Q¥) for k = 1,...,n — L.

The remainder of the proof is essentially an appropriate elaboration of an argument
given by Davies 2, pp. 278 —280].

Fix k in the range 1 £ k < n — 1. A line in the plane is called special provided
that it has one of the directions 0, ..., 0,,,_,- A set N of special lines is called a net-
work provided that whenever two of the special lines through a point p belong to N
so do all the special lines through p. As Davies shows [2, p- 278, Lemma 1], if M is
an infinite set of special lines, then the smallest network N containing M exists and
is a set having the same cardinal number as M.

We now prove the following

Lemma. Let m be an integer satisfying k < m < n. If N is a network whose
cardinal number is N,,, then N can be ordered by a relation < with the following
property:

If e N, then there exist at most N,_, systems of m — k + 1 elements 1, ...

vos by—g+1 0f N such that I, 1,, ..., 1, i+ are concurrent and

lm—k+1 < <ll <l.
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We prove this lemma by induction on m.
If N is a network whose cardinal number is X, then N can be well-ordered by some
relation < as a transfinite sequence of type w;:

ko <ky<..<ke<.. ((<w).

Ifle N, then | = k, for some # < w,. Hence, there exist at most ¥, _, systems of one
element /; e N for which I, <[, namely the elements k; of N with £ < #. This
proves the lemma for m = k.
Now suppose the lemma is true for some m satisfying k < m < n. Let N be
a network whose cardinal number is ¥, ; ;. Then N can be well-ordered as a transfinite
sequence of type @, 4 :
ko kyy ooy ks oo (€< @py) .

For every ordinal number « satisfying o,, < « < ®,,+1, denote by N(oc) the smallest
network containing all the lines k; (8 < «). Then the cardinal number of N(x) is N,
and because of our current supposition, N(oc) can be ordered by a relation <,
possessing the property stated in the lemma. Given any line k € N, denote by k(o)
the least ordinal number « satisfying ,, < & < @,4+, for which k € N(«). For any
two distinct lines g, h in N, write g < h provided that either «(g) < «(h) or o(g) =
= a(h) = awand g <, h. Then the relation < orders N.

To complete the proof of the lemma, let I € N, and let I, ..., [,,_,+, be a system
of m — k + 2 elements of N such that [, I, ..., I,,_;+, are concurrent and

lm—k+2 < lm—k+1 '< e < ll < l-
According to the definition of the relation <, we must have

olyis2) < lpsss) < - < oAly) < a(l).

The first inequality implies that N(«(l,—x+2)) S N(#(lu—g+1)), 50 that both I, x5
and I,,_y+, belong to N(o(/,—x+1)), and since this set is a network, it contains all the
special lines through the point I, 442 O g+ Hence e N(a(l,_4,)), Which
implies that ol) < a(l,,_;4,)- But then

Wlpgs1) = ... = ofly) = (]

If we set a(l) = «, then all the concurrent lines I, Iy, ..., l,,_; belong to N(«), and
it follows from the definition of < that

lm—-k+1 <a"' <a ll '<ul' ‘

Since the relation <, possesses the property stated in the Lemma, there are at most
Ny -1 such systems Iy, ..., I, _; 1, and for each such system, there are only finitely
many special lines ,-r+» through their point of intersection. This completes the
induction.
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Now to finish the proof of Theorem 1, we define thesets E; (j = 1,...,n + 2 — k).
The set of all special lines in the plane is a network N, and our assumption that
2% — N, implies that the cardinal number of this network is N,. According to the
lemma with m = n, N can be ordered by a relation < possessing the property
described in the lemma. If p € P, denote by p(0) the line through p with direction 6.
We assign p to the set E; provided that

p(0)<p0;) (i=1,...n+2—k i=*})).
Then

n+2-k
P=U E.
j=1
Suppose finally that I is any special line. Then [ has a direction 0 ;» where j is one
of the numbers 1,...,n +2 — k. If INE; 0, let peln E; Then I = p(0)),
and hence by the definition of E;, if the n + 1 — klines p(6,) (i = 1,...,n + 2 — k;
i+ j) are suitably labzled I, ..., [, 44, then I, I, ..., I,_, ., are concurrent and

ln—k+1 < e < ll < l

By the lemma, there are at most ¥, _; such systems I, ..., l,_, ., and hence there are
at most N,_, points p el n E;. But this means that (Qf) is true, and Theorem 1 is
proved.

Proof of Theorem 2. As we have already remarked, Theorem 2 is already known
to be true for k = 0, so that we have

(B2) = (H,) -

Assume that k is one of the numbers 1, 2, ..., n + 1, and that (B',i) is true. This means
that
P = E1(91§ <N u E2(92§ < Nk+l) V...V En+2—k(9n+2—k; < Nn+1)‘

Let 0,43k Onsa—po --+> Ons1, 0,42 be k distinct directions in the plane, each of which

is different from every one of the directions 04, 0,, ..., 0, ,_,, and let the k sets
F1=F2=....=Fk=®.

Then

P=F(0pr3-15 <) UF(0p1a-ps <1)U...UF0,4,; < 1) UE0;; <§)u
U Ey(03; <Nei)u...u EpioiOnsz-is < Ny 1)
which implies that

P =Fi(043-15 <No) U Fo0, 14— <N)) U ... U Fi0125 < N p) v
Y E1(01§ < Nk) Y E2(92§ < Nk+1) V...V En+2-k(0n+2—k; Nn+l) >

and since this asserts that (Qy) is true, it follows that (H,,) is true.
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