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CLASSES OF CONTINUOUS FUNCTIONS
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In this paper the &, sequentially regular convergence spaces Las well as the &,
sequential envelopes of such spaces are defined and the existence of such envelopes
proved, &, being a subclass of the class of all functions continuous on L. The theory
of &, sequential envelope is applied to algebras of sets A in the case when &, is the
class of all probability measures on A.

According to Cech-Stone compactification theorem each continuous function f
defined on a completely regular space P such that 0 < f(x) < 1, x € P, can be con-
tinuously extended on a compactification f(P) of P. It is well known that each
probability measure defined on an algebra of sets A can be extended onto the
o-algebra S(A) generated by A. The problem [1] arises as follows: To define analo-
gous notions as complete regularity and Cech-Stone compactification for systems of
sets in order to get S(A) as an envelope of A. The solution of this problem leads to
the notion of & sequentially regular convergence spaces and % , sequential envelopes
of such spaces.

In the section I the &, sequential regularity of a convergence space Lis defined,
F o being a subclass of the class & of all continuous functions on L. Further the
definition of an &, sequential envelope is given and it is proved that each &,
sequentially regular space has an &, sequential envelope. In the section II it is shown
that each algebra of sets A is a 2 sequentially regular convergence space, 2 denoting
the class of all probability measures, and it is proved that the o-algebra S(A) generated
by A is a # sequential envelope of A. An example of a set algebra F is given showing
that the & sequential envelope can substantially differ from the £ sequential envelope
of F.

L

A convergence space (L, £, 1) is a point set L on which a closure operation 1 is
defined by means of a convergence £ on L. The convergence £ is the set of elements
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({x4}, x) where {x,} is a sequence of points x, € Land x € L, fulfilling the properties:
({x.}, x) € 2 and ({x,}, y) € & implies x = y,
({x}, x) € & for each x e L,
({x4}, x) € £ implies ({x,,}, x) € & for each subsequence {x, } of {x,}.

Instead of ({x,}, x) € £ we write lim x,, = x. The closure 24 of a set A = Lis the
set of all points lim x, € Lsuch that Jx, = A. It is easy to see that Ax = x for each
xeL, (AuB)=2A40U B and A < B implies A = A4 < AB. In convergence
spaces the axiom of the closed closure AAA = 14 need not be satisfied. It is possible to

construct non decreasing sequences of successive closures A°4 where A°A = |J 144
n<g

and 1°4 = A. The set A°* 4 is the smallest closed set containing A4 as a subset, w, being

the least uncountable ordinal. We say that A is sequentially dense in B if 2“4 = B.

Examples. The sets R, of rational and R of real numbers with the usual con-
vergence. The convergence Euclidean space (E, €, ¢) (of finite or infinite dimension)
with the coordinatewise convergence on E defined by means of the usual convergence
on R. The system of sets (X, L, l) with the convergence £ consisting of all elements
({4,}, A)such that A=U N4, =N U4,

k=1 n2k k=1 n2k

A map g on a convergence space (L, £, 1) into a convergence space (M, I, p) is
continuous at a point x, € Lif lim x, = x, in Limplies lim g(x,,) = g(x) in M, {x,}
being a suitable subsequence of {x,}. It is easy to see that a real valued function f on L
into R is continuous on Lif and only if lim x, = x implies lim f(x,) = f(x) for each
point x € L. The class of all continuous real valued functions on L will be denoted
Z(L) or simply Z.

In [1] I defined the notion of a sequentially regular space. Now we are going to
generalize this notion as follows'). Let Lbe a convergence space and &, a subclass
of & (L) The space Lis &, sequentially regular if for any point x, € Land any se-
quence of points x, € Lno subsequence of which converges to x, there is a continuous
function f € &, such that {f(x,)} does not converge to f(x,). Now we shall prove

Theorem 1. Each &, sequentially regular space is homeomorphic to a subspace
of the convergence Euclidean space (E, €, ¢) of the dimension®) card %,

Proof. Let &, consist of all f,, « € I, I being an index set of the same power as % ,.
Consider the map @o(x) = (f,(x)).r on Linto (E, €, €). Then ¢, is 2 homeomorphism
on Lonto the subspace @o(L) of (E, €, ¢). The proof of this assertion is analogous as
in [1] and may be omitted.

1) Instead of &, the Greek letter a is used in [1]. If o = &, then the symbol F , will be
omitted and we shall speak simply of a sequentially regular space instead of an & sequentially
regular space; the same concerns the # sequential envelope.

2) The power of a set 4 will be denoted by card 4.
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The homeomorphism ¢, will be called an %, homeomorphism®) and always
denoted by a thick Greek letter.

In [1] I defined the sequential envelope of a sequentially regular space (L, £, 1)
to be a largest sequentially regular overspace S of Lsuch that Lis sequentially dense
in S and each continuous function on Lcan be continuously extended onto S. Now
we shall generalize this definition.

Definition. Let (L, €, 1) be an &, sequentially regular space. Let (S, S, o) be
a convergence space. We say that S is an &, sequential envelope of the space L if

1° Lis a sequentially dense subspace of S.

2° Each continuous function f € #,(L) can be extended to a continuous function
Je #(S) and the space S is Z(S) sequentially regular, F(S) being the class of all
fe Z(S) such that f| Le #(L).

3° There is no convergence space (T, T, ) containing S as a proper subspace and
fulfilling 1° and 2° with regard to Land T.

Now we shall proceed analogously as in [1] to show that each &, sequentially
regular space has an # sequential envelope. The proofs will be shortened accord-
ingly.

Theorem 2. Let (L, £, 1) be an %, sequentially regular space. Let ¢, be an F,,
homeomorphism on Linto the convergence Euclidean space (E, €, &) of the dimension
card & . Let the space L be sequentially dense in a convergence overspace (S, S, o).
Then 2° holds true if and only if there is a homeomorphism h on S into £”¢y(L)
such that h(x) = @o(x), x € L.

Proof. Let 2° hold. Since ¢@o(L) = {(fix)) € E : f,€ Fo(L), xe L, xel} and
because there is a one-to-one correspondence on % (L) onto F(S) (a function g e
€ F(S) corresponds to fe #o(L) if g | L= f) there is an %, homeomorphism ,
on S onto ¥o(S) = {(9./x)) € E : g, € Fo(S), xe S, wel} such that yo(x) = po(x),
x € L, g, being the corresponding continuous extension of f,, @ € I. Using the method
of transfinite induction it is easy to prove that Yo(S) < &* ¢o(L). Consequently it
suffices to put h = Y.

Now, let h be a homeomorphism on S into &' @o(L) such that h(x) = ¢o(x),
x € L. If f,. € # (L), then the function ph on S is a continuous extension of the func-
tion f,., p being a projection function: p((z,)) = z,,, for each (z,) € &** @o(L). The #,
sequential regularity of the space S remains to be proved. Evidently, it suffices to
show that h(x) = (f,(x)), x € S, « € I, where f, € #, and f, corresponds to f, € #(L).

Suppose (transfinite induction) that h(x) = (f(x)), x € o"L, for all n < &, where
0 < ¢ < w,. Let y be any point belonging to the set °L — {J ¢"L. Then ¢ is isol-

n<g :

S IfF, o =&, then in [1] an & ; homeomorphism is called a special homeomorphism.
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ated and there is a sequence of points y, € 6°"1L such that lim v, = V; therefore
lim h(y,) = h(y) € E. Denote h(y) = (t,). Since h(y,) = (f(y,)),itfollows lim f(y,) =
= 1,, « € I. On the other hand, lim f,(y,) = f.(¥) and so h(y) = (f»)).

Theorem 3. Let (L, 8, 2) be an F , sequentially regular space. Let @o(x), xe L,
be an F, homeomorphism into the convergence Euclidean space (E, €, €) of the
dimension card & . Let L be a sequentially dense subspace of a convergence space
(S, S, 0). Then S is an F, sequential envelope of L if and only if there is a homeo-
morphic map h on S onto £* @o(L) such that h(x) = @¢(x), x € L.

Proof. The necessity. From Theorem 2 it follows that there is a homeomorphism h
on S into & @o(L) such that h(x) = ¢@o(x), x € L. We are to prove that h(S) =
= &' @o(L). Suppose that, on the contrary, £** ¢o(L) — h(S) % 0. Let y be the
least ordinal such that there is a point b € &” (L) — h(S). Add a new element a to
the set S, denote ' = S U a, put h'(x) = h(x), x € S and h'(a) = b and define the
convergence &’ on S’ : ({x,}, x) € & if lim #'(x,) = I'(x) in E. Then k' is a homeo-
morphism on S’ into £* ¢o(L) such that h'(x) = @o(x), x € L. It is easy to see that L
is a sequentially dense subspace in (S’, &', 0’). Consequently 1° and also 2° (by
Theorem 2) hold with regard to L and S’. This contradicts 3°.

The sufficiency. 1° holds by the supposition and 2° by Theorem 2. Suppose (indirect
proof) that 3° is not fulfilled. Then there is a convergence overspace (S, S, G) of
(S, S, 0), S * S, fulfilling 1° and 2° with regard to Land S. By Theorem 2, there is
a homeomorphism h(x) on S into &°* po(L) such that h(x) = @o(x), x € L. Then
h(x) = h(x), x € S. As a matter of fact, assume that h(x) = h(x), x € ¢°L, for each
& < { where 0 < { < w,. If x,€06°L — ¢*~ 'L, then there is a sequence of points
x, € 6 'L such that ({x,}, xo) € S; consequently h(x,) = lim h(x,) = lim h(x,) =
= h(x,). Since S = § = ”'L+ S and L= S N §, there is a point ae€ § — S and
a sequence of points t,€ SN S such that ({t,},a) e &. Denote b = h(a). Then
be&® @yo(L) and b = lim h(t,) = lim h(t ). Since h~! is continuous on £”* @o(L), it

follows that h™!(b)e o U t,=Sng U t, so that ({t,}, k(b)) € & for a suitable

subsequence {t,} of {1, } However ({t } d)e S and so @ = h™*(b). This is a con-
tradiction.

Theorem 4. Let (L, 8, X) be an &, sequentially regular space. Then there exists
an &, sequential envelope of L.

Proof. Let S be a point set containing L as a subset and such that card (S — L) =
= card (& (po(L) ®o(L)), @, being an F, homeomorphism. Let g be a one-to-one
map of S onto &' ¢o(L) such that g(x) = @o(x), x € L. Define the convergence &
on S : ({x,}, x) € @ if lim g(x,) = g(x) in & @oL. Then g is a homeomorphism on
(S, &, 0) onto &' @oL and (S, &, o) is an F, sequential envelope of (L, £, 2), by
Theorem 3.
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Theorem 5. Let (S, S,, 0,) and (S,, S5, 6,) be F, sequential envelopes of an F,
sequentially regular space (L, 2, 2). Then there is a homeomorphism h on S,
onto S, such that h(x) = x, x € L.

Proof. According to Theorem 3 there are homeomorphisms h; on S; onto £°* ¢4(L)
such that h(x) = @o(x), xe L, i = 1,2, where ¢, denotes an &, homeomorphism
on Lonto ¢o(L). Consequently it suffices to put h = h3 'h,.

Theorem 6. Let (L, 2, 1) be an %, sequentially regular space. Let F, < F, <
< F(L). Let (So, S, 0,) and (Sy, Sy, 0,) be F, and F | sequential envelopes of L.
Then there is a continuous map m on Sy into S, such that m(x) = x, x € L.

Proof. Let #, = {f,;ael;}, i = 0,1, where I, = I,. Let ¢, be an &, homeo-
morphism on Lonto ¢(L) = E;, (E; €, ¢;) being the convergence Euclidean space
of the dimension card I;. By Theorem 3, there is a homeomorphism h; on S; onto
& @,(L) such that h(x) = @,(x), x € L, i = 0, 1. It suffices to put m(x) = hg 'n h,(x),
x € S;, where 7 denotes the projection map on &{* ¢,(L) onto £§* ¢o(L).

I

Let X be a point set and X the system of all subsets of X. Denote (X, £, 1) the
convergence space, £ being the usual convergence of sets. Let A be an algebra of
sets on X (i.e. X € A) and S(A) the o-algebra generated by A. Since both S(A)
and A”*A are convergence subspaces of X and both are the smallest closed sets in
(X, £, ) containing A as a subset, evidently [2] S(A) = A”*A. Consequently, the
algebra A is a sequentially dense subspace of the s-algebra S(A). Denote 2, or more
precisely 2(A), the class of all probability measures defined on the algebra A. It is
known [2] that 2 = Z#(A).

Lemma 1. Each algebra of sets is a P sequentially regular space.

Proof. Let 4, be an element and {4,} a sequence of elements of an algebra
of sets A not converging to A,. Choose a point x, € (4 + Limsup 4,) U (4 +
+ Lim inf 4,). Then the characteristic function c,(xo), A€ A, is a probability
measure on A such that {c, (xo)}:%; does not converge to ¢, (xo).

Lemma 2. Let B be a o-algebra of sets on X and {B,} a sequence of elements
B, e B. Then {B,} converges in B if and only if there exists lim P(B,) for each
probability measure P on B.

Proof. If Lim B, = Be B and P e #(B), then #(B) = #(B) implies that
lim P(B,) = P(B). Now suppose that {B,} does not converge*) in B. Since B is

4) i.e. either Lim B, does not belong to B or {B,,} does not converge at all.
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closed in X, then {B,,} does not converge in X. Consequently, there is a point x, €
€ Lim sup B, — Liminf B, and cp(x,) € Z(B). It follows that {cs (xo)} does not
converge.

Theorem 7. Let A be an algebra of sets on X. Then the c-algebra S(A) generated
by Ais a 2 sequential envelope of A.

Proof. It is well known that each probability measure P € Z(A) can be extended in
a unique way to a probability measure P on the s-algebra S(A); consequently 2 =
= P(S(4)), Z denoting the class of all extended probability measures on S(A).
By Lemma 1, the convergence space S(A) is 2 sequentially regular so that 1° and 2°
hold with respect to A and S(A). Let ¢o(4), 4 €A, be a 2 homeomorphism on A
into the convergence Euclidean space (E, ¢, e) of the dimension card 2. According
to Theorem 2 there is a homeomorphism h on S(A) into £”* ¢o(A4) such that h(4) =
= ¢4(A), A € A. We are going to prove that h maps S(A) onto £** ¢o(4).

Suppose, on the contrary, that there is the least ordinal 9 and a point (z,) € e* 9o(A)
such that (z,) = h(A) for each A e S(A). Then evidently  — 1 exists and there is
a sequence of points (z) € ¢ * @q(A) such that lim z} = z, for each index a. Denote
B, = h™*((z})). Then z, = P,(B,) and lim P,(B,) = z, for each probability measure
P,e #. By Lemma 2 there is an element B e S(A) such that Lim B, = B. Conse-
quently h(B) = (z,). This is a contradiction.

Hence, in view of Theorem 3, the proof is finished.

Now, consider the relation between the sequential envelope and the £ sequential
envelope of the same algebra of sets A. The example shows that both envelopes can
substantially differ from each other.

Example. Let X be an infinite point set. The system F of all subsets F = X such
that F or X — F is finite is an algebra of sets on X. The algebra F is a sequential
envelope of F itself.

As a matter of fact, let {F,} be a sequence of sets not converging in F. Two cases
are possible: either there is a point x, € Lim sup F, — Lim inf F, or there is a set
S = Lim F, in X such that both S and X — S are infinite sets. In the first case define
a set function g on F : g(F) = ¢x(x,), ¢y being the characteristic function of the set F.
In the second case suppose that there is a subsequence {G,} of {F,} such that G, are
finite (if nearly all F, are infinite, then the procedure is analogous). Use the method of

k-1

mathematical induction: Choose a point y,€ S — U G,, and an element G, con-
i=1
taining points yy, ..., y; such that n, > n,_, > ... > n;. Now define a set function g

m
on F:g(F) = 1 if there is an even natural m such that F > U y; and y,, ¢ F;
otherwise put g(F) = 0. =1
It can easily be proved that in both cases g is continuous on F and the sequence
{9(F,)} does not converge at all. From this it follows that if ¢ is any &% homeomor-
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phism on F onto ¢(F), then & ¢(F) = ¢(F) so that ¢ ¢(F) = ¢(F). According to
Theorem 3 the algebra of sets F is an % sequential envelope of itself; it differs from
the o-algebra S(F) generated by F because S(F) consists of all elements A such
that A or X — A are finite or countably infinite subsets of X.

Now, from Theorem 5 it follows that the & sequential envelope of F is not homeo-
morphic to the 2 sequential envelope of F.

In this example the & sequential envelope of the algebra A is A itself. On the other
hand, V. KouTNiK has shown in [3] that there are convergence rings of sets R such
that the & sequential envelope of R is different from R.

The following problem arises: Let A be an algebra of sets on X. We define a real
valued function f(4), A € A, to be uniformly continuous on Aif Lim (4, + B,) = 0
implies that lim (f(A,) — f(B,)) = 0. Denote % the class of all bounded uniformly
continuous functions on A. It is easy to show that # < # < Z| (A) Consequently A
is a % sequentially regular space and according to Theorem 4 there is a % sequential
envelope of A. Is the o-algebra S(A) generated by the algebra of sets A a % sequential
envelope of A?
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