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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

DEFORMATION OF SURFACES IN HOMOGENEOUS 3-SPACES 

ALOIS SVEC, Praha 

(Received September 23, 1966) 

Thç local existence questions of manifolds with prescribed properties are treated 
in many papers. In what follows, I devote myself to the study of deformations of the 
first order of surfaces in general homogeneous 3-spaces; I restrict my attention to 
cases in which the fundamental system of equations is immediately involutive. 

Be given a homogeneous space GJH and a manifold M, dim M < dim GJH. 
Consider an embedding n : M -^ GJH and its lift Я : M -> G. To Я, let us associate 
the 1-form со : Т(М) -> g defined by 

(1) со{Х^) = {еЬщ^,-.){аП)^Х; ХеТ^{М); 

L^\ G -^ G being the left translation L^g = ag; the form со satisfies the integrability 
condition 

(2) dco(Z, y ) = - i [û ) (Z) ,co(y) ] . 

Let us write 

(3) K{m) = })® co(T„,(M)) for тем ; 

clearly, dim X(m) = dim ï) + dim M. Further, write 

(4) î^ =={vGb\[v,K]c:K}, 

(5) î' = {veb\[v,K]c=:})}; 

the spaces !̂  and î^ are Lie algebras. The lift Я : M -> G is said to be a tangent lift 
if there is a fixed space К such that 

(6) ^ ( ' ^ ) = ^ for each me M . 

In [1], I proved the following assertion: Let m^ e M be a fixed point and 

(7) dim ï)/ï^(mo) = dim Kjï). dim g/iC , 

137 



then there is a neighborhood О a M of MQ and a lift W : M -^ G of n : M -^ GJH 
such that K'(m) = K(rnQ)for each point m e O. 

Denote by Gr^^"'^(ï)) the Grassmann manifold of airspaces К such that I) с 
с: X c= g, dim К = dim 1} + dim M. To the given embedding n : M -^ GJH, let us 
construct the mapping p : M -^ Gr'^'"'^^(l)) as follows: choose an arbitrary lift 
П : M -> G and set 

(8) p{m) = ad (Я(т)) ï) for me M ; 

obviously, the mapping p does not depend on Я. 
Be given mappings n : M -^ GJH, n' : M' -^ GJH; dim M = dim M\ Further, 

let T : M -^ M' be a diffeomorphism. Tis called a deformation of order к if, for each 
Шд G M, there is an element QQEG such that 

(9) jUp)-tM{9o){p'^T)}, 

Jm{^) being the /c-jet of ̂  at m. I have proved in [ l ] : Suppose iV(l)) = f), N(ï)) being 
the normalizator off}. Then Tis the first order deformation if and only if there are 
lifts П, П' о T: M -^ G of the embeddings тг, тг' о T : M -> GJH such that the form 

(10) T = аУ - œ 

is \)-valued; the forms со, œ' are associated to П andTT о Tresp. according to (l). 
Let us read "X satisfies the conditions ^ ; TI is arbitrary and (я', Т) depends on x 

functions of у variables" as follows: "Be given manifolds M and M\ dim M = 
= dim M'. Let us write K^ = {K G Gr^'"'^(l)) \К satisfies ^ } , and suppose that 
dim K^ = dim Gr'*'"'^(t)). Choose a point mo e M and an embedding n : M -^ GJH 
subject to the only condition К(то) e K^. Then there is a neighborhood O, Шо G 
G О с: M, a diffeomorphism Т : О -^ M' and an embedding тг' : Т(0) -» GJH such 
that Tis a first order deformation without being an equivalence. Tand n' depend — 
in the usual sense — on x functions of у variables." It is easy to see how to understand 
to similar statements. 

Theorem. Be given a homogeneous space GJH, dim GJH = 3. By a surface 
71 : M -^ GJH we mean an embedding of a two-dimensional manifold. Let N(i)) = I), 
iV(f)) being the normalizator o/ï). Using the just introduced interpretation, we have: 

Aj. dim ï̂  = dim !^ = dim I) — 2, [\), K] = g; (n, n', T) depends on 4 functions 
of 1 variable. 

A2. dim ï̂  = dim ï̂  = dim I) — 2, dim {I), K] = dim g - 1; тг is arbitrary and 
(71', T ) depends on 2 functions of 1 variable. 

A3, dim !̂  = dim ï̂  = dim I) — 2, dim \i), K] = dim g — 2; 71 and n' are arbi­
trary and Tdepends on 2 constants. 
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r + 3 
ofe^ 

В^. dim ï̂  = dim I) ~ 2, dim t̂  = dim!) — 3 and there is a he К such that 
[^, k] = Ql n is arbitrary and (n', T) depends on 3 functions of 1 variable. 

B2. dim l^ = dim I) — 2, dim ï̂  = dim ï) — 3, dim [I), K] = dim g — 1; я and л' 
are arbitrary and Tdepends on 1 function of 1 variable. 

C. dim f̂  = dim I) — 2, dim ï"̂  = dim I) — 4, and there is a кеК such that 
[!\ /c] © I) = K; л and л' are arbitrary and Tdepends on 2 functions of 1 variable. 

D. dim !̂  = dim I) — 2, dim !^ = dim \) — 5; л and 71' are arbitrary and T 
depends on {function of 2 variables. 

E. dim ï̂  = dim I) ~ 2, dim ï̂  = dim Ï) — 6; тг, л' and T are arbitrary. 

Proof. Let us write dim g = r + 3, and let us choose a basis ^1, ..., е̂  + з of g 
such that ^1, ..., ^̂  is a basis of ï). Writing 

r + 3 

(11) [e^, Cß] - Y ^Iß^y foï* a, /? - 1, ..., г + 3 , 

we get 
(12) cil' = cip = cil' = 0 for ij = 1, ..., r . 

Be given a surface я : M -> G/Я, its ИЛЯ : M -• G and the associated form 

(13) œ ='f, 

The integrability condition (2) yields 

r + 3 

(14) dco^ = - i ^ 4 X /̂  ^ ' f^r a = l , . . . , r + 3 . 

Let nîQ G M be a fixed point, and let us investigate л in its neighborhood. Write 
К = CO(T^^(M)); obviously, dim К = 7̂  + 2. In what follows, we shall be interested 
only in "general" surfaces satisfying dim ï^(m) = r — 2, K(m) = о)(Т^(М)). Each 
surface of this type has a tangent lift such that K(fn) = K; let Я be tangent. Let us 
choose the basis of g in such a way that e^, ..., r^+2 is the basis of K. The surface л 
is given by 

(15) œ'-'-^ = 0 , 

the exterior differentiation yields 

(16) фг л œ'-"' + Ф2 A ü/"-^ + c';ll,^2Co'"'' л co'' + ̂  - О 

where 

(17) ^a-tcZlaO^\'^ « = U2. 
i = 1 
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From the Cartan's lemma, we get 

(18) Ф, = Aco^^' + (Б + WrXlr.i)^^'''' . 

If 

(19) V = t v'e, eh, k = Y ^^'^i + I ^''"'^^+« ^ ̂  ' 

..r + 2 

we get 

2 

I 
2 

(20) [f Д] = X ( E 4 ^ ' + I cl.^k'^") v\ + 
i , k = l j = l a = l 

+ 1 X i:c';:::^„/c'--ve.,^. 
Л = 1 a = l i = l 

Thus the Lie algebra ï̂  is given by the vectors (19^) satisfying 

(21) Y.<rla^'=-^\ a = 1,2; 

similarly, ï̂  is given by the equations (21) and 

(22) tdb^'-^; a,b = 1,2. 

According to the assumption, we have dim î̂  = r - 2, the equations (21) are linearly 

independent, and we have 

(23) Ф, Аф2^0. ^ 

Of course, 

(24) oj'^' A œ'"-^ Ф 0 . 

Now, be given another surface n' : M' -> GJH and a first order deformation 
T:M -^ M'. Using a suitable lift of the surface n', the form (10) is l)-valued, and 

(25) T ^ + \ = 0 

(26) T'-"' = T'-+2 = 0 . 

From (14), and analogous equations for œ', we get 

(27) dt^ = - ' X 4Xi^^ - ш^ л T ^ a = 1, . . . , r + 3 . 
^ , 7 = 1 

The exterior differentiation of (25) and (26) yields 

(28) (pt A а}'"-' + ф2 л œ'"-^ = 0 , 

(29) (Pa-tCiyi a = 1,2; 
i = l 
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and 

(30) 

(31) 

(pal A co'"''^ + (p„2 л со""̂ ^ = о ; a = 1, 2 ; 

<Pab = iClb^'; a,b = 1,2. 

The assumption dim f̂  = r — 2 is equivalent to 

(32) cp^ A (p2 =¥ 0 . 

From the Cartan's lemma, we get 

(33) Ф1 = A^œ'^^ + A^of^^ , (P2 = A20)'''' + А^со'"-^ ; 

(34) ф,, = A^.œ''-' + A,2(o''-' , cp,2 = Л,20У'''' + A,,,af^' ; a = 1, 2 . 

A. Let dim t^^ = r — 2. The equations (22) are linear combinations of the equations 
(21), and there are numbers al^ such that 

(35) I«; ,ac r+3 

c = l 
; a, Ь = 1, 2 ; f = 1, 

The expression (20) reduces to 

1=1 a,b=l 

i = l 

/a = 1 < Ч + с + ^ ' е , ^ з ; fl,b = l , 2 . 

(36) 

where 

(37) 

(38) 

Let us write 

(39) 

obviously, 

(40) dim [Ï), K] = r + Ki . 

The equations (30) reduce to 

(41) i ç > , A ( i a > ' ' ^ * ) = 0 ; с = 1 , 2 ; 

Ri = rang 
а Г а Г «2* «2^ 
«Г af â ' af 
1 0 0 1 
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and we get 

(42) a"2'v4i + (af ~ a f ) A2 - a f Л3 = 0 ; a = 1, 2 ; 

from (33). 
Let Ri — 3. The equations (28), (41) are Hnearly independent as well as the equations 

(42). The system (16), (28), (41) being in involution, we have proved A^. 
Let jR| = 2. Then one of the equations (41) is the linear combination of the second 

one and the equation (28). Suppose, e.g., that (28) and (411) are linearly independent; 
substituting from (33) into (411), we get (42i). For a given surface 71, the couple 
{n\ T) is given by the involutive system (28) + (411), and A2 has been proved. 

Let Ri = 1. The equations (41) are the multiples of (28). n and n' being given, 
Tis given by the completely integrable equations (26), and we have proved A3. 

B. Let dim ï̂  = r — 3. Three of the equations (22) are linear combinations of the 
remaining one and of (21); we may suppose the existence of numbers a^, ... ,73 such 
that 

(43) 

cZli -=yicZli + Ь с Г г ' 2 + Уз^Гг^! for /• = 1, . . . , r . 

The expression (20) reduces to 

(44) lv,k\ = i ; ( . )e . - + fc'^^vv,^i(/?ie,„2 + е,^з) + k'^'w.^^ß^e,^^ + 
1 = 1 

+ /c'"+^w,+ 3(e,+ i + /^з^г+2) + fc'''^w,+ i(aie,+ i + 71^^+2) + 

+ ^'"^^H^.+ 2 (a2^r+ l + 72^r+2 + ^г+з ) + /c'' + ̂ W, + 3 (a3 r ,+ i + 7з^г+2) • 

Let us write 
0 0 1 â  a2 осз i 
ßi ßi ßz Ух 11 1ъ 
1 0 0 0 1 0 

(45) Ä2 = rang I 

obviously, dim [t), X] = r + -Ri- The equations (30) reduce to 

(46) «icpi л co'"^^ + «2(̂ 2 Л of""^ + Фз Л (co'' + ^ + азсо'"'^) = О , 

Ф1 А (/^iCO''^^ + 710)'- + ̂ ) + (Р2 л (iÖ2^''+^ + 72^^''"'^) + 

+ (̂ 3 л (̂ з̂со"̂ ^ +узШ'' + ̂ ) = 0 . 

The polar matrix of the system (28) + (46) is 

(47) 
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Let us choose a vector кеК (192). (44) yields that the space [I), /c] is spanned by the 
vectors e^, ..., e^ and 

(48) g, = a,k'-^'e,^, + {ß.k"^' + y,k^^')e,^2 + k''^'e,,, , 

^3 = (k^-"' + ^,k^^')e,^, + {ß,k^^' + Угк'^')ег^2 • 

If dim [1 ,̂ /c] = /̂  + 3 for some vector кеК, the determinant of (47) is not equal to 
zero. Of course, dim [l ,̂ X] = r + 3, and the equations (28) + (46) are linearly 
independent. This proves B^. 

Let R2 = 2. The equations (28) and (46i) are hnearly independent, and (462) is the 
linear combination of them. The surfaces n and %' being given, the deformation T 
is given by the system (26) and the quadratic equation (46i). B2 has been proved. 

C. Let dim f̂  = г — 4; the Lie algebra f̂  be given by the equations (21) and 

(49) e„ = t e . i t ' ' = 0 ; a = 1,2. 

Hence, there are numbers â "", ßl"" such that 

(50) cZlb=^Y.{<Clc-^ßbQc:)-
c=l 

Writing 
(51) Xa = iQai^'; a = 1 ,2; 

the forms (Pu Я>2^X1^X2 are linearly independent, and the equations (30) reduce to 

(52) • Y. {ßfXb л û)'-^" + < > a л ca'^") = О ; с = 1, 2 . 
2 

1 
a,b=i 

Consider the vectors (19) such that i; G ï4 We have 

(53) [v,k]^Y.i-)^i+ 1 Г е ^ к ' ^ Ч . с 
2 

a,b,c= 1 

lflî^,k']®):) = K for some vector k, the polar matrix of the system (52) is regular. 

D. and E. are evident. 
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