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ON THE OPTIMAL STABILIZATION OF NONLINEAR SYSTEMS

PavoL BruNovsky, Bratislava

(Received November 24, 1966)

This paper is concerned with a nonlinear extension of a problem posed in its
linear form by Lerov [1] and called by him “analytical regulator construction”
problem.

Consider a control system

(1) % =f(x.u), £(0,0)=0

(x being n-vector, u being m-vector) and a scalar function ¥(x, u) (the cost function),
which is positive definite i.e. V'(0, 0) = 0, V(x, u) > 0 for (x, u) # (0, 0). For a given
n-vector £ denote Q, the set of all measurable functions u(t), ¢ € <0, o) such that the
solution of the system % = f(x, u(f)) starting at £ at t = 0 (we shall denote it by
x(t, u, ®)), exists on the whole interval <0, co), satisfies lim x(t, u, £) = Oand I(u, £) =
=00

= [§ V(x(t, u, %), u(t)) dt < co. The elements of Q. will be called controls. The
control uge Q, is called optimal, if I(ug, £) = min I(u, £); x(t, ug, £) is called an
optimal solution. uehs

A function v(x) is called a synthesis of optimal control in the domain D, if for
every £ € D the optimal control u; may be expressed in the following way

ug(t) = v(x(t, ug, R)).

If such a synthesis exists, we obtain by substituing of v(x) into (1) an asymptotically
stable differential system with a certain optimality property.

For the case of f being linear, V being quadratic in both x and u theorems on the
existence, uniquenes and synthesis have been proved by several authors (cf. [1], [2],
[3], [4]). In this case one gets a linear synthesis function and the results are of global
character in initial conditions.

The case of f linear and V non-quadratic is treated in [5]. In the present paper the
general nonlinear case is treated. Theorems of local character in initial conditions
about the existence, uniqueness and synthesis of optimal control are proved. The
general nonlinear case is investigated also in [4]. However, the methods, used in [4]
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are different from those used in this paper and also the results are of different kind.
Moreover, in [4] both f and V are supposed to be analytic in both x and u.

1. THE EXISTENCE THEOREM

Let |.| be the Euclidean norm in R¥, k = 1, S(x, 6) = {x" : |x’ — x| < &}. Let us
introduce following hypotheses:

(f1) f is defined and continuous together with its first partial derivatives for
(x,u)e G x R™, G being an open domain in R", containing the origin; £(0, 0) = 0.
The system (1) is locally controllable in the origin, i.e. if we denote 4 = (3f/dx) (0, 0),

= (0f[ou) (0, 0), then the matrix (B, 4B, ..., A"~ 'B) is of rank n.

(V1) V(x, u) is defined, continuous and positive definite in G x R™. For every
§ > 0 it holds inf lim inf V(x, u) > 0.

Ix|28 |ul>o

(fFV1) Theset Q(x) = {(¥o ..o, ) : Yo 2 V(x, u), yi = filx,u), i = 1,2,..,n,ue
€ R™} satisfies for every x € G the semicontinuity property Q(x) = o Q(S(x, 6)),
€0 X being the convex closure of X (cf. [7]). 820

(fV2) Thereis a nonnegative continuous function ¢(&) such that 11m Elo(f) =
and V(x, u) = o(|f(x, u)|) for (x,u) e G x R™
Remark 1. Under Hypotheses (f1),(V1),(fV2) from I(u, £) < oo follows lim x(t,u, %)=
t— o

= 0. In order to prove this, suppose the contrary. Then, from I(u, £) < oo and
(V1) follows that there is a sequence {t;}, t; — co such that lim x(;, u, £) = 0. Hence
k-

if x(t, u, )?) does not converges to zero for t — oo, there is a ¥ > 0 and sequences
{6}, {r}, t > 0, 7 > 1, such that |x(t)| = 2%, |x(v,)| = =, |x(t, u, £)| € <, 2
for t € {t, t,>. We have

@ x5 () x9S f 7Gxt us ), u(e))] de +

Ey i

+j [f(x(t, u, £), u(?))| dt < (v, — 1) + 0, 1(u. %),

where E, , = {te{t, u;): ]f(xt u, £), u(0))| £ v}, Fyp = {te {t, ) |f(x(t, u, £),
u(t))| > v}and o, ! = mm é 1 ¢(&). From (fV2) follows that there is a v > 0 such

that o, < 3[I(u, x)]~* For such v from (2) follows
(3) T — = vl

According to (V1) there is a p > 0 such that V(x, u) = u for |x| e (%, 2%) which
together with (3) contradicts I(u, £) < oo.
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Lemma 1. Let (f1) be satisfied. Let u be a given positive constant. Then, there is
ann > Osuch that for every £ such that |)‘c} < nthereis a function ug(t)and a T, > 0
such that |ug(t)] < p, x(t, ug, £) = 0 for t = T,. Moreover, u; may be chosen in
such a way that T, — 0 for £ — 0.

Proof. Denote X% the set of all £ for which a control u exists such that |u(t)| Su
for t € <0, o) and x(¢, u, £) = 0 for + = T. It suffices to prove that for every T > 0,
2" contains a neighbourhood of the origin.

The proof of this fact is a slight modification of the proof of theorem 4 in [6],
therefore we shall give only a brief outline of it. .

Denote ¢ = (&, ..., &,,) and let T > ¢, ... > 1, > 0. Denote

u(t, &) = [&o(t, ty) + ... + Eo(t, t,)] e + ... +
+ [é(m—l)rﬂ-l(p(t’ tl) + ...+ émn(p(t’ tn)] em .

where e, is the m-vector with k-th component being 1 and the remaining being zero
and

1 for [f|<h.
0 for |f>h.

olt, h) = {

For ¢ sufficiently small we have |u(f, £)| < p. Denote X(t, &) the solution of (1)
with u = u(t, &) and X(T, £) = 0. Then, X(0, ¢) is differentiable with respect to &.
For the n x mn matrix (0X[0¢) (T, 0) the expression

aX n—1 n—1 V" n+1
—(T,0) = (by, ..., A" *by, ..y by ..., A0, | ..o | + O]
ot v

n

may be obtained, where

i n

Vo 217 77 2
1] !
_ln—l_l’ , —1yt
(=1t s (1) )

and by, ..., b, are the column vectors of B. The rank of V, being n, it follows from
(f1) that for ¢, sufficiently small the rank of (0X/d¢) (0, 0) will be n. Since T may be
choosen arbitrarily small, this proves the lemma.

Lemma 2. Under hypotheses (f1), (V1), Q, is non-empty for % from a sufﬁcienily
small neighbourhood of the origin and lim (infI(u, £)) = 0.

£-0 ueQqp
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Proof. Due to Lemma 1 and (fl) for every T > 0 sufficiently small there is an
¢ > 0 such that if [%| < ¢, then % € 27 and x(t, u, £) < y for t < Tif |u(t)] £ 1 for
te 0, T). Hence, if u is such that x(t, u, £) = 0 for t = T and |u(r)] £ 1 for t e
€0, T), we have

I(u, 8) £ Tmax V(x, u),
HER

which proves this lemma.

The following lemma is based on the same idea as a similar one in [7]. For its
easier formulation, denote x,(t, u, £) = [§ V(x(s, u, £), u(s)) ds, X(1) = (xo(t), x(2)).
We have then I(u, £) = xo(c0, u, £).

Lemma 3. Let hypotheses (f1), (V1), (fV1), (fV2) be satisfied. Let X(t) = %(t, u*, £¥),
1€<0, ), u* € Qu and let x(t) be uniformly bounded and equicontinuous. Let
there be an absolutely continuous function x(t) such that x*(t) - x(t) for k — oo
for every t, the convergence being uniform on every compact interval and let
x§(t) = xo(t) pointwise for te <0, o). Then, there is a control u € Q, ., such that

x(1) = x(t, u, x(0)) and [§ V(x(t, u, x(0)), u(r)) dt £ xo(c0).

Proof. For arbitrary X < R¥ denote S(X,8) = {x: mf[x — x| < d}. Let & > 0.

Let t be such that X(r) exists (note that X(r) exists for ae. ¢ since x(t) is absolutely
continuous and x,(r) is nondecreasing). Since x¥(t) — x(f) and x*(¢) are equiconti-
nuous, there is a & > 0 such that for || < & we have Q(x*(t + h)) = Q(S(x*(1), 1¢))
for every k. To given h and > 0 there is a k, such that for k > k,

@) [50) — ()] < 4

(4 h) = X(1) _ "(r+h)—x()‘<,7
i h h |

|
is valid. We have

s) R+ ) — #(0)] = |
_ (h"‘ j V(). () ds, B j " Hs), 1(6)) ds) €5 O(S(H(), 39)) -

t

From (4), (5) follows h™[x(t + h) — X(t)] € S(co Q(S(x(t) e),n). For k— oo,
h — 0 we obtain from this

x(t) e {']065 0(S(x(2), €)) -
From this and (fV1) follows X(r) € Q(x(1)), i.e. there is a u(t) € R™ such that x(t) =
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= f(x, u(t)) and %o(tf) = V(x(1), u(1)). In the same way as in [7] it may be proved
that u(f) may be choosen measurable. Since x,(f) is nondecreasing, we have

j “Vix(t), u(t)) dt < J “4o(1) di £ xo(o0)

0 0

cf. [8, chap. 8, theorem 5] which was to be proved.

Theorem 1. (the existence theorem). Let hypotheses (f1), (V1), (fV1), (£V2) be
valid. Then, there is an ¢ > O such that for every X such that ]»‘c] < ¢ the optimal
control exists.

Proof. Denote
A ={ueQ:|x(t,u, %) £n for te0, )},
E={xcR":|x| =n,Q,’£=i=¢},
W(8) = infI(u, £), W'(%) = inf I(u, %).

ueQg ueQne

Suppose inf W'(%) = 0. Then, there is a sequence £* — %, u*e Q%L, I(u*, £*) - 0.
LeE
Denote x*(t) = x(t, u*, x*) and use the notation of Lemma 3. The functions xg(1)

are increasing. Hence, as xg(c0) = I(u*, £*) > 0, we have
(7) xg(f) = 0 uniformly .

We have |x(f)| < n and therefore with regard to hypothesis (fV2) we obtain for an
arbitrary finite sequence {t;, 7;,>, i = 1, ..., r of disjoint intervals:

®  Fre-rels [eocolast [ b

+ ) |f]dt £ vY (v — 1) + o, max I(u¥, £¥)
i=1 ), , i=1 k
where E,; = {t €ty Tyt ]fl = V}’ F,;= {t € (t;, ) Ifl > V} and 0:1 =
= min ¢! @(¢). To given ¢ > 0 there is a v, such that o, max I(u*, £¥) < 1.
1glzv

r k
For Y (t; — ;) < 3vg 'e we get from (8) Y. |x*(r;) — x¥(1;)| < & which proves that x*
i=1 =1

are equiabsolutely continuous. Therefore, we may choose from them a subsequence,
which converges uniformly on every finite interval to a certain absolutely con-
tinuous function x(). Due to this and (7) we may suppose that X*(¢) converge to
a certain function X(t), uniformly on every finite interval, where x,(f) = 0, |x(t)] < 7
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and ]x(0)| = 5. Applying lemma 3 we conclude that there is a control u such that
x(t) = x(t, u, x(0)) nad I(u, x(0)) = 0, which is impossible. Hence,

9) inf W) =d > 0.
xeE

According to lemma 2 there is an ¢ > 0 such that W(%) < d for |%| < &. For
such £ there is a sequence u* e Q. such that I(u*, £) - W(%). From this and (9)
follows that x(t, u*, £) are uniformly bounded; similarly as above it may be proved
that they are equiabsolutely continuous. x§(¢) are uniformly bounded and increasing.
Hence, using for {x{} Helly’s principle of choise (cf. [8]), we may choose from
{=*()} a subsequence, such that x{, converge towards an increasing function for every ¢
and x*(f) converge uniformly to an absolutely continuous function x(f). Thus, there
is a subsequence of the sequence {%*}, satisfying the conditions of lemma 3. In
virtue of Remark 1, the application of this lemma completes the proof.

2. TWO THEOREMS ABOUT LINEAR DIFFERENTIAL SYSTEMS

In this paragraph, two theorems on asymptotic behaviour of systems of linear
differential equations will be proved. They will be used in the proof of the uniqueness-
synthesis theorem.

Lemma 4. Let A be a constant matrix, B(t) a matrix function, lim [§ |B(t + 1)| dt =
= 0. Denote X(1, t,) the solution of the matrix equation e

% =[4+ B()] X
such that X(to, to) = E, E being the unity matrix. Then, it holds

lim X(t, + 1, t,) = exp {At}

o= 0
uniformly with respect to t € {0, 1).

Proof. Denote N = sup |exp {At}|, M = supexp {[§ |4 + B(t, + 1)] dt}. We
have 1e0,1) 10

d
O [X(to + 1, 10)] < |4 + B(to + 1) |X(t6 + 1, 1o)]

from which we get

IA
S
A
8

|n%+mmgw%£m+m%+mm}_
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Further, we have
t
X(to + t,ty) = exp {At} + j exp {A(t — 1)} B(to + 7) X(to + 1, 10) | dt
0
from which it follows for t € <0, 1)

1
[X(to + 1, 15) — exp {At}| < MNJ |B(to + 1)] dt -0
]
for t, » 0.

Theorem 2. Let x() be a solution of the differential system

% =T[4+ B(1)] x + o(t),

where A, B satisfy the assumptions of Lemma 4, [§ |o(t + 7)| dt — 0 for t - oo.
Let G, be a constant m x n matrix such that the matrix I'q = (G, A*Gy, ...
<, AVTY*GEY* is of rank n ') and let G(t) be an m x n — matrix function, integrable
over every finite interval of the positive semiaxis. Let there be a nonnegative
increasing continuous real function (&) defined for & > 0 such that «(0) = 0, and
for every & > 0 there is a positive constant K, such that for every & e <0, o).
o(0&) £ K, (&) is valid. Let f§of|G(t + 1) x(t + 7)|)dr —> 0 and [5o(|G(t + 7) —
— Go|)dt - 0 for t — oo. Then, x(t) > 0 for t - 0.

Proof. Obviously, we may without loss of generality suppose that 4 has Jordan’s
canonical form. Denote A;, i = 1, ..., p its characteristic values. A may be writen
in the form

A 0y o .0
0,...,0,4,,,0,......... .0
A=| . ,
0, e ,0,4,,,0,...,0
0 ,0,4,,./

where

A= oo,
0,...,0, 4,1
0,...., 0,4)

1) By X* we denote the transposed matrix of X.
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isof order ¢; ; (i = 1,..., p;j = 1, ..., ). Denote x! the component of x and g¢"
the column vector of G correspondmg to the v-th row in 4; ;. We have

) ==" i()aw v= =1,

i=1 %=0
where
¢ ! ( )
e = Z Z g ,0) (u
Jj=1 p=
and x(' 7 is zero for u > g j- Further, we have
tx
(10) Get'x = Z Z Cix — e**, §,=maxgq,;.

i=1 %=0 X! J

Suppose x(f) does not tend to zero for ¢ — co. Then, there is a sequence {.},
7, — oo such that |x(z)| = 27 > 0. We have x(t) = X(t, 7,) x(z) + [*. X(s, 7)) @(s) ds
(X asin Lemma 3)| x(t) — x(ti)| <|x(z)| - |X(t, 7)) — E| + max |X(s, 7,)| §%. |e(s)] ds.

yseTi,t

In virtue of Lemma 4, |X(t, 7,) — E| = 0, {;, |¢(s)| ds > O for t — 7, uniformly
with respect to k. From this it follows that there is a 7, > 0 such that [x(f)| = 7
for t € {1y, T + To)-

Since [§ of|G(t + 5) — Go) ds = 0 for t — oo, for every & > O there is a T > 0
such that mes ({t : |G(t) — Go| = &, t € (T, )}) < &. Hence, for every ¢ > 0, there
is a t, € {1, T, + 7o such that |G(t,) — G,)| < ¢ for every k sufficiently large. Since
the rank of I'y is n, there is a n x mn matrix H, such that x = H I x. If we
choose ¢ > 0 sufficiently small, the rank of the matrix I', = (G(1,)*, 4* G(1,)*, ...

., A" 1% G(1,)*)* will be also n and there will be a matrix H, such that x = H,I';\x,
where |H, — H,| < n. From this it follows

(11) [x(t)] = O(|Te x(t)]) = O(rrilix eilte)]) for k — oo .

Due to (11), the sequences y; = (max leadt)) ™" x(6), di = (max [eadt)]) ™" cudti)
are bounded and max |endt)] > 6 > 0 Hence, passing to asubsequence if necessary,

we may suppose that Yy« — y and d,,, — d,;, for k — oo, where d,, are not all zero.
We have for t e {t;, t, + 1)

G(0) x() = G0 X(t, 1) (1) + G() f " X(t,7) (1) de

66) X( 1 x| =669 x0] + MIG0] [ o(o) o =
< |6(5) x(r)] + @(t) [|6(r) —
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where &(t,) — 0 for t, — oo. Further, we have

[ " 60 X0, 1) ~(1)) dr 2

149

< j‘k*‘adG(t) x(0)] + 0(t) |G(1) — Go| + () |Go]) dt =

lIA

113

j o3|G(t) x(1)]) dt + J o30(1,) |G(1) — Gol) dt + th+la(3¢(tk) |Gol) dt =
K,

IIA

[f o(|G(7) x(1)]) dt + J‘,k (00 [6(6) — Gol) di + j,t”

Ik

(0t IGO[)] at
Hence,
f "G X1, 1) x(t)) dt > 0 for k- oo

Since (max |c;,|) ™" < 671, we have
(12)

J "G X(6 1) ) &t £ Ky j " |G X(t 1) x(8)) df > 0. for k- oo

149

e+ 1 tic+ 1
J‘ a(IGOeA(!—lk)ykD dt £ K3 [J‘ a(]Go| . |eA(t—tk) — X(t, tk)I . |yk|) dt +

1 143

N j G — Gol - 1X(t 1) - i) dt + J "

tk tic

«(|G(0) X (1, 1) 7)) dt:l.

The first term tends to zero by lemma 4, the second by the assumption of the theorem
and the third does by (12). Thus, [g «(|Goe*'y,|) dt — 0 for k — oo. Since y, — y
for k — co, we get from this Gye*'y = 0 for t € €0, 1. From this and (10) follows

®

p gi
Goe''y =y Y dy t—‘ et =0 for te<0,1).
i=1 %=0 X!

Since the functions (x!)~! e** are linearly independent, this is inconsistent with

d;, *+ 0. This completes the proof.

Theorem 3. Let A, B(t), G(t), G, satisfy the assumptions of Theorem 2. Let x(r)
be a solution of the differential system

x=[4+ B(t)] x
such that G(t) x() = 0 for te <0, ). Then, x(f) = 0 for t 2 0.
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Proof. Suppose the contrary. Then, there is an increasing sequence {tk}, t, = ©
such that x(t,) + 0 and y, = |x(,)| " x(t,) converge to a certain non-zero limit y.
We have (cf. (12))

1 1
f «|Goe*'y|) dt = lim J o|G(t, + 1) X(t, + 1, 1,) yi|) dt =
k=w Jo

0

= lim Jloz(|x(t,()|‘1 |G(t + 1) x(t + 1)]) dt = 0.

—o Jo

Hence, Gye'y = 0 for t € 0, 1), what was shown to be impossible in the end of the
proof of Theorem 2.

3. THE UNIQUENESS AND SYNTHESIS THEOREM

For the uniqueness and synthesis theorem, let us introduce some new hypotheses:

(f1') f satisfies (f1) and moreover (0%f;/(du; ou,) (x, u)) is continuous for |x| < #,
]u| =nn>0,i,j=1,...,m.

(V1) (V1) is valid and moreover the first partial derivatives of ¥ are continuous for
|x| < n, u arbitrary and the second partial derivatives of ¥ are continuous for |x| <
<, |u| £n. If we denote P = 4(0°V/(dx; 0x;) (0, 0)), @ = (3*V/(dx; du;) (0, 0)),
R = 1(0*V|(u; du;) (0, 0)), then the quadratic form V,(x,u) = x*Px + x*Qu +
+ u*Ru is positive definite.

(V2) There are constants L, p, € (0, 1) and p, > 0 such that |V,| < LV, |V,]
< LVP2for ‘x| <, |u[ > 7.

(fV3) There are constants K, ry €(0, 1y, r, > 0 such that |f,| < KV", |f,]
< KV™ for |x| <n, |u| = n. For every 6 > 0, there is a 4 > 0 such that IV,,I
= y|f,] for |x| < dand |u| = 4.

IIA

IV 1IA

Theorem 4. (the uniqueness and synthesis theorem). Let hypotheses (f1'), (V1’),
(V2), (fV3) be valid. Let there be an & > 0 such that for |%| < &, the optimal
control exists. Then, there is an &€ <0, 81) such that for I)‘c‘ < ¢ it is unique and
there is a synthesis of it, which is continuous together with its first partial deriva-
tives.

Proof. Since V; is positive definite, there is a y > 0 such that V(x, u) = y(|x|* +
+ |u|?) for |x| < n, |u| < n. Hence, there are constants y,, y,, B, B, such that

(13) WPy, P EnY, () — £0,0 £ 8, V(x, u),

|fu(x, u) — £,0,0)]* < B, V(x,u) for |x| =7, lu| < 4.
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From this and hypotheses (V2), (fV3) follows that
(14) Vi) =V, «|fu(x.u) = £0,0)) < V(x,u) for |x| <7,

where
2 f <y,
) = {4, . o S ET
un* "¢ for &>y,

o =min {2, p; ', r;'} and p is a suitable constant.

Suppose that for £ there is an optimal control u,e(t). Further, we shall denote the
solution x(f, ug, £) simply by x(t). From the maximum principle ([9], § 24) follows
that there is a non-zero n + 1-vector function Y/(t) = (o, Y(t)), satisfying the system
of equations

: of x
(15) V== YoVl usl) = | = (xs(0) ul0)) | 0
o = const < 0 such that the function H(x, §, u) = ¥ V(x, u) + y* f(x, u) satis-
fies max H(x(t), Y(1), u) = H(x(1), ¥(1), ug(t)). For this, it is necessary that the
ueRY

equation
(16) Vo Vilxe(1), ue(r)) + £u(xa(2), ug(r)) Y(2) = 0

is statisfied for t = 0.
Since x4(t) > 0, we have |x(t)] <n for t = T> 0. From (14), (16) follows

of | £ (x(1), ue(t)) Y(1)]) £ o V(x4(1), ug(t)) for t =2 T, 0 being a suitable constant.
System (15) may be rewritten as follows

Vo= [=4+ (4 = Ll u DI* ¥ = Yo Valxs(1), uslt)) -

Now, from hypotheses (V2), (V3) and (13), (14) follows that the assumptions of
theorems 2, 3are satisfied with B(t) = (A — f.(x«(1), ug(t))*, @(t) = — o Vilxo(2), ug(1)),
G(1) = fulx4(1), us(t)), Go = B* and ¢ = ¢. Hence, from theorem 2 follows

(17) Y(t) >0 for t— oo
and from theorem 3 follows ¥, # 0. Therefore, we may set Y, = —1.

From (16) and (17) follows |V,(x4(1), us(2))| = o(| fu(x&(7), ue(2))]) for t — oo. Due
to (fV3) this is possible only if uy(t) - 0 for t - oo. From (V1) follows, that there is
an g, < n such that for |x| + |u| + || < &, (16) has a unique solution

(18) u = w(x,y)

such that w(0, 0) = 0, which is continuous together with its first partial derivatives.
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Hence, thereisa T; 2 Tsuch that for t 2 Ty, ug(t), x.(t), (1) satisfy (18) and, there-
fore, xg, ¥ satisfy for t+ = T, the differential system

(19) %
v

I

S w(x, ¥)) 5
=2, wx, Y)Y+ Vi, wx, ¥)) .

This system may be rewritten as follows
(20) % = (4 — 1BRT1Q*) x + 1BR™IB*) + o(x, y),
¥ = (2P — 1QR™'Q*) x + (—A* + JQR7'B¥)y + I(x, ¥),

where o(x, ) = of[x| + [V]), 8(x, ¥) = o(|x] + [¥])

Under hypotheses (f1'), (V1’), the optimal control for the linearized problem (i.e.
for the system x = Ax + Bu with the cost function VO) exists for every x and, there-
fore, the solutions of the linearized system, corresponding to (20) (i.e. the system
without w and § on the right-hand sides), which tend to zero for t —» oo, form an
n-dimensional linear subspace Z" of R?", the points fo which satisfy a system of linear
algebraic equations x = Sy. (cf. [2]). From this and the theorem of conditional
stability ([10], chap. 13, theorems 4.1, 4.2) follows that there is an n-vector function
g(¥) such that any solution x(r), y(z) of (19) tends to zero if and only if it in a certain
neighbourhood of the origin lies in the manifold x = g(y) = Sy + o(Y).

Now, using Lemma 2 and Lemma 3, we may in the same way as in [5] prove that
there is an ¢ > 0 such that if [£| < & and x(1), Y(r) is a solution of (19) with x(0) = £,
such that x(t) > 0 and (1) - 0 for t - oo, then |x(t)] + |[Y(1)| < & and Y(i) =
= g(x4(1)) for 1€ <0, ). If we denote v(x) = w(x, g(x)), then it follows that for
|2] < & ugl(t) = v(xg(1)) is valid. This completes the proof.

Corollary. Under hypotheses of Theorem 3 the trivial solution of the differential
system

(1) x = f(x, o(x))

is asymptotically stable and the function W(x) = [5 V(x(t), v(x(r)) dt (x(z) being
the solution of (21) with x(0) = x) is a Lyapunov function of it in the sense of [11].

This corollary gives a reason for calling our problem an ‘“optimal stabilization”
problem.

Joining the results of Theorem 1 and Theorem 4, we obtain the following result:

Theorem 5. Let hypotheses ({1'), (V1'), (V2), (fV1), (fV2), (fV3) be valid. Then,
there is an ¢ > 0 such that for |)?| < ¢ the optimal control exists, is unique and
admits a synthesis, which is continuous together with its first partial derivates.
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4. THE CASE OF f LINEAR IN u

A part of the assumptions, posed on V under which Theorem 2 is proved, seem to
be rather unnatural (e.g. hypothesis (V2)); one may expect that this theorem may be
proved under less restrictive assumptions. This expectation may be strenghtened by
the fact that in a special case we shall present in this paragraph, the conditions Vhas
to satisfy, may be considerably reduced.

In this section we shall suppose that u is scalar and f is linear in u, i.e. m = 1 and
f(x,u) = g(x) + h(x) u. Let us note that in this case, (fV2) is equivalent with the
following hypothesis:

(fV2') There is a nonnegative continuous function ¢(¢) such that hm El ()=
= oo and V(x, u) = ¢(|u) for (x, u)e G x R™

Instead of (Vl’), let us introduce the following less restrictive hypothesis:

(Vl”) V(x, u) is positive definite and continuous in G x R™, the first and second
partial derivatives of it are continuous for |x| < n, |u| < n, 7 > 0 and Vo(x, u) (cf.
(V1)) is positive definite.

Note that if f is linear in u, (fV3) follows from (V1), (fV2).

Lemma 5. Let m = 1. Let V(x,u) satisfy (V1"), (fV2'). Then, there is a function
V(x, u) with following properties:

1° 17(x, u) is defined, positive definite, convex in u and continuous together with
its first partial derivatives for ]x[ < o, u arbitrary, 0 < ny < 1.
2° V(x, u) = V(x, u) for |x| < n,, lul < 7os
V(x, u) < V(x, u) for IAI < 5o, u arbitrary.

3° V(x, u) satisfies hypothesis (fV2') with G replaced by the region |x|
and ¢ replaced by ¢, where @, is moreover convex and q)O(O) =0.

IIA

fo

4° There is a constant x > 0 such that
[V(x', u) — P(x, u)] < ol + u]) |x' = x|

Jor |x] £ no, [x'] < no.

Proof. There is a sequence of positive numbers {&} such that &y — & = 3,
(&) = k& for ¢ = &. From (V1”) follows that there are positive numbers 7, <
< ny £ & such that

(i) V(x, u) is convex in u for |x| < nq, |u| < ny,
(i) 0 £ ¥V (x,n,) < 1 for |x| < n,,
0= V(x, —n) = —1 for |x| £ n,,

290



(111) V(X, r’l) + I/;l(x’ 7’]1) (ll - ’11) é V(X, ll) for lx[ é Mos> M1 é u é 51,
V(x, =) + Vi(x, =n1) (u + my) £ V(x,u) for x| 9o — & Sus —n,.

Define ¥(x, u) recurrently as follows:

V(x, u) for |x[ < no, Ju| < ny
V(X’ '71) + V,,(x, ’11) (“ - ’11) for [X| =< No»
ms=ucs¢
P(x,u) = yV(x, =n0) + Vilx, =) (u + ny) for |x| < #,,
& sus—n
l7(x, &) + 17u(", Ck) (“ - &)+ ‘10(“ — ¢, for Gi<u £ &y
W(X, —&) + Vu(xa &)+ &)+ '//(” + &) for =&y Su< =§

k=1,2,..., where

& for [¢| =
£) =
V) {7}; + [¢] for |¢] >

N N

It is easy to verify that V(x, u) has the desired properties, with ¢o(&) defined recur-
rently by q’o(é) =0, lél s (Po(é = 900(61() + (k - 1)(5 - ﬁk) + w(é - €k) for
Ce s

Theorem 6. Let m = 1, f(x, u) = g(x) + h(x) u. Let (f1'), (V1"), (fV2') be satisfied.
Then, there is an ¢ > 0 such that for |>‘c| < ¢ there is a unique optimal control.
Further, there is a synthesis of it, which is continuous together with its first partial
derivatives.

Proof. For the given V(x, u) construct the function V(x, u) as described in Lemma
5. Then, the pair f, ¥ satisfies all assumptions of Theorem 5 (G replaced by |£| < 7).
For this, we have to prove that for M < n, (fV1) is valid, since the remaining assump-
tions follow directly from the assumptions of this theorem and Lemma 5.

Every point of co Q(S(x, §)) may be written as a convex combination of n + 2

nt+2 n+2
points of Q(S(x, 8)). Thus, we have to prove that j* — y, j* = Zl”‘ ik Z Ak =1,
7" € 0(x™), x* —» x implies je Qx). (J = (vo, ..., ya) = (yo, y) y= (yl,. s Vn))-

From j*e Q(x™) follows that there are u™ such that yg* > V(x™, u®), y* =
= g(xlk) + h(xlk) ulk
Since y¥ is convergent and
n+2

y,? gigllikV(xik tk) > lxk(p(‘ulk‘) > Z 0o (/lnkluxkl

{A%y*}2_ | must be bounded for every i. Hence, passing to a subsequence, if necessary,
we may suppose that the sequences {A*u™*};°., and, consequently, {u*}, are convergent.
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Let u = lim u*. We have

k-
n+2 . . . . n+2 . .
y =1lim Y 2*g(x*) + h(x™) u*] = lim ) A* g(x*) +
k= i=1 k=0 i=1
n+2
+ h(x)lim Y 2*u™ + lim Z Z*[h(x™) — h(x)] u™ = g(x) + h(x)u
k= i=1 ko i=1

(the third term tends to zero because of the continuity of g and boundedness of
{A%u™*},. Further, we have

n+2 e . n+2 o X

yo 2 lim Y A* V(x™, u™) = lim Y A* V(x, u™) +
k=0 i=1 k= i=1
n+2 o ) - . . N

+ lim Y A*V(x, u™) — V(x™*, u™®)] = lim V(x, u*) +
k- i=1 . k— o
n+2 . . .
+ lim Y #|A% + A% u™| | |x — x*| = V(x, u).

k= i=1

This proves j € Q(x).

Due to Theorem 5 there is an & > 0 such that the optimal control for the pair f, ¥
exists, is unique and admits a once continuously differentiable synthesis v for |)?I <eg
further, the solutions x(t, £) of the system x = f(x, v(x)) with x(0, £) = %, |%] <&
satisfy |x(1, £)| < no and W(£) < inf W™(&) (W, W™, Q¥ defined as in the proof of

ieﬁg"o
Theorem 1 with V replaced by 7).

Let [%| < e and u e Q, u(t) % v(x(1, u, £)). Denote T zero, if |x(t, u, £)| < n, for
all ¢ and the last number for which |x(t, u, £)| = #, in the opposite case. We have
for |%] < &

'[ “Vix(t, 9), vlx(t, %) dt = j :V(x(t, %), ofx(t, %) dt <

0

RCERTOrE,

T

V(x(t, u, 2), u(t) dt < f “Vix(t, u, ), u(®)) di .

0

This proves that for ])‘c| < & v(x) is the synthesis of optimal control also for ¥ and
that this optimal control is unique for all |£| < e.
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