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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

ONE GENERALIZATION OF THE FOURTH HARMONIC POINT 

VACLAV HAVEL, Brno 

(Received December 8, 1966) 

This article contains the discussion concerning the independence of inverse elements 
on certain choices of coordinatizing ternary rings of a given translation plane. The 
results obtained are used for the definition of harmonic quadruples on the coordinate 
axis of the affine plane over a VEBLEN-WEDDERBURN system with both left and right 
inverse properties. Finally, some generalization of VON STAUDT theorem is given. 

I took advice of G. PICKERT who recommended to me the investigation of the in­
dependence of harmonic quadruples on changing frames. 

By a frame ^ in an affine plane ^ we shall mean any parallelogram OJ^JJy, 
The lines OJ^, OJy are called coordinate axes. ^ determines the planar ternary 
ring T^ ([1], p. 16) for which 0^ can be identified with Jj^ x Jj^ where 0 = (O, 0), 
J^ = (1, 0), J = (1, 1), J y = (0, 1). Then to every point A e 0 J ^ \ {0} there exists 
exactly one point A!^ G OJ^ \ {0} such that A'^ = (a', 0) where a'a = 1, Л = (a, 0). 

We shall need for an affine plane 0^ the condition 
(l) Be given a fixed frame J*̂ * == OJ^J^J^. Then for each Ae O / ^ \ { 0 } , the 

point A'^ is independent on the position of the variable frame ^ = OJ^JJy where 
J У runs over OJy. 

Proposition 1. In an affine plane 0 let there he given a fixed frame #"* = OJ^^J^Jy. 
Then the conclusion of (1) is equivalent with the "left inverse property'' 

3P* (2^*) a{a'b) = b for all ae T^,\ {0} , be Г 

where the multiplication is taken with respect to T^*. 

Proof. We can construct A'^ using a polygonal fine AQA^A2A2,A^A^ where 
AQ = Л, A^= Л о Г п OJ, A2 = A^X n J^y, Л3 = J, Л4 = JX n ОЛ2, A^ = 
= A^Y n OX = A'^. Here X, У denote the ideal points of OJ^ and OJ"^ respectively.^ 
Now we construct the analogical polygonal line A'IAXA\ÄIAXA% with respect to ^'^' 
where Л* = A, A^ — Л^*. Thus with respect to #"* we obtain AQ = (a, 0), Л^ = 
= (a, b); A2 = (I, b); A^ = (1, y) where yi is determined by Ь = ay^; A^ = (x^, y^) 
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where x^ is determined by J i == Xib; A^ = (x^, 0). The elements a, b belongto 
J ^ * \ { 0 } . The equation Л5 = A^ = (a', 0) holds now exactly if Ь = ay^ = a{x^b) = 
= a(a'b) so that the required equivalence is verified. 

Corollary. (2^*) => aa' = 1. 

Proof. Putting Ь = 1 in (2jf*) we obtain the required result. 

If the element a' determined for each a e Т^^*\{0} by a'a = 1, satisfies also 
a a' = 1 then it shall be denoted by a~^. 

Lemma 1. Let T be a Veblen Wedderburn system ([1], p. 17) with the left in­
verse property. Then for 

(3) a( —1) = —a for all aeT, 

(4) ( f l ( - l ) ( - l ) ) = a for all aeT 

it holds (3) <^ (4) and further, from (3) it follows 

(5) a{~b)=^—ab for all a, b e T. 

Proof. From a ( - l ) = - a it follows ( a ( - l ) ) ( ~ l ) = ( - a ) ( - l ) = - (-a) = a. 
Secondly, let there hold («(— 1)) (—1) = a. Detetmine the solution x of the equation 
— x + x(—l) = a and multiply on the right by — 1 . We obtain { — х){—1) -f 
+ (x( —1)) (—1) = a(—1). The left side can be expressed as (~x) (—1) + x which 
is the opposite element to - x + x ( - l ) . Thus —a = a{—i). Now let there hold (3). 
Thus a~^(—1) = —a~^ for any ae T\ {O}. By the left inverse property it follows 
fl(-a~^) = - 1 and - ( a ( - a " ^ ) ) = 1. By the identity { — x) у = —{xy) holding 
in J we obtain [~a){ — a~'^) = 1 and finally - д ~ ^ = ( —a)~^ Take the equation 
- ( ~ b ) = b and rewrite it as --(a~^(a(-b))) = b. From this we deduce ( —a~^) . 
. (a(—b)) = b and further by the preceding { — a)~^ {a{—b)) = b. By the left inverse 
property it follows a( —b) = { —a) b so that a(—b) = —[ab). 

Lemma 2. Let a translation affine plane ^ satisfy (i). Then (3) holds in T^* iff ^ 
satisfies 

(6^*) If A^BiCi, A2B2C2 are triangles such that A^, A2 e OJyi B^, B2 e OJ^; 
Ci, C2 6 OJ^; A,C, II A2C2 II OJ,; B,C, \\ B^Q Ц OJ^; A,B, \\ J , J* then A2B2 |j 

Proof. Without loss of generality choose Л^ = (0, 1), B^ = ( l , 0), C^ = (1, 1)̂  
A2 = {a, 0) Ф (0, 0), B2 = (0, a) with respect to T^*. Then the line A2B2 has the 
slope ([1], p. 5) w = a~^( —fl) and by the left inverse property it follows an = —a. 
Thus a( - - l ) = —a holds iff w = —1 . 
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Lemma 3. Let a translation affine plane 0^ satisfy (1). Then (4) holds in Jjzr» 
iff^ satisfies 

(7jjr*) / / AiBiC^D^, A2B2C2D2 are parallelograms such that A^, C^, Ä2, C2E 
E Or^; Bi, Cj, B2 e ON {N the ideal point of the line JJy); C^D^ || C2D2 | OJ^; 
Ä^D/\\A2D2\\ OJy then В2 G ON, 

Proof. Without loss of generality take Л1 = (1, 1),B^ = ( - 1 , 1), C^ = ( - 1 , - I ) , 
D^ = (1, - 1 ) , А2 = {a, a) Ф (0, 0), B2 = (a, fl(-l)), C2 = {a{~l), a{~l)). Then 
^2 ~ (<^(~l)?^) ^^^ consequently (a(—!))(—1) = a iff D2EON because у == 
= A-( ~ 1) is the equation of the line ON, 

Corollary. Let 0 satisfy (l). Then (6jr*) holds iff (7^*) holds. 

Proposition 2. Let ^ be a translation affine plane satisfying (l) and (6^*). Then 
(6jjr) is valid for every frame .W ~ OJ^JJy, J y e О J*. 

Proof. Without loss of generality take A^ = (0, b) Ф (0, 0), B^ = (l , 0), C^ = 
= (1, b), B2 = {a, 0), A2 = (0, ab), С2 = {a, ab) with respect to T^*, Then the 
line AiB^ has the slope u^ = b and the hne A2B2 has the slope U2 fulfiUing —ab = 
= an2- But —ab = au2 iff a(—b) ~ au2 by Lemma 1 and a( —b) = au2 iff Wi = 
= — Ь = W2 by the left inverse property. Thus A^B^ || A2B2. 

Lemma 4. Let ^ be an affine р1апш with a fixed frame J^* = OJ,,J'^Jy. Then the 
^'right inverse property'' 

(8^*) (ab') b = a for all a e T^*, be T^,\ {0} 

Ï5 satisfied in Jjr* iff: 

{9 F*) For any parallelograms А^В^С^О^, ^2^2^2^2 such that A^B^ || CiD,^ jj 
I Л2Л2 II C2D2 II 0 / , , A^Di Ц Б ^ С , ||v42.D2 11Б2С2 II or;, B2eOB,/ A,C,^= 
= A2C2 = OJ^ there holds D2 e OD^. 

Proof. Without loss of generality choose C2 = {a, a) ф (0,0); C^ = (l , 1) 
В., = (1, b') where Ь Ф 0; Aj = {b\ b'); Di = (1, b% A.2 = {ab\ ab'); B2 = (a, ab') 
D2 = (ab', a) with respect to T^*. Then D2 e OD^ iff j ; = xb is satisfied for л: = ab 
and у = a. 

Proposition 3. Let 0^ be an affine plane satisfying (l) and (9^*). Then (9^) holds 
for all frames #" = OJJJy, JyE OJ^ iff the following "general right inverse 
property'' is valid in T^* 

(10^*) {{ac) {с-Щ) с - a{bc) for all a, b e T^. ^ CET^.\ {0} . 

Proof. Without loss of generality set A^ = {b, be), ß^ = {\^ be), C^ = (1, c) Ф 
Ф (I, 0), Di = (b, c), A2 = (xo, a{bc), B2 = {a, a{bc)\ £2 = (a, ac\ D2 = (xo, ac) 
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(XQ determined from a(bc) = XQC) with respect to T^.^. Then (lOj^) holds for / = 
= (1, c) iff ac = Xo(b"^c) since b~^c is the slope of the line OD^. Now a{bc) = XQC, 
ac = XQ^b'^c) are equivalent with (ac) {b'^c)~^ = {a{bc)) c~^ and this last equation 
is equivalent with ((ac) {c~'^b)) с = а{Ьс). Here we used {xy)~^ = y'''^x~^ valid 
by the left and by the right inverse property. For b = 1, ac = d, (10^^*) yields 
(dc''^)c = d i.e. the right inverse property. For ac = 1, (10^^*) yields (c~^b) с = 
= c-\bc). 

Remark . If T^* has associative multiplication then (lOĵ *) is fulfilled. If T^* is an 
alternative field ([1], pp. 14-15) then by {(xy) z) у == x(y{zy)) (cf. [1], p. 15) we 
obtain at once ((ac) (a'^b)) с = a(c(c~'^b) c). But the expression on the right hand 
equals to a(bc) because of the relation (c~~^b) с = c~^(bc) valid in an alternative field 
(in an alternative field any two elements generate an associative subfield by the well-
known results of Moufang and Zorn). Further, 

(11^*) (ac) (c~'^b) = ab for all a, b e J^* , с e T^*\ {0} 

is valid iff* T^^ has associative multiplication. In fact, for d = c~^b, (11^*) yields 
b = cd, ab = a(cd) so that (ac) d — a(cd). Conversely, setting с = Ь"^^Нп (ab) с = 
= a(bc) we obtain be = d so that (ab) (b~^d) = ad. 

Lemma 4\ Let ^ be an affine plane with a fixed franw J^* = OJ^J^Jy. Then 
in T^^ there holds 

(8,^*) a'(ab) = b for all a e J,^* \ {0} , b e J^* 

iff: 
(9^*) For parallelograms А^В^С^О^, Ä2B2C2D2 satisfying Л^^В^ || C^Dj || A2B2 || 
II C2D2 II OJ,, A^D^ 11 BiCi II A2D2 li B2C2 II or', B^C, = A2D2, A^ G 0.42. ^1 ^ 
e OB2, Cj e OC2 it holds D^ e OD2. 

Proof. Without losing generality set B^ = (1, 1), B2 = (a, a) ф (0,0), C^ = 
= (1, b), C2 = (a, ab), Л1 = (a\ 1), Л^ = (1, a), D^ - (a\ b), D2 = (1, ab) with 
respect to Jj^*. Then D^e OD2 iff the equation у = x(ab) holds for x = a' and 

Proposition 3'. Let ^ be an affine plane with a fixed frame #"* = OJ^J'^Jy and 
let (8^-*), (8^*) be satisfied. Then (8^) holds for every frame ^ = OJ^JJy, Jy e 
eOJl 

Proof. Without losing generality choose the parallelograms A^B^C^D^, 
A2B2C2D2 in such a way that B, = (1, c) Ф (1, 0); C, = (l , b) Ф (1, 0) for Ь Ф c; 
В = (a, ac), С = (<̂ 5 ^^) f̂ ^ a Ф 0; y4i = (XQ, C) for XQ determined from с = 
- Xo(ac); A2 = (1, ^^) ' ^1 = (-^0' ^ ) ' ^2 = (1, (^b) with respect to J^*. Then 
D e OD iff" Ь = X (^^)- ^У ^^^ given assumptions aa' = 1 and from the left and 
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right inverse properties there follows {xy)~^ = j ~ ^ x ~ ^ ; we used this fact already 
intheproof of Propositions. So Xo = c{c~'^a~^) = a ~ ^ and the equation Ь = XQ^ab) 
is satisfied for XQ ~ a~^ by the left inverse property. 

Definition 1. Let ^ be a translation affine plane satisfying (l). Let T^* satisfy the 
condition 1 + 1 Ф 0. Any ordered triple of pairwise distinct points A, B, С on the 
coordinate axis OJ^ where С Ф M^^ ^) will be called admissible. To any admissible 
triple (A, B, C) on OJ^ we associate the point H^^^ in the following manner: If A = 
= [a, 0), В = (Ь, 0), С = (с, 0) with respect to T^* (where, according to the preceding 
assumptions a ^ b ^ с =¥ a and с + с Ф a + b) then construct the points^) 
SB n J-Y= Bu SC n J * y = Ci with S = {a, 1), further the point Dj such that 
B^ = Mc^Di ^^^ finally the point Hf^c = SD^ n OJ^. 

Proposition 4. By the assumption of Definition 1 there holds И^вс ~ ^ABC f^^ 
every ^ — OJ^JJy, J у e OJy and for every admissible triple [A, B, C) on OJ^. 

Proof. It can be easily verified that B^ = (1, (a - b)"*), C^ = (1, (a - c)'% 
Di = (1, {a — d)~ )̂ for Hfßc = {d, 0) with respect to J^*. By the construction of D^ 
there is then 

(12) {a » b)-' +{a- b)-' = (a - c)~' + (a - d)-' . 

Regarding (l) and the assumption that ^ is a translation plane, we conclude that the 
equation (12) retains its form also when transited to each frame ^ = OJ^JJy, 
J У G OJ^ SO that H^Bc = Hf ; c . 

REMARK. If, in particular, T^* is an alternative field (of characteristic ф 2), then the 
equation (12) is geometrically interpreted in [3], p. 98, or in [5], p. 79. 

Lemma 6. Let ^ be a translation affine plane satisfying (l), (б̂ гг*), {9^^ and 
1 + 1 Ф 0 Ш T^.. Then for A = (1, 0), Б = ( - 1 , 0), С = (с, 0) Ф (О, 0) it follows 
нf;c = (c-^o). 

Proof. For the investigated point Hf̂ *̂  = (б/, 0) we obtain 2"^ + 2~^ = 
= ( l - c ) ~ i + (1 - d ) - ^ The left side is equal t o i since 2 "1 + 2"^ = ( 1 + 1) 2"^ = 
= 2 . 2-\ Further 1 = (1 - c)'^ + (1 - d)-^o 1 ~ J - (1 - c)'^ (\ - d) Л-I <^ 
^ _ j = (1 _ c ) - i ( i _ ^ ) < ^ ( i _ c){-d) = 1 - do -d + {-c){-d) = 1 -̂  
— do { — c) ( — d) = 1 о —d = { — c)"^ = ~c~^ <f> d = c~^. To these arrange­
ments there was used the distributive law (x + j ) z = xz + yz, the left and the right 
inverse properties and at the last step the relation ( — c)~^ = —c~^ which is equivalent 
to c-\~\) = - c - ^ 

^) If P, Ö are points of ^ then by the given assumptions there exists precisely one point /Vlp̂  
such that the translation sending P into N\pQ takes N[pQ into Q (cf. [2], p. 6). 

^) Y denotes the ideal point of the line O/*. 
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Definition 2. Let 0^ be a translation affine plane satisfying the assumptions of 
Lemma 6. Then by a von Staudt projectivity on OJ^ we shall mean a 1 — 1 mapping a 
of the hne OJ^ onto OJ^ which reproduce at both sides each admissible triple on OJ^ 
and satisfies {H^ß^y = И^*всгс^ for each admissible triple [A, B, C) on OJ^. 

Remark . It may be easily shown that the mapping a in Definition 2 satisfies the 
condition {HfßcY'^ = H^fr-i^a-^c'''^ for each admissible triple [A, B, C) on OJ^. 

Proposition 5. Let ^ be a translation affine plane satisfying the assumptions of 
Lemma 6. / / a is a von Staudt projectivity of OJ^ with fixed points 0 , J^ then the 
mapping GQ : J^* -^ T^* defined by the prescription A"^ = {a^^, O) for each A = 
= (fl, 0) G OJ^ satisfies the conditions 

(i^J {a + ЬУ"" = fl^° + b''^ for each a, be T^., 

(и* J (a - ^Y"" = (fl^°)- ^ /o r each a e J^* \ {0} . 

Conversely, if Q is a 1 — 1 mapping of Jjr* onto T^* with fixed elements 0, 1 satisfy­
ing ( i j and (ii^) ^) then the mapping Q^ : OJ^ -^ OJ^ defined by Q^A = (a^, O)for 
each A = [a, 0) e T^* x {0} is von Staudt projectivity of OJ^. 

Proof. 1) Evidently, (f^J is vahd for д = 0 or for Ь = 0. If a ф 0 then a triple of 
mutually distinct points (0, 0), (a + a, 0), {a, 0) is not admissible so that ((0, 0), 
{{a + аУ"", 0), (a"^^ 0)) is not admissible, i.e. {a + аУ"" = a^° + a''^ If we define x/2 
for each xe T^* by x/2 + xjl = x then for Ь = a + a we have by the preceding 
b'̂ o = (b/2)''° + (b/2)''° and this means b''^/2 = {Ь\2у\ Let a Ф b. Then the triple 
of mutually distinct points ((я, 0), (Ь, 0), (^(a + Ь), О) is not admissible so that 
((a^°, 0), (Ь'^^ 0), (i(fl + b))''°, 0)) is not admissible, i.e. (i(a + b)^^ = i(a^° + b*̂ )̂. 
By the preceding we have then (a + b)^° = a''̂  + b''^ Further (-1)' '° = - 1 since 
the triples of mutually distinct points ((1, 0), ( ~ 1 , O), (0, 0)), ((1, 0), ( ( - l ) ' ' ^ 0), (0,0)) 
aie not admissible at the same time. The equation (n'^J is of course satisfied for a = + 1 . 
Further, take a Ф 0,1 , - 1 . By Lemma6itfollows(Hf;*o)(-i,o),(a.o))'' = ( ( a " T ° , 0 ) = 
= Wa!o)(-i,o)(a'^o,o) = ( K ' ) " S 0) so that {а'^У'^ = (a^°)"^ The first part of Propo­
sition 5 is proved. 

2) From (ï^) it follows {a\if = a^\2 so that to a not admissible triple ((0, 0), 
(a, 0), (a/2, 0)) there corresponds the not admissible triple ((0, 0), (a^, 0), {a^\2, 0)). 
Similarly for ^~^. 

If a Ф Ь then the triple of mutually distinct points ((a, 0), (b, 0), (i(a + b), 0)) is 
not admissible. From {i^ and from the above identity {xjif = x^/2 it follows 
(i(a + b))^ = i(a^ + b^) so that the corresponding triple is ((a^ 0), {b^, 0), 
(i(a^ + b^), 0)). This triple consists of mutually distinct points and it is also not 
admissible. Similarly for Q~^. If ((a, O), (b, 0), (c, 0)) is an admissible triple then by 

^) Here 0^ = 0 follows already from (/^ whereas from (ii^ it follows only (1^)'̂  = 1. 
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the preceding it follows that also ({a^, 0), (b^, 0), [c^, 0)) is an admissible triple. 
If H^*o)(b,o)ic,o) = {à,0) then d is well-determined by (a — b)~^ -f (a — b)"^ = 
= {a- c)~^ + (fl - d)~^. By {Q, {ii^) and ( -x )~^ = - x " ^ we obtain {a^ ~ b^)~^ + 
+ (^.^_ b^)-i =.^(a. _ c^)-' + (a^ - J^)-^ i.e. Н'До)(ь.,о)(с..о) = (^^ 0) = 
~ (^u,o)(b,o)(c,o))^°- So we have proved also the second part of Proposition 5. 

Remark . The assumptions in Proposition 5 are fulfilled especially if Jjr* is a Veblen-
Wedderburn system with associative multiplication (i.e. a nearfield) or if T^* is an 
alternative field. It is an open question whether, except these two cases, any further 
case is possible for T^* in Proposition 5. Notice that Proposition 5 in the case that T^* 
is an alternative field gives the von Staudt theorem studied in [4], p. 165 (cf. also 
[4], p. 165). 
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