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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

ON THE OPTIMAL STABILIZATION OF NONLINEAR SYSTEMS 

PA VOL BRUNOVSKY, Bratislava 

(Received November 24, 1966) 

This paper is concerned with a nonhnear extension of a problem posed in its 
linear form by LETOV [1] and called by him "analytical regulator construction" 
problem. 

Consider a control system 

(1) x=f{x,u), / ( 0 , 0 ) ^ 0 

(x being n-vector, и being m-vector) and a scalar function V(x, u) (the cost function), 
which is positive definite i.e. F(0, 0) = 0, V{x, u) > 0 for (x, u) Ф (0, 0). For a given 
n-vector X denote Q^ the set of all measurable functions u(t), t e <0, oo) such that the 
solution of the system x = / (x , u{t)) starting at x at ^ = 0 (we shall denote it by 
x{t, u, ^)), exists on the whole interval <0, oo), satisfies lim x(t, w, x) = 0 and/(w, x) = 

= JQ V(x{t, u, x), u(t))dt < 00. The elements of Qj^ will be called controls. The 
control u^eQj^ is called optimal, if l{uj^, x) = mm l{u, x); x[t,u^,x) is called an 
optimal solution. "̂ ^^ 

A function v{x) is called a synthesis of optimal control in the domain D, if for 
every ^ e D the optimal control Uj^ may be expressed in the following way 

Uj^{t) = v{x{t, w ,̂ x ) ) . 

If such a synthesis exists, we obtain by substituing of Î;(X) into (l) an asymptotically 
stable differential system with a certain optimahty property. 

For the case of/ being hnear, F being quadratic in both x and и theorems on the 
existence, uniquenes and synthesis have been proved by several authors (cf. [1], [2], 
[3], [4]). In this case one gets a linear synthesis function and the results are of global 
character in initial conditions. 

The case of /hnear and F non-quadratic is treated in [5]. In the present paper the 
general nonlinear case is treated. Theorems of local character in initial conditions 
about the existence, uniqueness and synthesis of optimal control are proved. The 
general nonhnear case is investigated also in [4]. However, the methods, used in [4] 
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are difi'erent from those used in this paper and also the results are of different kind. 
Moreover, in [4] b o t h / a n d Fare supposed to be analytic in both x and u. 

1. THE EXISTENCE THEOREM 

Let | . | be the Euclidean norm in R^, /c ^ 1, S(x, ô) = {x' : \x' ~ x\ < 3}. Let us 
introduce following hypotheses: 

(f 1) / is defined and continuous together with its first partial derivatives for 
(x, u)e G X R"^, G being an open domain in i?", containing the origin; /(O, 0) = 0. 
The system (l) is locally controllable in the origin, i.e. if we denote A = {dfjdx) (0, 0), 
В = (dfldu) (0, 0), then the matrix {B, AB, ..., A'^'^B) is of rank n. 

(VI) F(x, u) is defined, continuous and positive definite in G x R"". For every 
^ > 0 it holds inf Hm inf V(x, u) > 0. 

\x\^Ô | M | - * O O 

(f VI) The set Q{x) = {{уо, ..., y„) : Jo ^ K^. w), >'̂  = f^x, u), i = 1, 2, ..., n, и e 
G R""} satisfies for every x e G the semicontinuity property g(x) = f) со Q{S(x, 5)), 
CO X being the convex closure of Z (cf. [7]). ^^^ 

(fV2) There is a nonnegative continuous function ф((̂ ) such that lim ^~'^ (p(^) = oo 
and V{x, u) ^ ф(|/(х, u)\) for (x, u) e G x R"". ^-"^ 

Remark 1. Under Hypotheses (f 1), (Vl), (f V2) from l{u, x) < oo follows Hm x(t, u, x) = 
t-^oo 

— 0. In order to prove this, suppose the contrary. Then, from /(w, x) < oo and 
(VI) follows that there is a sequence {f^}, ^̂  -> oo such that hm x(r^, w, x) = 0. Hence 

k-*oo 

if x{t, u, x) does not converges to zero for f -^ oo, there is a x > 0 and sequences 
{h}> {^k}^ hi -^ 00, Tfc > tk such that |x(r̂ )̂| = 2x, [х(т;,)| = x, \x{t, u, x)\ e (x, Ix} 
for t e <^tk, Tj^y. We have 

+ (2) X S \X{TI„ U, X) — x(tf^, u, x)| ^ i/W^' "' ^)' "(0)1 ^̂  

+ \f{x{î, и, x), u{t))\ dt й V(T, - tj,) + (Г, I(u. x) , 

where £,,^ = {̂  G <f;̂ , T J : |/(x(f, w, x), w(^))| ^ v}, F , ^ = {̂  e <^̂ , т,̂ > : |/(x(f, w, x), 
"(0)1 ^ ^} aiidcr^^ = min (̂ ~̂  <)9((̂ ). From (fV2) follows that there is a v > О such 

that a^ < ix[/(w, x)] ^ For such v from (2) follows 

(3) T, - f, ^ l v - 1 % . 

According to (Vl) there is a // > 0 such that F(x, i/) ^ // for ]x| G <X, 2X> which 
together with (3) contradicts /(w, x) < oo. 
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Lemma 1. Let (f 1) be satisfied. Let /i be a given positive constant. Then, there is 
€inri > 0 such that for every ^ such that \x\ < ц there is a function uj^t) and a T^ > 0 
such that \uji{t)\ S ß^ (̂̂ » ŵ ?̂ ^) = 0 / o r t ^ T^. Moreover, u^ may be chosen in 
such a way that T^ -^ 0 for jc -> 0. 

Proof. Denote I^ the set of all x for which a control и exists such that \u{t)\ ^ jj. 
for it e <0, 00 > and x{t, u, x) = 0 for f ^ T. It suffices to prove that for every T > 0, 
IJ contains a neighbourhood of the origin. 

The proof of this fact is a slight modification of the proof of theorem 4 in [6], 
therefore we shall give only a brief outline of it. 

Denote { == (c^i,..., ^^„) and let T > f̂  . . . > „̂ > 0. Denote 

w(r, i) = [^,(p{t, rO + ... + ^ncp{t, 0 ] e, + ... + 

(m— 1)« + 

where e,^ is the m-vector with /c-th component being 1 and the remaining being zero 
and 

cp(t, h) 1 for 
0 for 

\t\Sh , 
\t\>h. 

For ^ sufficiently small we have \u(t, ^)\ ^ {.i. Denote X{t, ^) the solution of (1) 
with и = u{t, ^) and X(T, ^) = 0. Then, X{0, 0 is differentiable with respect to ^, 
For the n X mn matrix (dXJd^) (T, 0) the expression 

ax (т,о) = (ь„...,л«-^ь„...,^„, АП- 1 + 0(f/ 

may be obtained, where 

- t l , . 

t\ 
21' 

• •? 

tl 
' 2! 

(-1)"-^^,..., ( -1ГЦ 
n\ n\ J 

and b i , . . . , b^ are the column vectors of B. The rank of К„ being n, it follows from 
(f 1) that for tl sufficiently small the rank of {dXJd^) (0, 0) will be n. Since Tmay be 
choosen arbitrarily small, this proves the lemma. 

Lemma 2. Under hypotheses (f 1), (VI), Q^ is non-empty for x from a sufficiently 
small neighbourhood of the origin and lim (inf/(M, x)) = 0. 
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Proof. Due to Lemma 1 and (fl) for every T > 0 sufficiently small there is an 
г > 0 such that if |x| < e, then x e Ij and x{t, u, x) < t] for ^ ^ Tif \u{t)\ g 1 for 
te <0, ту. Hence, if и is such that x{t, u, x) = 0 (or t ^ T and \u(t)\ ^ 1 for / G 
e <0, T ) , we have 

l(u, x) ^ Tmax V[x, u), 

which proves this lemma. 
The following lemma is based on the same idea as a similar one in [7], For its 

easier formulation, denote Xo(^ w, x) = Jo V{x(s, u, x), M(S)) ds, x{t) = (хо(г), x{t)). 
We have then /(w, x) = Xo(oo, u, x). 

Lemma 3. Let hypotheses (f 1), (Vl), (f VI), (f V2) be satisfied. Let x^(t) = x(f, u'', x^), 
f e <(0, oo), u^eQ^k and let x\i) be uniformly bounded and equicontinuous. Let 
there be an absolutely continuous function x{t) such that x\t) -^ x{t) for к -^ со 
for every t, the convergence being uniform on every compact interval and let 
Xo(̂ ) •-> Хо(г) pointwise for t e <0, oo). Then, there is a control и e Qx(o) ̂ ^^^ that 
x{t) = x{t, u, x(0)) and jo V{x{t, u, x(0)), u{t)) dt ^ Xo(oo). 

Proof. For arbitrary X с R^ denote S(^X, ̂ ) = {x : inf |x -- x'| < <)}. Let s > 0. 
x'eX 

Let t be such that x[t) exists (note that x(r) exists for a.e. t since x{t) is absolutely 
continuous and Xo(̂ ) is nondecreasing). Since x\t) -^ x{t) and x\t) are equiconti­
nuous, there is a (5 > 0 such that for \h\ < ô we have Q{x\t + h)) c= Q{S{x\t), Je)) 
for every k. To given h and f] > 0 there is a /CQ such that for к > k^ 

(4) |x,(0 ~ x{t)\ < ie 

\x{t + h) - x{t) __ x%t + h) - x\t)\ 
j ""l I j 

is vahd. We have 

(5) h-'[x\t + h)~x\t)] = 

= (h~' Г'ЧА'1 A.^)) as, h-' Г /(x^(5), u\s)) ds\ e CO Q{S{x\t\ is)). 

From (4), (5) follows h-^[x{t-{- h) ~ x{t)]e S{œ Q{S{x{t), s),r]). For /c-> oo, 
/i -^ 0 we obtain from this 

5c{t) e n c^ Q{S{x{t), e)). 
E>0 

From this and (f VI) follows x{t) e Q{x{t)), i.e. there is a u{t) e R"" such that x{t) = 
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= / (x , u{t)) and Xo(̂ ) ^ y{x{t), u{t)). In the same way as in [7] it may be proved 
that u(t) may be choosen measurable. Since Xo(̂ ) is nondecreasing, we have 

r»O0 /»00 

V{x{t), u{t)) dt ^ Xo{t) dt S л-о(оо) 
Jo Jo 

cf. [8, chap. 8, theorem 5] which was to be proved. 

Theorem 1. (the existence theorem). Let hypotheses (fl), (Vl), (fVl), (fV2) be 
valid. Then, there is an s > 0 such that for every x such that \x\ < £ the optimal 
control exists. 

Proof. Denote 

Ql = {u e Q^ : \x{t, u, x)\ S Ц for ^ e <0, oo)} , 

E = {x e R" :\x\ = n, Ql ^ Щ , 

W{St) = inf/(w, x), W\x) = inf l{u, x) . 

Suppose inf И '̂̂ (х) = 0. Then, there is a sequence x^ -> x, u^ e Q^u, l{u^, x^) -> 0. 
Jce£ 

Denote x^{t) = x{t, u^, x^) and use the notation of Lemma 3. The functions Xo(̂ ) 
are increasing. Hence, as Xo(oo) = /(w^ x'') -> 0, we have 

(7) Xo(r) -^ 0 uniformly . 

We have |x^(f)| S Ц and therefore with regard to hypothesis (fV2) we obtain for an 
arbitrary finite sequence <^p т^>, i = 1, ..., r of disjoint intervals: 

(8) t \A^) - A'>)i^i [\f{AtiлтAi^i[ 1/1 at + 

+ s | / | dr ^ V X i^i - h) + «̂v max l{u\ jS") 

where E,j = {t e <,t„ Т;> : | / | g v), f,,,- = {« e <(,-, т^): | / | > v} and a^^ = 
= min ^''^ (р{е)- To given г > 0 there is a VQ such that c7̂ ^ max/(м', ^'') ^ ^s. 

I « l è v 
r г fe 

For Y, {^i ~- h) < i^o ^̂  we get from (8) ^ \х\т^) — х^(г^)| ^ e which proves that x^ 

are equiabsolutely continuous. Therefore, we may choose from them a subsequence, 
which converges uniformly on every finite interval to a certain absolutely con­
tinuous function x(t). Due to this and (7) we may suppose that x'̂ (t) converge to 
a certain function x(^), uniformly on every finite interval, where Xo(t) = 0, \x{t)\ ^ rj 
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and |x(0)| = rj. Applying lemma 3 we conclude that there is a control и such that 
x{t) = x{t, II, x{0)) nad /(w, x(0)) = 0, which is impossible. Hence, 

(9) inf W%x) = d>0. 
xeE 

According to lemma 2 there is an e > 0 such that W{x) < d for |x| < e. For 
such X there is a sequence u^ e Q^ such that l{u^, x) -> T^(x). From this and (9) 
follows that x(f, u^, x) are uniformly bounded; similarly as above it may be proved 
that they are equiabsolutely continuous. Xo(̂ ) are uniformly bounded and increasing. 
Hence, using for {XQ} Helly's principle of choise (cf. [8]), we may choose from 
{x\t)} a subsequence, such that XQ converge towards an increasing function for every t 
and x\t) converge uniformly to an absolutely continuous function x(t). Thus, there 
is a subsequence of the sequence {x'̂ }, satisfying the conditions of lemma 3. In 
virtue of Remark 1, the application of this lemma completes the proof. 

2. TWO THEOREMS ABOUT LINEAR DIFFERENTIAL SYSTEMS 

In this paragraph, two theorems on asymptotic behaviour of systems of linear 
differential equations will be proved. They will be used in the proof of the uniqueness-
synthesis theorem. 

Lemma 4. Let Abe a constant matrix, B{t) a matrix function, lim Jo \B(t -f т)| di — 
= 0. Denote X{t, to) the solution of the matrix equation "̂""̂  

X = [Л + B{t)] X 

such that X{tQ, to) = E, E being the unity matrix. Then, it holds 

Mm X{to + t, to) = exp {At} 
fo-*oo 

uniformly with respect to t e (^0, 1}. 

Proof. Denote N = sup |exp {V4T}|, M = sup exp {JJ \A + B{to + t)\ dr}. We 
have '"<^''> 

- \X{to + t, fo)| S\Ä + B{to + 01 14^0 + t, to)\ 
dt 

from which we get 

W^o + t, to)\ ^ exp] \A + B{to + T)| d r l ^ M < 00 . 
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Further, we have 

^(^0 + t, to) = exp {At} + I exp {A{t - x)} B{to + т) X(fo + т, to) \ dt 

from which it follows for f e (0, 1) 

\X{to + t, to) - exp {At}\ S MN 
« 

for IQ -^ oo. 

|j5(to + 01 dt ~> 0 

Theorem 2. Let x{i) be a solution of the differential system 

X = [A + B{t)] X + (p{t) , 

where A, В satisfy the assumptions of Lemma 4, f J \(p{t + т)| dt -> 0 for t -> oo. 
Let GQ be a constant m x n matrix such that the matrix FQ = (G*, ^*Go, . . . 
. . . , yl"~-^*Go)* is of rank n ^) and let G{t) be an m x n — matrix function, integrable 
over every finite interval of the positive semiaxis. Let there be a nonnegative 
increasing continuous real function a(^) defined for ^ > 0 such that a(0) = 0, and 
for every ^ > 0 there is a positive constant K^ such that for every ^ e <0, oo). 
a{a^) ^ K^ a((^) is valid. Let Jj a{\G{t + т) x{t + r)\) dr -> 0 and Jj a{\G{t + т) -
— GQ\) d i -> 0 for t -^ CO. Then, x(t) -> 0 for t -^ oo. 

Proof. Obviously, we may without loss of generality suppose that A has Jordan's 
canonical form. Denote Я̂ -, / = 1,..., p its characteristic values. A may be writen 
in the form 

/ ^1 ,1 ,0 , . . . , 0 \ 

A 
0, . . . ,0 , / t i , ,^ , 0, , 0 

0, , 0 , Л,д ,0 , . . . , 0 

VO, >0,Л,,,7 

where 

A , 1, ,0\ 
' 0 , 1,., 1, . . . , 0 

0, . . . , 0 , A.., 1 
\p,..., 0,XJ 

)̂ By Z* we denote the transposed matrix of X. 
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is of order ^i J (i = 1, . . . , p ; j = 1, . . . , r,). Denote x^/'-'^he component of x and f̂; 
the column vector of G corresponding to the v-th row in A^j. We have 

(9) GÄ^x==l X Г]ГГс,^ v = l , , . . , . i ~ l 
i=i x = 0 \K) 

where 
ri qi,j--x 

XiJ). = E Z al!'''-'''' 
j = l ß=i 

and x^^^'•^^ is zero for ц > q^ j . Further, we have 

(10) Ge^'x = t f c , , ^ e ^ " , q, = maxq,j. 
i=l x = 0 X\ j 

Suppose x{t) does not tend to zero for ^ -> oo. Then, there is a sequence {x^, 
Tfc -^ 00 such that |х(т^)| ^ 2^ > 0. We have x{t) = X{t, x^ x{x^ + f̂^ X{s, t^) (p{s) as 
{X as in Lemma 3)| x{t) ~ х(т,)| ^ | х(т,)|. |Z(r, т,) - £ | + max |X(s, т,)| fj^ \(p{s)\ ds. 

fc,se<rk,f> 

In virtue of Lemma 4, \X{t, Xj) — £ | -> 0, JĴ  \я>{^)\ ds -> 0 for ? -^ Xj,, uniformly 
with respect to k. From this it follows that there is a TQ > 0 such that \x{t)\ ^ ц 
for t e <Tb Xj, + To>. 

Since Jo a{\G{t + s) — Go|) ds -> 0 for Г -> oo, for every e > 0 there is a T > 0 
such that mes ({f : \G{t) — Gç\ ^ s, t e <T, oo)}) < e. Hence, for every г > 0, there 
is a tf^e <Tfc, T/, + TQ) such that |G(^;^) — GQ)\ < г for every к sufficiently large. Since 
the rank of Го is n, there is a /i x mn matrix HQ such that x = HQFQX, If we 
choose г > 0 sufficiently small, the rank of the matrix Г^ = (G (̂/fc)*, ^* ^{hY^ • • • 
«.., Л"~^* G'(̂ k)*)* will be also n and there will be a matrix Hĵ  such that x = Hj^Fj^x, 
where |Я^ — HQ\ < Y\. From this it follows 

(11) | x ( g | = 0 ( | r , x{t,)\) = 0(max |сД^,)|) for /с ^ сю . 

Due to (11), the sequences y^ = (max |сЦг^)|)"^ х(г̂ )̂, Ĵ .̂ ^ = (max |сЦ^^)|)"^ сЦг^) 

are bounded and max |ci,c(̂ fc)| > ^ > 0. Hence, passing to a subsequence, if necessary, 
i,x 

we may suppose that Л -^ У and di^^ -^ d^^ for /c -> oo, where di^ are not all zero. 
We have for t e (^tj,, t^ + 1} 

G{t) x{t) = G{t) X{t, t,) x{t,) + G{t) Г X{t, x) cp{x) dx 
J tk 

\G{t)X{t, t,)x{t,)\ й \G{t)x{t)\ + M\G{t)\ r ' V w i dt й 
J tk 

й \Git)x{t)\ + Ф(д [|G(0 - Gol + |Go|], 
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where Ф{1^) -> О for f̂  -> oo. Further, we have 

Г a{\G{t)X{t,t,)x{t,)\)dtu 
J tk 

й Г a{\G{t) x{t)\ + Ф{1,) \G{t) - Go] + Ф{Н) iGol) dt ^ 
J tk 

^ Г a{3\G{t) x{t)\) dt + Г а(ЗФ(г,) \G{t) - Go|) at + Г a{ЗФ{t,) \GO\) dt й 
J tk J tk J tk 

Г r*tk+l f*tk+l f*tk+l -1 

йкА\ a(|G(t) x{t)\) dt + a{Ф{t,) \G{t) - Go|) dt + a{Ф{t,) |GO|) dt. 
LJ tk J tk J tk J 

Hence, 
rtk+i 

oi{\G{t) X{t, tk) x{tk)\) dt -^ 0 for k-^ СЮ . 

Since (max |c,,,|)~^ < ^~^, we have 
i,x 

(12) 

Г a(|G(0 X(f, t,) y,\) dt ^ K, - . Г a(|G(0 X(f, (,) x(<,)|) d( -^ 0. for fc 
J tk J tk 

00 

J tk 

a{\Goe^^'-'''^y,\)dtuK, 
rtk+1 

«(|Go|.K<'-"'>-X(M.)|-W)dt + 

+ Г a(|G(0 - Go| . \X{t, t,)\ . \y,\) dt + Г a{\G{t) X{t, t,) y,\) dt']. 
J tk J tk J 

The first term tends to zero by lemma 4, the second by the assumption of the theorem 
and the third does by (12). Thus, Jj а(|<̂ о̂ '̂з̂ Ус1) dt -> 0 for /c -> oo. Since y^ -> у 
for /c -^ 00, we get from this Go^^y = 0 for t e <0, 1>. From this and (10) follows 

Goe^'y^t 1 ^ . . ^ е ^ ^ ' = 0 for Г e <0, 1> . 

Since the functions {>c\)~^ t^e^'* are Hnearly independent, this is inconsistent with 
d^^ Ф 0. This completes the proof. 

Theorem 3. Let A, B{t), G(f), Go satisfy the assumptions of Theorem 2. Let x{t) 
be a solution of the differential system 

X = [A + B{ty] X 

such that G{t) x{t) = 0 for t e <0, oo). Then, x{t) = 0 for t ^ 0. 
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Proof. Suppose the contrary. Then, there is an increasing sequence {ti,}, t,^ -^ oo 
such that x{ti,) Ф 0 and у/, = jx(fj,)|~^ x(f/,) converge to a certain non-zero hmit y. 
We have (cf. (12)) 

'1 M 

a(|GoHV|) àt = hm a{\G{t, + t) X{t, + /, t,) y,\) dt = 
0 ^^«^Jo 

= hm a{\x{t,,)\'''^ \G{ti^ + t) x{t,, + t)\) dt = 0 . 
k-^co J 0 

Hence, Go^V = 0 for ^ e <0, 1>, what was shown to be impossible in the end of the 
proof of Theorem 2. 

3. THE UNIQUENESS AND SYNTHESIS THEOREM 

For the uniqueness and synthesis theorem, let us introduce some new hypotheses: 

(f 1') / satisfies (f 1) and moreover {d^fi\{dui duj) (x, u)) is continuous for |x| ^ f], 
\u\ S rj, Г] > 0, ij = 1, ..., m. 

(Vl') (Vl) is valid and moreover the first partial derivatives of Fare continuous for 
jx| ^ Y\, и arbitrary and the second partial derivatives of Fare continuous for \x\ ^ 
^ n, \u\ й П' If we denote P = {{д^У\{дх; dxj) (0, 0)), Q = {ô^Vl{ôXi duj) (0, 0)), 
R = ^[d^-Vl{dUiduj) {0,0)), then the quadratic form Fo(x, w) = x*Px + x^Qu + 
+ u^Ru is positive definite. 

(V2) There are constants L, p^ e (O, 1) and P2 > 0 such that \V^\ ^ LV^\ \vj^ g 
й LV^' for |x| й Л, \u\ ^ ri. 

(fV3) There are constants K, r^ e (0, 1>, Г2 > 0 such that ]/^| ^ KV', |/„| й 
^ XF''^ for |x| S Л, \u\ ^ Г]. For every ô > 0, there is a /i > 0 such that |F„ | ^ 
à l^\fu\ for |x| S ^ and |w| ^ (5. 

Theorem 4. ( /̂le uniqueness and synthesis theorem). Let hypotheses (f F), (VF), 
(V2), (fV3) be valid. Let there be an s^ > 0 such that for \x\ < ê  the optimal 
control exists. Then, there is an e e <(0, e^) such that for \x\ < s it is unique and 
there is a synthesis of it, which is continuous together with its first partial deriva­
tives. 

Proof. Since VQ is positive definite, there is a 7 > 0 such that F(x, u) ^ y{W\^ + 
+ |w|^) for |x| S n^ l̂ 'l й П' Hence, there are constants y^, 72, ßu ßi such that 

(13) \V^Y ^ ViF, \V.\' S УгУ, \flx, и) ~ /ДО, 0)i^ g ß, V{x, и) , 

\flx, и) - Д о , 0)1^ й ß2 V{x, и) for \х\йЛ, \и\ g п . 
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From this and hypotheses (V2), (f V3) follows that 

(14) a ( |n | ) й V. < | / . (х, и) - Д О , 0)1) й V{x, и) for \х\ й f] , 

where 
(/л^^ for ^ ^ rj. 

""̂^̂  W-^e for ^>^, 

Q = min {2, p j \ г^^} and /г is а suitable constant. 
Suppose that for x there is an optimal control u^(t). Further, we shall denote the 

solution x{t, u^, x) simply by xj(i). From the maximum principle ([9], § 24) follows 
that there is a non-zero n + 1-vector function \jj{t) = (i/̂ o, \j/{t)), satisfying the system 
of equations 

(15) ^ = - ^lfoVЫ^), u,{t)) - Щ {x,{t), «,(0)1V . 

XJ/Q = const ^ 0 such that the function Я(х, 0̂ , и) = XJJQ F(x, u) + ф"^ f[x, u) satis­
fies max H(xj^{t), ф{г), и) = Я(хДг), ^(r), Uj^[t)). For this, it is necessary that the 

equation 

(16) Фо кЫ')' "ДО) + /*(^Д')' "M Ф{') = о 
is statisfied for t ^ 0. 

Since x^{t) -> 0, we have |хДг)| ^ г] for r ^ Г > 0. From (14), (16) follows 
a(|/*(^je(0' ^x(O) ^(01) = ^ ^(-^x(0' ^ДО) f̂ ï" t ^ T,cr being a suitable constant. 
System (15) may be rewritten as follows 

Ф = l-A + {A- Ux,{tl u,{t))J^ Ф ~Фо Vxi^jtit), u,{t)) . 

Now, from hypotheses (V2), (V3) and (13), (14) follows that the assumptions of 
theorems 2,3 are satisfied with B(t) = {A — fx{^x{t), ^ДО)*' ^ (0 = ~ 'Ao K{^x{^)> ^'^(O)' 
G(r) = /„(xjf(r), t/je(0)' ^0 = ^* ^^^ (T = Q, Hence, from theorem 2 follows 

(17) ф{1)-^0 for 

and from theorem 3 follows фо Ф 0. Therefore, we may set фо = —1. 
From (16) and (17) follows |F„(x^r), u^{t))\ = о(|/„(хДг), Uj^{t))\) for t -^ oo. Due 

to (f V3) this is possible only if uj^t) -> 0 for ^ -> oo. From (VI) follows, that there is 
an £o ^ ^ such that for |x| + |м| + |i/ |̂ < во? {Щ has a unique solution 

(18) и = w(x, Ф) 

such that w(0, 0) = 0, which is continuous together with its first partial derivatives. 
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Hence, there is a Tj ^ Tsuch that for t ^ T^, u^{t), x^(?), xj/^t) satisfy (18) and, there­
fore, x^, Ф satisfy for t ^ Ti the diiferential system 

(19) X = / (x , w(x, Ф)) , 

Ф = - / * ( x , w(x, Ф)) Ф + Т/Дх, w(x, Ф)), 

This system may be rewritten as follows 

(20) X ={Ä - p j R - ^ ß * ) X + ^ВК-^В'^ф + a>(x, î ) , 

Ф = {2P - iQR-^Q^)x + ( - Л * + iQR~^B'')ф + % , i/^), 

where Ö>(X, ф) = o(|x| + |i/^|), ^(x, ф) = o{\x\ + |i/^|). 
Under hypotheses (f Г), (Vr) , the optimal control for the hnearized problem (i.e. 

for the system x = Ax + Bu with the cost function Fo) exists for every x and, there­
fore, the solutions of the linearized system, corresponding to (20) (i.e. the system 
without (o and 3 on the right-hand sides), wliich tend to zero for t -^ oo, form an 
n-dimensional linear subspace Z" of R^", the points fo which s'̂ atisfy a system of Hnear 
algebraic equations x = Зф. (cf. [2]). From this and the theorem of conditional 
stability ([10], chap. 13, theorems 4.1, 4.2) follows that there is an n-vector function 
gi^il/) such that any solution x(r), ф{1:) of (19) tends to zero if and only if it in a certain 
neighbourhood of the origin hes in the manifold x = д(^ф) = Бф + o{il/). 

Now, using Lemma 2 and Lemma 3, we may in the same way as in [5] prove that 
there is an г > 0 such that if |x| < г and x(f), ф{1) is a solution of (19) with x(0) = x, 
such that x{t) -^ 0 and ф{1) -^ 0 for t -^ oo, then \x{t)\ + \Ф{t)\ й ^i and ф{t) = 
= (̂x_ (̂̂ )) for t e <0, oo). If we denote v{x) = w(x, g{x)), then it follows that for 
|x| < £, u^(t) = v{x^{t)) is valid. This completes the proof. 

Corollary. Under hypotheses of Theorem 3 the trivial solution of the differential 
system 

(21) x=f{x,v{x)) 

is asymptotically stable and the function W{x) = So ^(^(0 ' K^(0) ^^ (-^(0 ^^^^^9 
the solution o/(2l) with x(0) == x) /5 a Lyapunov function of it in the sense of [ И ] . 

This corollary gives a reason for calhng our problem an "optimal stabilization" 
problem. 

Joining the results of Theorem 1 and Theorem 4, we obtain the following result: 

Theorem 5. Let hypotheses (fГ), (VL), (V2), (fVl), (fV2), (fV3) be valid. Then, 
there is an 8 > 0 such that for |x| < e the optimal control exists, is unique and 
admits a synthesis, which is continuous together with its first partial dérivâtes. 
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4. THE CASE OF / LINEAR IN и 

A part of the assumptions, posed on Kunder which Theorem 2 is proved, seem to 
be rather unnatural (e.g. hypothesis (V2)); one may expect that this theorem may be 
proved under less restrictive assumptions. This expectation may be strenghtened by 
the fact that in a special case we shall present in this paragraph, the conditions Fhas 
to satisfy, may be considerably reduced. 

In this section we shall suppose that и is scalar a n d / i s Unear in u, i.e. m = 1 and 
/ (x , u) = g{x) + h{x) u. Let us note that in this case, (/V2) is equivalent with the 
following hypothesis: 

(fV2') There is a nonnegative continuous function ф((̂ ) such that lim ^~'^ (p[^) = 
= 00 and F(x, u) ^ (p{\u\) for (x, u) e G x R"^. ^""^ 

Instead of (VL), let us introduce the following less restrictive hypothesis: 

(VI'') F(X, U) is positive definite and continuous in G x R^, the first and second 
partial derivatives of it are continuous for |x| ^ J], \u\ S r], rj > 0 and Fo(x, u) (cf. 
(VF)) is positive definite. 

Note that i f / i s hnear in w, (fV3) follows from (Vl), (fV2). 

Lemma 5. Let m = 1. Let F(x, w) satisfy (VF), (fV2'). Then, there is a function 
F(x, u) with following properties: 

1° V{x, u) is defined, positive definite, convex in и and continuous together with 
its first partial derivatives for |x| ^ TJQ, и arbitrary, 0 < VJQ -й f]. 

T F(x, u) = F(x, u)for |x| ^ /7o. Î î ^ П^. 
F(x, u) ^ F(X, u)for |x| ^ TJQ, и arbitrary. 

3° F(X, U) satisfies hypothesis (fV2') with G replaced by the region |x| ^ TJQ 
and (p replaced by (po, where cpQ is moreover convex and (Po{0) = 0. 

4° There is a constant x > 0 such that 

\V{x\ u) - F(x, u)\ й y\l + \u\) \x' - x| 

for \x\ й rjo, \x'\ й По-

Proof. There is a sequence of positive numbers {4} such that ^k+i — 4 ^ i» 
<p(̂ ) ^ kt, for (J ^ (̂ fc. From iyi") follows that there are positive numbers ц^ g 
^ ?7i ^ <̂ i such that 

(i) F(X, W) is convex in и for |x| ^ ц^, \u\ ^ ц^, 

(ii) 0 ^ F„(x,f70^ l f o r | x | ^i7o. 
0 ^ F„(x, - ^ 0 ^ ~ l f o r | x | йПо^ 
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(iii) V{x, ri,) + F„(x, ri,) {u ~ ?/i) й V{x, u) for |x| urjo,rj,<u ^ ĉ ,̂ 
V{x, - f / i ) + F„(x, -??i)(w + ?7i) ^ F(x, u) for |x| ^ ?7o - ^1 ^ f̂ ^ - ^ i -

Define V{x, u) recurrently as follows : 

V{x, u) 

V{x, u) 
V{x, ?yi) + K,(x, rj^) {u - ri^) 

K(x, -?/i) + F„(x, -^7i)(w + n^) 

y{^. Q + K,(^. Q {u - Q + ф{и - ^,) for 
F(x, - 4 ) + F„(x, - ^.) {u + Q + Ф{и + Q for 

for |x| ^ ?/o. 1"| ^ ^1 
for |x| g f̂ Q, 

for \x\ ^ f̂ Q, 

4+1 йи й -^k 

1, 2, ..., where 

^©ч: e for 1̂1 ^ i , 
+ 1̂1 for 1̂1 > 

It is easy to verify that F(x, u) has the desired properties, with Фо(^) defined recur­
rently by (po(0 = 0, |( |̂ S 4 , Фо(0 = Фо(4) + (/с - 1) (^ - <̂ ,) + ^(^ ~ ^к) for 

Theorem 6. Let m = l , / (x , w) = g{x) + h{x) u. Let (f Г), (VF'), (f V2') be satisfied. 
Then, there is an s > 0 such that for |x| ^ s there is a unique optimal control. 
Further, there is a synthesis of it, which is continuous together with its first partial 
derivatives. 

Proof. For the given F(x, u) construct the function F(x, u) as described in Lemma 
5. Then, the pair / , Fsatisfies all assumptions of Theorem 5 (G replaced by |x| ^ rjo). 
For this, we have to prove that for |x| ^ ?̂ , (f VI) is vahd, since the remaining assump­
tions follow directly from the assumptions of this theorem and Lemma 5. 

Every point of со Q{S{x, ô)) may be written as a convex combination of n + 2 
n + 2 

points of Q{S{x, Ô)). Thus, we have to prove that J^ -> У, / = S '̂V'*"» Z ^'^ = ^ 
i = l i = l 

f' e Q{x% x'^ -^ X implies y e Q{x). {y = (уо. •••, Уп) = {Уо^ у\ У = (У1, •••, Уп))-
From y^^eQ{x'^) follows that there are u'^ such that yjf ^ V{x^\u'% y'^ -

= ^(x^^) + h{x'^) u^K 
Since y^ is convergent and 

n + 2 

i = l 
yt ^ Z r'v{x^ «'") ^ E A'V(|«'1) ^ E -PoC '̂l«'-

i = l 

n+2 

E' 
i = l 

(A'̂ ^w'̂ l̂ î must be bounded for every i. Hence, passing to a subsequence, if necessary, 
we may suppose that the sequences {X'^u^^}^^ i and, consequently, {u^}, are convergent. 
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Let и ~ lim u^. We have 
k~*ao 

n+2 n+2 

у = \im Y. À'\g{x'^) + h{x'^) u'^] = hm ^ ^'"^ üi^'"") + 
к-* 00 i = 1 fe->oo i = 1 

n + 2 И+2 

4- h{x) Hm X Я '̂̂ //'̂  + lim J^ Л'Щх'^) - h{x)\ u'^ = g{x) + /z(x) и 

(the third term tends to zero because of the continuity of g and boundedness of 
{A'̂ w'̂ jfc. Further, we have 

n+2 n + 2 

Уо ^ Hm Y ^'^ f^(^'^ ^'^) ^ lii^ Z ^'^ Я ^ ' ^''') + 
fc->oo i = l fe->oo i = l 

n + 2 

+ Hm Y. Я^^[К(х, ŵ )̂ ~ F(x^•^ u'^)] à Hm F(x, w )̂ + 
k-* oo i= I k-^ oo 

n + 2 

к -^ 00 i = 1 

This proves у e Q{x). 
Due to Theorem 5 there is an г > 0 such that the optimal control for the pair / , V 

exists, is unique and admits a once continuously differentiable synthesis v for |x| < s; 
further, the solutions x{t, x) of the system x = f{x, v{x)) with x(0, x) = x, |x| < e 
satisfy \x{t, x)\ ^ rio and W{x) й inf Ж^°(х) {W, Ж'̂ ^ Qf defined as in the proof of 

Theorem 1 with F replaced by V). 
Let |x| < 8 and и e Q^, u(t) ф v[x{î, и, x)). Denote Tzero, if \x{t, и, x)| ^ TJQ for 

ail t and the last number for which |x(^, w, x)| = f]Q in the opposite case. We have 
for |x| < s: 

/•oo /*oo 

V{x(t, x), v{x{t, x)) dr = V{x{t, x), t;(x(r, x)) dr < 
Jo Jo 

/ • G O / * 0 0 /»00 

< F(x(r, w, x), u{t)) dt ^ F(x(f, w, x), u{t)) dt S V{x{t, u, x), u{t)) dt. 
J г J г Jo 

This proves that for |x| < г, v{x) is the synthesis of optimal control also for Fand 
that this optimal control is unique for all 1x1 < г. 
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