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bj = Cj for 1 = j fg m. Hence there follows easily that kl9 k2 are comparable 
elements. 

5.4. Lemma. Let R be an infinite chain in K. Then R* = 0. 

Proof. For k = (al9..., an), at = 0 or 1 (1 = i = n) we have |{k} + | < K0. 
Hence Lemma follows. 

5.5. Definition. Let S be an arbitrary set, |S | = m, S = {X cz S \ 0 < |X| < m}, 
a be some symbol different from all elements of the set S u ( 8 x K), Let us put 
P(m) = S u ( 6 x K) u {a} ( = P(m, S, a)) and let us set p = q for p, q e P(m) iff 
p = q or p e S, q = a or p e S, q = (X, k), where l e S , ke K, p e X, or p = 
= (X, k), q = (X, 1), where X e ®, k, I e K, k = I. This relation is evidently an 
ordering. 

5.6. Lemma. Let I cz 5. Then the following statements are equivalent: 

(A) I is an n-ideal of P(m), 

(B) \l\<momSm^ |I | . 

Proof. I. If |I| ^ m and m < n, then we have M cz I, \M\ = m. Then M* = {a}9 

thus M*+ 9 c; consequently I is not an n-ideal. The statement (A) implies, thus, the 
statement (B). 

II. Let (B) hold and let 0 4= M c I, \M\ < n. Then \M\ < m and (M, k0) e M*, 
a e M*. Since {(M, k0)}

+ n {cr}+ = M c / , we have M*+ c I, and consequently I 
is an n-ideal of P(m). 

5.7. Lemma. Let I cz S. Then the following statements S are equivalent: 

(A) I is a completely irreducible n-ideal of P(m), 

(B) \S - I| = 1 and n = m. 

Proof. I. Let |S — I| > 1. Then there exist sl9 s2 e S — I9 sx #= s2. Let us put 
Xt = {s1}uI9X2 = {s2}vI. 

a) If |I| < m then Xl9X2eS and {(Xl9 k0)}
+ n {(Xl9 k0)}

+ = I, {(Xl9 k0)}
+ * 

4= I 4= {(K2» ^o)} + - Then from 2.2 there follows that I is not a completely irreducible 
n-ideal of P(m). 

b) If n = m = \l\9 then according to 5.6 K1,K2
are n-ideals of P(m),X1 nX2 = I; 

hence it follows that I cannot be a completely irreducible n-ideal of P(m). In 
case (A) holds, then from 5.6 there follows that \S — I| = 1 and n g m. 

II. Let (B) hold. According to 5.6 I is an n-ideal of P(m). Let I = f)Ia(a e A 4= 0, 
where for oceA, Ia is an n-ideal of P(m). Then OCXE A exists such that a$Iai. If 
S — I = {s0}, then we have a2e A such that s0 £Iar Since a = s0, we have a $Ia2 

405 






		webmaster@dml.cz
	2020-07-02T20:59:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




