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1. INTRODUCTION

J.MAYER and M. NovoTNY have defined in [5], for every infinite cardinal number m
in an ordered set P, certain subsets called m-ideals and a topology ‘rm(P) called an
m-ideal topology, as sets of all completely (meet-) irreducible ideals and dual ideals
by means of a subbasis for open sets. These notions (m-ideals and m-ideal topology)
coincide, for m = N,, with the notions defined by O. FRINK in [3].

In paper [5] the following problems were set:

1.1. Is it possible to construct for every pair of infinite cardinal numbers m < n
an ordered set P such that 7,,(P) =% t,(P)?

1.2. Is it possible to construct for every cardinal number m > ¥; such an m-
directed set P that for every pair of infinite cardinal number p < n < m the inequality
1p(P) * 14(P) holds?

At the same time an m-directed set P stands for an ordered set P in which every
non-empty subset M < P with the property |M | < m has an upper a lower bound
in P.

L. FucHsovA has constructed, in [4], for every cardinal number m > ¥, an
ordered continuum E such that 1,(E) # 7,(E) for every pair of infinite cardinal
numbers p < n < m with the following property: p = ¥,, n = ¥, , does not hold,
N, being an infinite irregular cardinal number.

In this paper I present a complete solution of problems 1.1 and 1.2.

2. BASIC NOTIONS AND NOTATION

By an ordered set I understand a partially ordered set; I denote incomparable
elements a, b by a ]| b; a chain will stand for an ordered set which does not possess
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incomparable elements. For a subset M of some ordered set P, M*, M* respectively
will denote a set of all upper (lower) bounds in P ([1]); M is called a semi-ideal of P
if {x}* = M ([6]) holds for every x € M. An ordinal sum of ordered, mutually
disjoint sets P,, ¢« € I, where ® = I is a chain, will be denoted by Y P, (: € I). For a finite
number of ordered, mutually disjoin sets P; (1 < i < n) I denote their ordinal sum
by Py ® P, @ ... ® P,([1]). m, n will, in the whole paper, stand for infinite cardinal
numbers. The cardinal number of a set M is denoted by ]M [ I will write “iff*” instead
of “if an only if . If (P, u) is a topological space and Q < P, then I denote the relative
topology on Q by u[Q.

2.1. Definition. ([5], 3.1). Let P be an ordered set. A subset I = P is called an
m-ideal of P iff for every subset M, 0 += M < I with |M| < m the inclusion M** < [
holds.

The following Lemma is evident:

2.2. Lemma. Every m-ideal of an ordered set P is a semi-ideal of P. {x}* is an
m-ideal of P for x € P.

2.3. Definition. ([5], 4.1). Let P be an ordered set, I = P an m-ideal of P. This
ideal is called completely irreducible iff for every family I,(ue M + 0) of m-ideals

with I = () I, there exists an index py € M such that I, = I.
neM

2.4. Definition. ([5], 5.1). Let P be an ordered set. Let (P, t,,(P)) be the topological
space in which the topology is defined by taking the family consisting of all completely
irreducible m-ideals and of all completely irreducible dual m-ideals of P as a subbasis
for the open sets. Then 7,,(P) is called the m-ideal topology on P.

2.5. Definition ([2], 6.1.7). Let R be a chain, x € R. If x is the smallest element in R,
then y'(x) = 1. In case x fails to be the smallest element, then y(x) = min |M| (M <
< R, M is cofinal with {x}* — {x}). Dually it can be defined y”(x).

2.6. Lemma. Let R be a chain, x € R. Then x'(x) and y”(x) are regular cardinal
numbers.

Proof can be easily deduced e.g. from [2], 3.8.3.

3. m-IDEAL TOPOLOGIES IN CHAINS

In this section R will denote a chain and for xe R we put {x}* = (-0, x],

{7 = {x} = (=0, %), {x}* = [x ), {x}* = {x} = (x ).
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3.1. Lemma. Let O + I & R. Then the following statements are equivalent:

(A) I is a completely irreducible m-ideal of R,
(B) I = (—o0, x), where x e R, y'(x) = 1 or x'(x) =2 m.

Proof. I. Let (A) hold. For y € R — I there is I = (— oo, y], because I is a semi-
ideal of R according to 2.2. If I = N)(—o0, y] (y € R — I), then y, € R — I exists
such that I = (—o0, yo] (because sets (— oo, y] are m-ideals by 2.2). But this is
a contradiction. As we see there exists x € ﬂ( — 00, y] (y eR — I) — I. Then, for any
z < x there is z € I; thus I = (— o0, x).

If Ny < x'(x) <m, then we have @ + M < I, [M| <m, M being cofinal with
(=, x). From this M* =[x, ) follows, so that M** = (—o0,x]non I
which is a contradiction.

Consequently (B) holds.

II. Let (B) hold. If x'(x) = 1, then because of 2.2, I is an m-ideal of R. Let x'(x) =
>m0+xMcl, M | < m. Then M is not cofinal with I, consequently y eI exists
such that y € M*, therefore M** < (— 0, y] < I. As we see, I is an m-ideal.

Let I = NI, (xe€ A * 0), where I, are m-ideals of R for any « € A. Since x ¢ 1,
then a, € A4 exists such that x ¢ I,,. From 2.2 there follows that I,, = I. Thus I, = I
and consequently I is a completely irreducible m-ideal of R.

3.2. Theorem. The system of all sets of the type (—0, x) and (y, ), where
x€R, yeR, x'(x) = 1 or y(x) 2 m, x(y) = 1 or y*(y) = m, together with R form
a subbasis for open sets of the topology t,(R).

Proof follows from 3.1 and from the dual statement to 3.1.

3.3. Theorem. Let X, be an irregular infinite cardinal number. Then ty (R) =
= 1y,, (R) holds.

Proof follows from 2.6 and 3.2.

3.4. Remark. From Theorem 3.3 there follows that when solving problems 1.1
and 1.2 one must consider partially ordered sets and not only chains.

4. m-IDEAL TOPOLOGIES IN ORDINAL SUM

In this section P, Q will denote disjoin ordered sets, P’ will stand for a set Q @ P.
4, F" will denote the family of all m-ideals of P, P’ respectively, .#, ' will denote
the family of all dual m-ideals of P, P’ respectively different from P (not containing P,
respectively); 2, %’ will denote the family of all completely irreducible m-ideals
of P, P’ respectively, B, B’ will denote the family of all completely irreducible dual
m-ideals of P, P’ respectively different from P (not containing P, respectively).
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Operators * and * taken into consideration with respect to the ordered set P’ will
be denoted by 4 and , (e.g. My, M, My, etc.), whereas, when taken with respect
to the ordered set P, the original notation of these operators will be preserved.

The following Lemmas are evident:

4.1. Lemma. For M = P', M n P + 0 we have (M n P)* = M. For M < P,
M* U Q = M, holds.

42. Lemma. Let M = P.If M* = 0, then M** = Pand M, > P.If M % 0,
then M** = M _,.

43. Lemma. 0 £+ [efF=Tu Qef, I'eS' ="' nPes, §=70".

Proof. L. Let) + Ie S, M < I U Q, [M| < m. If M n P = 0, then according to
41 M, = (M n P)*, My, = (M n P)** U Q. Since (M n P)** = I, then My, <
cIu Q. IfMn P =0,then M, o P.If P fails to have the smallest element, then
My, = Q =cIu Q. If P has the smallest element o, then o €I according to 2.2;
consequently My, = QU {0} = QU I ThusIu Qe s

I LetI'e S0+ M I NP, [M[ < m. According to 4.1 we have M* = M,,
M** U Q = My, < I, thus M*¥* < I' n P. Consequently I' n P e .

III. From 4.2 there easily follows that # < #'. Let J' € #'. Since J' non o P,
then from the dual statement to 2.2 there follows that J* € P. From 4.2 J' € ¢ is
consequent. Thus ¢ = #'.

4.4. Lemma. O = Ae A = exists A’ € W such that AnP=A, 0+ A€W,
ANP+0=>A NP B=297. '

Proof. I. Let § & Ae . Let us put A"’ = AU Q. According to 4.3 we have
Aes . Let A =Nl (peM * 0),I,e5". By 43 we have I, = I, n P e S for any
pe M and evidently NI, (1 € M) = A; consequently y, € M exists such that I,, = A.
Then I, = A’ and thus 4" e A'.

II. Let 0 = A’ e W, A" nP =+ 0. According to 4.3 we have A = A’ n Pe S.
Let A = NI (ne M + 0) where I, #. By 43itis I, =1, U Qe ¥’ for pe M and
we have NI, (ne M') = A'(Q = A’ according to 2.2). Thus pg e M exists such that
I, = A, consequently I,, = A. Therefore 4 € .

Ko

III. If B’ € W', then from the dual statement to 2.2 B’ § P follows and from the
equation # = ¢’ in 4.3 we get B’ € B. Let B e B. According to 4.3 we have Be ¢’
and let us assume that B = "J'u(u e M = 0), where J}, is a dual m-ideal of P’ for
every ue M. Wehave B § P.For pe P — Bthereexists y(p) € M such htat p ¢ J; ).
From the dual statement to 2.2, J;,, € ¢’ is consequent. Evidently B = (J (P €
€ P — B). Since ¢’ = ¢ according to 4.3 then there exists p, e P — B such that
Juwoy = B- Consequently Be B’
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4.5. Lemma. 7,,(P')/P = 7,(P).

Proof. Denote € = AU B, € = A UB' U E” where €” is the family of all
completely irreducible dual m-ideals of P’ which contain P. Evidently €, € form
a subbasis for the open sets in spaces (P, 1,,(P)) and (P, ty(P’)). From 4.4 there
follows that for & Ye G, YN P + O we have YNn Pe @ and forevery ) + X e €
Ye € exists such that Y n Q = X. Hence the statement follows.

4.6. Theorem. Let P, be an ordered set for every tel, where O # I is a chain
and P, are mutually disjoint sets. Then for every ¢y €l

(X P(c€I))[P, = 14(P,,)
holds.

Proof. If ¢, fails to be the smallest (the greatest) in I, then put Q = Y P,(t€el,
¢ < 4) (R=YP(cel, t > 1), respectively). If ¢, is the smallest (the greatest) in I,
then put Q = 0 (R = 0, respectively). Then ) P,(tel) = Q ® P,, ® R. From 4.5
and from the dual statement to 4.5 we get t,(Y.P(t€1))/P, = 1(Q ® P,, ®
@ R)/Plo = (Tm(Q @ (Pto @ R))/Pto @ R)/Pto = Tm(Plo @ R)/Ptn = Tm(Plo)'

5. ORDERED SET P(m)

5.1. Definition. Denote by K the set of all finite sequences composed from 0 and 1.
Let an empty sequence be denoted by k, and let us take it as an element of the set K.
Let us order the set K in the following way: the element k, is the smallest element of
the set K and for ky, k, €K, ky * ko * ks, ky = (ay, ..., a,), k, = (by, ..., b,,) let
usputk; < k,iffn S manda; = b;forl =i < n.

5.2. Lemma. Let ke K. Then ky, k, €K, ky + k * k, exist such that {k;}* n
N {k,}t = {k}*.

Proof. If k = k,, then put k; = (O) k, = (1). Evidently {k,}* = {ko, k,} and
{ka} ™ = {ko, ka}.

If k # ko, then k = (ay, ..., a,), where a; =0 or 1 for 1 £i < n. Let us put
ky = (as, ..., a,,0), ky = (ay,...,a,1). Then {k,}* ={k}* u{k,}, {k,}* =
= {k}* U {k,}.

Since in both cases ky *+ k,, there is {k;}* n {k,}* = {k}*.

5.3. Lemma. Let ky, k; € K, ky || ky. Then {k,}* n {k,}* = 0.
Proof Let ky, ky, ke K, ky < k, ky < k, ky #+ ko % k,. Then ky = (ay, ..., a,),

=(by, ... by), k=(cy,....c,) while r=n, r=m, a=¢; for 1 <i < n,
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b; = ¢; for 1 £j £ m. Hence there follows easily that k;, k, are comparable
elements.

5.4. Lemma. Let R be an infinite chain in K. Then R* = (.

Proof. For k = (ay,...,a,), a,=0 or 1 (1 <i<n) we have |[{k}*]| < N,.
Hence Lemma follows.

5.5. Definition. Let S be an arbitrary set, [S| = m, & = {X = S|0 < [X]| < m},
o be some symbol different from all elements of the set S U (S x K). Let us put
P(m) = SuU (S x K)u {6} (=P(m, S, 0)) and let us set p < q for p, q € P(m) iff
p=gqorpeS,g=corpes, q=(X,k), where XeG, kekK, peX, or p =
=(X,k), g = (X,1), where X e€G, k, leK, k < I. This relation is evidently an
ordering.

5.6. Lemma. Let I < S. Then the following statements are equivalent:

(A) I is an n-ideal of P(m),

(B) I] <morn=m = [I|.

Proof. L If |I| 2 mand m < n, then we have M < I, |[M| = m. Then M* = {o},

thus M** 5 o; consequently I is not an n-ideal. The statement (A) implies, thus, the
statement (B).

II. Let (B) hold and let @ += M < I, |[M| < n. Then |M| < m and (M, ko) € M*,

o € M*. Since {(M, ko)}* n {o}" = M < I, we have M** < I, and consequently I
is an n-ideal of P(m).

5.7. Lemma. Let I = S. Then the following statements S are equivalent:

(A) I is a completely irreducible n-ideal of P(m),

(B) [S—1| =1 and n £ m.

Proof. I Let |S — I| > 1. Then there exist s;,s,€S — I, 5; # s,. Let us put
X, ={s;} v, X, ={s;} UL

a) If [I| < m then Xy, X, € ® and {(X;, ko)} " 0 {(X,, ko)}* =1, {(Xy, ko)}* +
+ I # {(X,, ko)}*. Then from 2.2 there follows that I is not a completely irreducible
n-ideal of P(m).

b) If n < m £ |I], then according to 5.6 X, X, are n-ideals of P(m), X, n X, = I;
hence it follows that I cannot be a completely irreducible n-ideal of P(m). In
case (A) holds, then from 5.6 there follows that |S -1 [ <landn <m

II. Let (B) hold. According to 5.6 I is an n-ideal of P(m). Let I = N[ (x4 + 0,
where for a € 4, I, is an n-ideal of P(m). Then «, € A exists such that ¢ ¢I,,. If
S—1= {so}, then we have a, € A such that s, ¢ [,,. Since ¢ = 59, we have o ¢1,,
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according to 2.2. Consequently oy e A exists such that o ¢I,, and I, NS = I.
If (X, k) €1,,, where X € &, ke K, then s €] — X exists. Let us set M = {s, (X, k)}.
Evidently M = I,,,, 0 < |M | <n, and M* = 0; consequently M** = P(m), which
is a contradiction. Thus I,; N (€ x K) = 0, and hence it follows that I, = I.

As we can see, the statement (A) is valid.

5.8. Lemma. Let X € S, ke K. Then {(X, k)}* is not a completely irreducible
m-ideal of P(m).

Proof. By 52 ki, ky €K, ky # k * kj exist such that {ki}* 0 {k,}" = {k}*.
Thus {(X, k)}* 0 {(X, k,)}* = {(X, k)}* and from 2.2 then the statement follows.

5.9. Lemma. Let z,, z, € I n (8 x K)wherel is an n-ideal of P(m) and let z, || z,.
Then I = P(m).

Proof. We have z; = (X4, k), z; = (X,, k,) where X1, X, €&, ky, k, € K. Let
us put M = {z, z,}. If X; + X, then M* = 0. If X, = X, then k, || k, and from
5.3 there follows that M* = (. Consequently M** = P(m) < I.

5.10. Lemma. Let I be a completely irreducible n-ideal of P(m), n > ¥, and
In (S x K) + 0. Then I = P(m).

Proof. Let us put A = I n (S x K). If 4 is not a chain, then I = P(m) by 5.9.

If A contains the greatest element (X, k), where X € @ and k € K, then according
to 2.2 {(X, k)}* = I. By 5.8 we have zel — {(X, k)}*. Evidently z¢ & x K and
consequently {z, (X, k)}** = 0* = P(m) = I. Thus I = P(m).

If A is a chain without the greatest element, we have ]A[ = N, and according to 5.4
itis A* = 0 and consequently A** = P(m) < I. Thus I = P(m).

5.11. Theorem. Let m < 1. Then t,,(P(m)) # 7,(P(m)).

Proof. Choose s€ S. By 5.7 the t,(P(m)) — neighbourhood U of the point s
exists such that o ¢ U. I being a completely irreducible n-ideal of P(m), we have
o € I according to 5.7 and 5.10. J being a dual n-ideal of P(m), s € J, we have o € J
according to the dual statement to 2.2. Thus, every 7,(P(m)) — neighbourhood of
the point s contains the point o. Hence the statement follows.

6. ORDERED SET S(m)
6.1. Definition. Let ordered sets P(a), No = a = m be chosen in such a way that
they are mutually disjoint. Let us choose two different symbols w,, w, different

from all elements of the set UP(a) (No < a < m). Let us put S(m) = {w,} @
D YPa)(No < a=m) @ {w,}.
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6.2. Main Theorem. Let m be a cardinal number =ZN,. Then for every pair of
infinite cardinal numbers p <n <m

tp(S(m) # 7u(S(m))

holds.

Proof. From Theorem 4.6 1,(S(m))/P(p) = t,(P(p)), tu(S(m))/P(p) = t(P(p))
follows. According to Theorem 5.11 it is t,(P(p)) * 74(P(p)) from where we get the
statement.

6.3. Remark. Since an ordered set S(m) contains the greatest and the least
element it is m-directed. From Theorem 6.2 we get then an affirmative solution of
problems 1.1 and 1.2.
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