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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

LEX-SUBGROUPS OF LATTICE-ORDERED GROUPS^) 

PAUL CONRAD, New Orleans 

(Received August 8, 1966) 

1. Introduction. A convex /-subgroup С of an /-group G will be called a lex-subgroup 
if С is a proper lexicographic extension of a convex /-subgroup. These subgroups are 
extremely useful in determining the structure of G. The main reasons for this are 
that two lex-subgroups are either disjoint or comparable, and a maximal lex-subgroup 
is the double polar of a special element. In Section 3 we derive these and other useful 
properties of lex-subgroups and use them to determine structure theorems for /-groups. 
In particular, we obtain the main structure theorems in [3] and [7] as corollaries of 
Theorem 5Л. 

The author wishes to thank RICHARD BYRD, ALFRED CLIFFORD and NORMAN 
REILLY, each of whom made many useful suggestions when this material was pre­
sented in a seminar at Tulane University. 

Notation. We shall use the standard notation for /-groups (see for example [5]). 
If {A;^ : Xe A} is a set of /-groups, then Y.'^À(П^Я) will denote the small (large) 
cardinal sum of the A^. In particular, if Л = 1, . . . , n is finite, then A^ @ ... ф A„ 
will denote the cardinal sum (that is, the direct sum, where (a^, ..., a„) is defined to 
be positive if each a^ ^ 0). If X and Fare subsets of an /-group G, then [Z] will 
denote the subgroup of G that is generated by X and X j[ У will denote that X and Y 
are not comparable with respect to inclusion, and Z\7wil l denote the elements in X 
that are not in YAf g e G, then G(g) will denote the principal convex /-subgroup that 
is generated by g. Thus 

G{g) = [x e G :\x\ ^ n\g\ for some n > 0} . 

2. Lex-extensions and polars. In this section we collect some well known facts 
that will be used throughout this paper. The material on prime subgroups and lex-
extensions may be found in [3] and [4], and most of the material on polars is due 
to SiK [8] and [9]. Throughout this section let G be an l-group. 

^ ) This research was supported by a grant from the National Science Foundation. 
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A convex /-subgroup С of G is said to be prime if the lattice of (right) cosets of С 
in G is totally ordered. In particular, if С -<i G, then GjC is an o-group. Moreover, 
the following are equivalent 

(1) С is prime. 

(2) If a, be G'-\C, then a A be G'-\C. 

(3) The convex /-subgroups of G that contain С form a chain. 

G is a lex-extension of a convex /-subgroup С if 

(i) С is prime, and 

(ii) g E G'^\C implies g > С 

If С ф О, then (ii) implies (i). An element a e G is a non-unit if a > 0 and a A b — 0 
for some 0 < Ь e G. If iV is the set of all non-units of G, then [N] is an /-ideal of G 

Theorem 2.1. Let С be a convex l-subgroup of an l-group G. G is a lex-extension 
of С if and only if С ^ [AT], and all other convex l-subgroups of G are contained 
in [iV]. / / 0 Ф С с [iV], then there exists a prime subgroup D of G such that С ]| D 
and hence [iV] is the smallest {non-zero^ convex l-subgroup of G that is comparable 
with every convex l-subgroup of G. 

/ / G /5 a lex-extension of C, and С Я E, where E is a convex l-subgroup of G, 
then G is a lex-extension of E. Finally, the following are equivalent for С ф 0. 

(1) G is a lex-extension of C. 
(2) С is comparable with all other convex l-subgroups of G. 

There are two other characterizations of [iV] due to LAVIS [6]. For g e G Lavis 
defined g ^ Oif there exist gi, ..., g„e G such that 

^ l U i 1|б̂ 2 II . . . l U . I I 0 . 

Theorem 2.2. [N] = Цд e G : g \\0}] = {g e G : g ^^ 0 or g = 0} ^). 
We shall call [iV] the lex-kernel of G and denote it by L{G). A value of 0 Ф ö̂  6 G 

is a convex /-subgroup of G that is maximal without containing g. Each value of g 
is prime, and ^ > 0 if and only if M + ^ > M for all values M of f̂. If M is the only 
value of ^, then g is said to be special and in this case M is also called special. 

The polar of a subset X of G is the convex /-subgroup 

X' = {geG:\g\ A \x\ = 0 for all x e X} 

§ik [8] has shown that the set of all polars in G is a complete Boolean algebra. 
^) Lavis used the convex hull of i^ = [{g ^ G : g \\ O}], but for /-groups К is convex. Also it 

can be shown that [N] is the join of all the minimal prime subgroups in the lattice of convex 
/-subgroups of G. 
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Theorem 2.3. For a convex î-subgroup A Ф О of G the following are equivalent, 

(a) A is an o-group. (e) A'' is a maximal convex o-subgroup. 
(b) If 0 < a G A, then a' = A\ (f) A" is a minimal polar. 
(c) A' is a prime subgroup. (g) Л' is a maximal polar. 
(d) A' is a minimal prime subgroup. (h) Each 0 Ф aeA'is special. 

Proposition 2.4. / / A and В are convex l-suhgroups of G and 0 — A r\ В = 
= {A® B)\ then A' = B'. 

Proof. Since .4 n Б = 0, /1 Ç Б' and hence A" ç В'" = В'. A' n В' Я: {A @ В)' -
= О and hence В' ^ A". 

3. Lex-subgroups. A convex /-subgroup С of an /-group G is a lex-subgroup if С 
is a proper lex-extension of a convex /-subgroup. If, in addition, there does not exist 
a proper lex-extension of С in G, then С is a maximal lex-subgroup, A po-set -S is 
a roof system if for each s 6 .S, {x e S : x ^ 5} is totally ordered. 

In the next four propositions we shall assume that A and В are lex-subgroups of G 
and that A(B) is a proper lex-extension of t/(F). 

3.1. / / yl II B, then A n В = 0. In particular, the set of all lex-subgroups of G 
form a root system with respect to inclusion. 

Proof. Select 0 < a e A\{B u U) and 0 < b e B\{A u V). Since A n В is 
a convex /-subgroup of A, it is comparable with U (Theorem 2.1). If Л n JB £ t/, 
then Д > (7 ;2 Л n Л and if A n В ^ U, then by Theorem 2.1, Л is a lex-extension 
of A n В and once again a > A n B. Similarly b > A n В and hence since a л b e 
e A n B,it follows that a л Ь is the largest element in A n B. Therefore A n В = 0. 

3.2. (Cliiford) (A © A')'^ = {x e G'^ : x does not exceed every element in A]. In 
particular, G = A @ A\ provided that A is not bounded in G. 

This is part of Lemma 6.2 in [3]. 

3.3. If a e A\U, then a' = A' and a" — A" is a lex-extension of A and of U, and 
a maximal lex-subgroup of G. If U = 0, then A" is the largest convex o-subgroup 
of G that contains A. If U ф 0, then V = A' and V = A" is the largest lex-
extension of и in G. 

Proof. If (7 = 0 and 0 Ф a e Л, then A is an o-group and hence by Theorem 2.3, 
a' = \a\' = v4' and A'' is a maximal convex o-subgroup of G. If M is a convex 
o-subgroup of G and M 3 A, then M n A" ^ A ф 0 and hence by 3.1 M ç A'\ 
Therefore Л" is the largest convex o-subgroup of G that contains A, 

Suppose that (7 + 0. Clearly A' я^ U'.If 0 < x e U'\A\ then x л j > 0 for some 
0 < у e A and hence x^xAy'^u> 0 for some и e U, but this contradicts the 



fact that X e U\ Therefore V = A'. If a e A\U, then a > U and hence G{a) =э U. 
Thus a' = G(ay ^ U' = A' and since a G A, a' ^ Л'. Therefore «' = Л' = [/'. Now 

G 3 Л" e v4' 2 Л e Л ' . 

If 0 < ^ e A"\A, then ^̂  e С"^\(Л ® Л') and hence by 3.2 ^ > Л. Thus [/" is a lex-
extension of Л and hence a lex-extension of U. If M is a proper lex-extension of U 
in G, then by the above argument M я M" = U'^. Therefore (7" is the largest lex-
extension of и in G. 

3.4. / / С is a convex l-subgroup of G and С ZD A ' \ then С '^ A" ® D for some 
non-zero convex l-subgroup D of G. 

Proof. Let D be the polar of A' in C. If D = 0, then by 3.2 each 0 < x e C\A'' 
must exceed A'\ Thus С is a proper lex-extension of A'\ but this contradicts the fact 
that A" is a maximal lex-subgroup. 

The following theorem is an immediate consequence of 3.3. 

Theorem 3.5. Let M ф 0 be a convex l-subgroup of G. The lex-extensions of M 
in G form a chain in M'\ In particular, a non-zero polar admits no proper lex-
extensions, and the set of all lex-subgroups of G form a root system with respect to 
inclusion. If M is a lex-subgroup of G or if M admits a proper lex-extension, 
then M" is a maximal lex-subgroup and the largest lex-extension of M in G. 

The following theorem is proven in [4]. 

Theorem 3.6. For g E G the following are equivalent. 

(1) G{g) is a lex-subgroup. 
(2) g is special in G. 
(3) g is special in G(g). 

3.7. For 0 < g e G the following are equivalent. 

(a) g Ф b(G) the lex-kernel of G. 
(b) g is special and a unit. 

Proof, a) -> b). If 0 < ^ e G\L[G), then G(g) is a proper lex extension of L{G) 
and hence by Theorem 3.6 g is special and clearly ^̂  is a unit. 

b) -> a). By Theorem 3.6 G(g) is a proper lex-extension of L/ = L{G(g)) and g e 
e G(g)\U. Since f̂ is a unit, g' == 0 and hence g" = G. By 3.3 G = g'' is a lex-extension 
of и and hence by Theorem 2.1 (7 3 L{G). Therefore g ф L(G). 

Theorem 3.8. For a convex l-subgroup A of G the following are equivalent. 

(a) A is a lex-subgroup. 
(b) G{a) £ Л ^ a" for some special element a of G. 
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Proof, a) -> b). Let U = L{Ä} and consider 0 < ae Ä\U. By 3.3 

и с: G{a) ^ A ^ A" = a" 

and a" is a lex-extension of U. Thus G(a) is a proper lex-extension of U and hence 
by Theorem 3.6 a is special. 

b) -^ a). By Theorem 3.6 G{a) is a lex-subgroup and hence a proper lex-extension 
of F = L{G(a)). Clearly a e G{a)\V and hence by 3.3 a" is a lex-extension of V, 
Therefore Л is a proper lex-extension of V. 

Note that if Л is a maximal lex-subgroup, then A = a". 

Corollary 1. For a convex l-subgroup A of G the following are equivalent. 

(a) A is a maximal lex-subgroup. 
(b) A = a'^ for some special element a of G.. 
(c) A is a lex-subgroup and also a polar. 

In particular if a is a special element of G, then a" is a maximal lex-subgroup 
and \a\ > L{a"). 

Proof. We have shown that (a) implies (b). If (b) holds, then by the theorem A 
is a lex-subgroup and clearly Л is a polar. Finally since a non-zero polar admits no 
proper lex-extensions (Theorem 3.5) it follows that (c) implies (a). 

Corollary II. / / a^, «2, ..., a„ are disjoint special elements of G and no a] is 
bounded in G, then G =^ a'[ @ a'2 @ ... @ a^ © D for some convex l-subgroup D 
ofG. 

Proof. Since al is a lex-subgroup, we have by 3.2 that G = a'[ @ a[. Consider a ,̂ 
/ Ф 1. Since ai e a[, a'l ç a\. By Theorem 3.6 â  is special in G{a^ ^ a\ and hence 
by Theorem 3.6 a,- is special in a'^. Thus by induction a\ = a"2@ ... @ a^ ф D, and 
hence G == al @ ... ® a^ @ D. 

Theorem 3.9. For an l-group G the following are equivalent. 
(a) There exists a maximal disjoint subset {^s^'.XeA] of G, and in addition 

each Sx is special and no s^ is bounded in G, 
(b) There exists an l-isomorphism a of G such that 

where Aj^ is an l-group and A^ Ф L{A^ for each Xe A. In any such representation 
{У4;СГ~^ \ Xe A] is the set of all unbounded maximal lex-subgroups of G, where 

Ля = {(•.., ^^. • -.) e Ш я *. ^,. = 0 for all /X + Я} . 
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Proof, a) -^ b). By Corollary I of Theorem 3.8 each 5̂  is a maximal lex-subgroup, 
and hence by 3.2 G = s^® s^ for each Xe Л. Thus each g e G has a unique representa­
tion g = Ox + 9^, where g;^ e s^ and g^ e 5 .̂ The mapping g -^ g^ is an /-homomorph­
ism of G onto si with kernel 5 .̂ Define 

да = (..„б^я^-О^Ш-

Then a is an /-homomorphism with kernel f)s';^ and since {s^: ле Л} is a maximal 
disjoint subset, П^я = ^- Therefore cr is an /-isomorphism of G into PJs^. Consider 
0 < X G S;'. If a Ф A, then 5̂  л S;̂  = 0 and hence 5̂  e 5 .̂ Thus x л ŝ  = 0 and hence 
X G 5д. Therefore 

, 4 fx if a = Я 
(хог)„ = .̂  

[0 otherwise 

and it follows that Y^l ^ Ga ^ fb^-

b) ~> a). For each ?.e Л pick 0 < a;̂  G Л Д Ь ( Л ^ ) and let ä^ be the element in П ^ я 
with Я-th component a;̂  and all other components 0, and let ŝ  = ä^^a'^. Then 
{ад : Я G л} is a maximal disjoint subset of Gcr and hence (s^ : Я G Л} is a maximal 
disjoint subset of G. Moreover, a^ = Ä^ which is an unbounded lex-subgroup of GG. 
It follows that 5; is unbounded in G and that G{sp) is a lex-subgroup. Thus each 5; is 
special. 

Suppose that {M„ : a G Л} is the set of all unbounded lex-subgroups of G. By 3.1 
M^r\ Mß = ()iï a ^ ß and hence by Theorem 2.1 in [3] 

By Theorem 3.9 there exists an /-isomorphism a of M" such that 

YM, £ M"a £ ЦМ,. 

Now G 3 M" ф M' and it would be useful to know under what conditions G = 
= M" ® M'; but the author has not been able to answer this question. 

Theorem 3.10. The subgroup S of an l-group G that is generated by the special 
elements of G is an l-ideaL 

Proof. Suppose that 0 < <2 G G is special and consider 0 < x G G(a). Then a < 
< a + xe G{a) and hence G(a) = G(a + x). Thus by Theorem 3.6 a + x is special 
and hence x = —a -h a + x e S. Thus we have shown that G(a) я S and it follows 
that 

S = [U{^(<^) • ̂  is special in G}] = \/G(a) 

and hence S is a convex /-subgroup of G. If G(a) is a lex-subgroup, then so is G{ — g + 
+ a + g) for each g e G. Therefore 5 <з G and hence S is an /-ideal of G. 
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If { Q : a e У4} is a chain of lex-subgroups of G, then С = (JC^ need not be a lex-
subgroup or a polar. 

The following theorem gives an important relationship between lex-subgroups and 
polars (see Theorem 5.2). An /-group G is said to hQ finite valued if each 0 ^ g e G 
has only a finite number of values or equivalently if each value of ^ is special (Theorem 
3.8 in [4]). 

Theorem 3.11. For an l-group G the following are equivalent. 

(1) The lattice of all filets of G satisfies the DCC [descending chain condition). 

(2) G is finite valued and the root system M(G) of all maximal lex-subgroups of G 
satisfies the DCC. 

Proof. A filet chain is a set of strictly positive elements of G 

ai 
/ \ 

«2 ^2 

such that a,- л bj = 0 and a, ^ â  + i v Ь, + 1. MCALISTER ([7] Proposition 2.1) has 
shown that (l) holds if and only if each filet chain is finite. 

1) -> 2). If a'[ 3 «2 =5 ... is a descending chain in M{G), then by 3.4 a'l = a'[+^ © 
® -ßj + b where 0 Ф ß^ + i is a convex /-subgroup of G. Thus by selecting 0 < b̂  + i e 
G^. + i v̂ e get a filet chain which is necessarily finite. Thus there are only a finite 
number of a'l and hence M(G) satisfies the DCC. 

Suppose (by way of contradiction) that 0 < g e G has an infinite number of values. 
Then by Theorem 3.8 in [4] at least one, say G ,̂ is not special. Let G*̂  be the convex 
/-subgroup of G that covers G^ and let Gß be another value of g. Pick 0 < a e 
e{G''\G^) n Gß and 0 < be(G^\Gß) n G„. Then it follows by Theorem 3.8 in [4] 
that a has an infinite number of values. Without loss of generality we may assume 
that g exceeds a and b. Moreover 

a = aAb + ä,cie G^\G^ and hence has an infinite number of values. 

b = aAb + B. Be G^\Gß, ä A b = 0, 

Thus we can construct an infinite filet chain 

a 
/ ^ 

but this contradicts (1). 

92 



2) -^ 1). Suppose (by way of contradiction) that 

02 t>2 
/ \ 

is an infinite filet chain. Since each b^ is the join of disjoint special elements, we may 
assume that each b-^ is special. Also «^ = C| + ... + c,„ where the ĉ  are disjoint and 
special. Thus without loss of generality we may assume that с ^ Ci^ exceeds an 
infinite number of the b-^. Pick i > j such that с > bi and bj. If с л üi — с, then ai ^ 
^ с > Ь,-, a contradiction. If с л â  = с л a ,̂ then с A ÜJ ^ bj, a contradiction. 
If с л öj = bj, then с A bj — bj '^ с A a^ a contradiction. Therefore 

с A üi öl 

/ \ 
с A a J bj 

and hence we have an infinite filet chain in which the largest element is special. 
Now repeat the argument on с л a,,, where к is the least positive integer such that 

с > bi,. In this way we get an infinite filet chain of special elements, but this contradicts 
the fact that M{G) satisfies the DCC.^) 

4. Root systems. The proofs in this and the next section are conceptually simplified 
by the following abstraction of the root system M{G) of all maximal lex-subgroups 
of an /-group G. 

Let S be a root system that satisfies the DCC and consider s e S. Each chain in S 
for which s is an upper bound is a well ordered set and hence has an ordinal number 
for its "length". We define the length of s to be the least upper bound of the lengths 
of the chains strictly below s. In particular, the minimal elements of S have length 0. 
The oc-th level of S consists of the elements of length a together with those elements b 
of length ß < ОС such that b is maximal in S or b is covered by an element of length > a. 

4.1. If a Ф b belong to the oc~th level of S, then a || b. 

Proof . If a > b, then b has length < a and is not maximal in S, Thus b is covered 
by an element с of length > a and hence a ^ с > b, but this means that a has length 
>a , a contradiction. 

4.2. Each o-permutation n of S permutes the elements in the (x-th level. 

Proof, a has length a if and only if an has length a. a is maximal in S if and only 
if an is maximal in S. b covers с if and only if bn covers en. 

^) Byrd [2] shows that for any /-group G the lattice of all filets is isomorphic to the lattice of 
all principal polars. 
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4.3. If a -^ ß < y, a has length oc and a is in the y-th level, then a is in the ß-th 
level. 

Proof. If a is not covered, then a is maximal in 5 and hence belongs to the j5-th 
level. Clearly a belongs to the a-th level. If a < jS and b covers a, then since a is in the 
y-th level it follows that b has length > y and hence a is in the jß-th level. 

4.4. If b covers a and b has length ß + i, then a is in the ß-th level. 

Proof. If a has length < ß, then since a is covered by an element of length > ß, 
a is in the ß-Uv level. 

4.5. If a has length a + 1, then a covers an element of length a. 

Proof. There exists a chain below a of length > a and hence one of length a + 1. 
Let b be the maximal element in this chain. Then a covers b and b has length a. 

Suppose that {д^ ' ^ e Л} is a maximal disjoint subset of G and that each a^ is 
special. For each Я e Л let Л; = a'^. If a ф jß, then A^ n Aß = 0 and hence 

^ = [U^A] = I ; ^ . 
Let 

T= {Ce M{G) :C ^ A^ for some ÀeA}, 

Then Tis a root system and we shall first show that each С e Tis determined by the Лд 
that it contains. 

4.6. If A Ç Л, then С£,А^у = (Х!^я)'? ^here ô e A and X e À\A, and each С e T 
is of this form. In particular, ifDeT and D ZD C, then there exists Л;̂  || С such 
that D =D Лд. 

Proof. Л = ^Л^ © ^Лд and if О < x e Л', then x A a;^ = О for all À and hence 
X = 0. Thus by Proposition 2,4, ( ^ Л ) ' ' = Œ ^ A ) ' - If С e T, then С ^ A^ for some 
у e Л, and if A e Л, then Л;̂  n С = 0 or Л;̂  с C. For otherwise by 3.1 Л^ ID Ay 
which is impossible. Thus there exists a subset J of Л such that С з ^Л^ (ô e A) and 

Now let 

S = {С : С is the join of a chain in Г and С has no proper lex extension in G}. 
Note that T ^ S. Moreover С 6 5 is a lex-subgroup if and only if С e T. For if {Xß : 
ß e в] is a chain from T with no maximal element, and [JXß is a lex-subgroup, then 
[JXß = a" for some special element, but then a e Xß for some ß and hence a'^ £ x^, 
a contradiction. 

4.7. / / С = U<̂ y ^«^ ^ = U^^ belong to S and С \\ D then С n D = 0. In 
particular S is a root system. 
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Proof. lîO = CynDs for all y and Ö, then 

CnD=^Cn {\JD,) = U(C n D,) = U((UC,) n D,) = U(C, n D,) = 0. 

If Cy n D^ Ф 0 for some 7 and ô, then by 3.1 we may assume that Cy ^ D^. Thus 
since the elements of T that contain D^ form a chain it follows that С and D are com­
parable a contradiction. 

4.8. IfC,DeS and С covers D, then С e T. 

Proof. If С фТ, then С = (JC^ where {Cyiye Г] is a chain in Tand each Cy a С 
If each Cy<=:D then С Я: D and if C^ n D = 0 for all 7, then С n D = 0. Thus 
there exists a C^ such that С =:> Cy :э D, a contradiction. 

4.9. / / Tsatisfies the DCC, /̂t̂ n 50 ^oes S. 

Proof. Suppose that M^ з M2 =>..., where the M^eS. M^ — \JCy is the join 
of a chain from T. If Cy n M2 = 0 for all 7, then M^ n M2 = 0 and if Cy Я M2 
for all 7, then M^ Ç M2. Therefore at least one Cy properly contains M2 and hence 
we have 

M l ^ X i =3 M2 3 K2 3 M3 3 . . . 

where the Ki belong to T, and hence there can only be a finite number of the Mj. 

Remark. We can derive 4.7, 4.8 and 4.9 in terms of abstract root systems, but the 
formulation becomes somewhat messy. 

Now suppose that T and hence S satisfies the DCC and let {A^ : Я G Л^] be the 
a-th level of S. In particular AQ = A. If Aj, Я2- ̂  ^a, then by 4.1 A^^ || A^^ and hence 
by 4.7 Al^ n Al^ = 0. Therefore 

4.10. A^ = [UAfl = Y^l 

4.11. IfA^G, then Л^ <] G. 

Proof. Since A = 2]^я is the indecomposable representation of A it follows that 
each inner automorphism тг of G induces a permutation on (Л^ гАеЛ}. Thus n 
induces a permutation on Tand hence on S. By 4.2 тг induces a permutation on the 
a-th level of S and hence A^n = A"^. Therefore Л* <i G. 

5. Lex-sums of JL-groups. An /-group G is a lex-sum of l-groups {A;^ : A e Л} if 
for some ordinal a there exists a chain of convex /-subgroups 

A^ Я A^ Я . . . Ç Л^ Ç ... Ç G 

one for each ordinal a < a, such that G = U^"" ̂ i^d Л" = ^Л^ (Я G Л„), where each AI 
admits no proper lex-extensions and the following are satisfied. 
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( A) Ло = л and А^ = А^ for each Хе А. 
(B) А\^^ = Лд for some ^ е Л^ or Л;"^^ is а proper lex-extension of а small 

cardinal sum of two or more of the components of A^ and at least one of these 
components of Ä^ is not contained in any Л" with и < a. 

(C) If a is a hmit ordinal, then there exists a cofinal sequence В in [jx: p. < a} 
and for each ß e В a, component Л^^ of A^ such that Al is a proper lex-extension of 
^ Л Ц ^ e B) or the Л^^ form a chain and Л^ is a lex-extension of the join of this chain. 

If, in addition, each Л"̂  is an /-ideal, then we say that the lex-sum is normal. If 
a ^ CO, then (C) is vacuous, and in this case we call the result an œ-lex-sum. An 
co-lex-sum is restricted if the cardinal sum referred to in (B) is finite. 

Remark. The concept of a restricted ш-lex-sum was introduced in [3]. The above 
generaUzation is essentially the same as MCALISTER'S definition of a т-lexico-sum in 
[7]. It differs only in (C) as follows: if a is a limit ordinal and Лд is a proper lex-
extension of Y^A^^, then by McAHsters definition Al appears first as a component of 
Л' '^^ Also in [3] and [7] only normal lex-sums were considered. 

The following is our main structure theorem, all other theorems in this section are 
corollaries of this one. 

Theorem 5.1. Suppose that {a^ : À e A] is a maximal disjoint subset of an l-group G 
and that each Д;̂  is special. Then G is a lex-sum of the groups Лд = al if and only if 

(a) T = {C e M{G) : С ^ A^for some Xe A] satisfies the DCC, and 
(b) for each g E G^ there exists an a e A = ^^Л;, such that g + a is finite valued. 

If this is the case, then G is a normal lex-sum of the A^ if and only if A-=:i G. 
Moreover, Л <a G if G is representable (as a subdirect sum of o-groups) or A is the 
basis subgroup of G or \A\ = n is finite and G does not contain n + 1 disjoint 
special elements. 

Proof. The verification that (a) and (b) are necessary conditions for G to be a lex-
sum of the Лд is straightforward and will be left to the reader. Suppose that (a) and (b) 
are satisfied, then we have all the material in Section 4 at our disposal. 

In particular, we let {Л^ : Я e Л J be thç a-th level of S. Then by 4.10 A^ = [[JAf] = 

= Y^l and A = A"" = ^;Лд. Thus (A) is satisfied. 
(1) G = U ^ ' . 

For clearly [JA"" ^ Л and if g e G'^\A, then g + a is finite valued for some ae A 
and hence \g + a\ = g^ + ...-{- g^^ where the g^ are special and disjoint. Thus 
9i^ g'i ^ U^"" and hence |éf + a| e {JA"", but since IJA^ is a convex /-subgroup it 
follows that g e {JA"". 

(2) If С G 5, then С = (^А,у = (^Л^)' = С\ where ôeA ша ХеА\А. By 4.6 
we may assume that С e S\T. Also by 4.6 (^AÔY = Q ] ^ A ) ' for any subset A of Л. 
Now С = U Q , where { Q : a G a} is a chain in T. Ltt A = {Ô e A : A^ ^ Q for 
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some aea}. Then £ Л , с ( J Q = С and hence (^Ад)" Я С". If ХеЛ\Л, then 
/4д n Q = О and hence A;^ с C^ for all a and so ^ Л ^ ç fl^â = С'. Therefore 

lA.^C^ (ZAs)" = (Ел,)' = С" . 

Suppose (by way of contradiction) that 0 < g e C"\C. Then ^ + a is finite valued, 
where a — a^ + «2? ^i ^^^0 ^^^ ^2 ^!Е^я- ^^ particular, g л \a2\ = \ai\ л \a2\ = 
= 0 and so l̂ f + a i | л \a2\ = 0. Thus if M is a value of 6̂  + a^, then «2 e M and 
so M is a value of ^ + a. Therefore 0̂  + a^ is finite valued and belongs to C"\C and 
hence it follows that there exists 0 < s e C\C, where 5 is special. 

If s e Q Ф C^ for some a, then since 5 is special it must belong to C .̂ If Cß ^ Q , 
then s e C'^ Я C'ß and if Cß ^ Q and 5 ф Cß, then s ^Cß @ Cß and hence 5 > Ĉrj ^ 
^ C^ which is impossible. Therefore s e Ç)C^ — С and so s e С n C" = 0, a con­
tradiction. 

Therefore зфС^® C^ for all a, and hence 5 > Q for all a. We shall show that in 
this case s" is a proper lex-extension of C, but this contradicts the fact that С eS. 
Thus to complete the proof of (2) it suffices to show that if 0 < x e s\C, then x > С 
As above x + a is finite valued for a е ^ Л ^ £ С. Thus x + a = x^ + ... + x„, 
where each Xi is special and hence comparable to zero. If x + a ^ 0, then 0 < x ^ 
^ —ae С and so x G C, a contradiction. Similarly at least one of the positive x̂  is 
not in С and so we may assume that 0 < x„ e s"\C and hence x„ > С Thus x„ — a > 
> С and x„ — a is special with the same value as x„. Therefore x = |xi] + ... + 
+ |x„_i| + |x„ — a| > С and so (2) is established. 

Now suppose that С = А\'ш in the a-th level of S. We must show that (C) (В) are 
satisfied according as a is a limit ordinal or not. If С has length ß < a, then by 4.3 С 
belongs to the 7-th level for all jö ^ 7 < a and so (B) and (C) are satisfied. Thus we 
may assume that С has length a. By (2) С = Q]Ä^y. И A consists of a single element ô, 
then С = A'^ = AQ and so С has length 0. Thus we may assume that A contains at 
least two elements. For each ^ G J let D^ be the join of the chain of elements in Tthat 
contain A^ and are properly contained in С 

Case I. D^ = С for some д e A, Then С is the join of a chain [A^!^^ : ß e B} of Г 
each of which is properly contained in С and hence belongs to a lower level. Suppose 
(by way of contradiction) that for all ß e B, ß ^ S < oc. Since С has length a there 
exists a chain (C,- : iel} of length > ^ and such that each Ĉ  с С. If С,- n Л^̂  = О 
for all i and all ß, then 

(UC,) nC = (UC,.) n (U^^,) = \j{Ci n Al) = 0 

a contradiction. It follows that there exists Ĉ  of length > ô such that Ĉ  n Л^^ ^ 0 
for some jÖ. Thus Ĉ  and Л^^ are comparable. If C,- с Л^^, then A^^ has length > ^ . 
If A^y^ я Cl, then since Tis a root system and С is the join of the chain of the A^^ it 
follows that A^^ ^ Ci for some s e B, which is again impossible. Therefore В is 
cofinal with {/л : fi < a} and so (C) is satisfied. 
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Case IL D^ Ф С for all «5. Then since Л contains more than one element D = 
= Yu^à ^ b(C), Suppose (by way of contradiction) that 0 < ^̂  e L{C)\D. Then 
g + a is finite valued for some a = a^ + «2? where a^ e j ] ^ and а з ^ Х ^ л - As 
above it follows that g -{• a^ is finite valued and belongs to L[C)\D, Thus there 
exists a special element 0 < q e L{C)\D, If q' с С then qe D and if q" •= С then 
g > L(C) both of which are impossible. Therefore С is a proper lex-extension of 
D = L{C). 

If a =̂  /? + 1, then since С covers each D^, the D^ must by 4.4 have length ß and 
hence each D^ belongs to the j5-th level. Thus (В) is satisfied. 

If a is a limit ordinal, then since each chain under С must contain one of the A^ 
and С has length a it follows that a is the least upper bound of the lengths of the D^. 
Thus (C) is satisfied. 

Therefore G is a lex-sum of the A;^ and by 4.11 G is a normal lex-sum if and only 
if yl <] G. All that remains to be shown is that ^ <] G under any of the given hypo­
thesis. If G is representable, then Sik [9] has shown that each polar is normal. Thus 
each A; is normal and hence Л-ci G. The basis subgroup of an /-group is normal 
(see the discussion of basic elements and the basis subgroup given below). 

Suppose |л | = n is finite and that G does not contain n + 1 disjoint special 
elements. If Q is a subset of G and g eG, then let Q^ = -g + Q + g. If A^^ n Aj = 0 
for j = 1, ..., П, then a% a^,..., a„ are disjoint, but this contradicts the fact that 
ti|, ..., a„ is a maximal disjoint set. Thus Л | n ylj ф 0 for some j and hence by 3.1 

^f с Aj or AJ^ a A, or A^^ = Aj . 

Suppose (by way of contradiction) that ^f a Aj. Then Al cz Aj or Л^ n Aj =^ 0 for 
all /c, and by 3.4 Aj => ylf © g, where 0 Ф Q is a convex /-subgroup of G. Pick 
0 < ^ e O. If no other Al is contained in Aj, then q, of, ..., a^ are disjoint and so 
q'^, ûi, ..., a^ are disjoint, a contradiction. Therefore 

Aj 3 ^f e Л; 

But then a% af, a^, ..., а^_1, â  + i, ..., a„ are disjoint and special, a contradiction. 
Thus it follows that ^f = Aj and hence Л -<i G. This completes the proof of Theorem 
5.1. 

An element s e G is basic if s > 0 and {x e G : 0 ^ x g 5} is totally ordered. This 
is equivalent to the fact that G{s) is an o-group [3], and hence to the fact that s" is 
a maximal convex o-subgroup (Theorem 2.3). A subset S = {a^, : Я e Л} is a basis 
for G if S is a maximal disjoint subset and each a;^ is basic. In this case A = Y.^l is 
the basis subgroup of G, and since {a'j^ : Àe A} is the set of all maximal convex 
o-subgroups of G, Л -<i G. 

The equivalence of (a) and (c) in the next theorem has been proven by McAlister 
m 



Theorem 5,2. For an l~group G the following are equivalent. 

(a) G is a normal lex-sum of o-groups [A;^ : л e A]. 
(b) G is finite valued and M[G) satisfies the DCC. 
(c) The lattice of filets of G satisfies the DCC. 

If this is the case, then A = V^^ is the basis subgroup of G. 

Proof. By Theorem 3.11 (b) and (c) are equivalent, a) -> b). Pick 0 < a^eA;^. 
Then clearly al = A;,, A = Y^Ä is fi"ite valued and M{G) = {C e M(G) :C ^ A;,^ 
for some Я e /1}. Thus by Theorem 5.1 (b) is satisfied. 

b) -> a). If 0 < g e G, then g = gi v ••• v g„, where the g^ are disjoint and 
special. If gi is not basic, then g^ ^ g^ v g^2^ du A gi2 = 0 and дц.дц are 
special. If ö^n is not basic, then find gm, g 112 etc. Thus we get a descending chain 
9i => 6̂ 11 =̂  ••• in M(G) which is necessarily finite. Therefore g exceeds a basic 
element and hence by Theorem 5.1 in [3] G has a basis {ад : Яе A]. Thus it follows 
by Theorem 5.1 that G is a lex-sum of the o-groups Л^ = a'^ and since the basis sub­
group A = ^ ^ ; <3 G, G is a normal lex-sum of the Лд. Thus a lex-sum of o-groups 
is necessarily normal. 

The following is an unpubhshed theorem of NORMAN REILLY. 

Corollary. For an l-group G the following are equivalent. 

(i) G is finite valued and each element in M[G) has finite length. 

(ii) G /,s' a normal co-lex-sum of o-groups. 

There is a natural relationship between Theorems 5.1 and 5.2. 

Theorem 5.3. Suppose that G is a normal lex-sum of maximal lex-subgroups 
{Лд = а'д : Я e л} . Then N — ^Ь{А^) is an l-ideal of G and GJN is a normal lex-sum 
of the o-groups (N + A^JN. 

Proof. Since A = Х^я*^ ^ ^^^ this is the irreducible representation of A, it 
follows that an inner automorphism of G must induce a permutation of the A^ and 
hence a permutation of the L[A^. Thus N ^ G and hence N is an /-ideal. By Theorem 
5.1 T= {Ce M{G) :C ^ A;, for some A G A} satisfies the DCC and each X e GJN 
is finite valued. Also 

-'V + A, ^ A, ^ _A^ 
N NnA, L{A,) 

and hence [N + AxjJN is an o-group and ^(iV + A^JN is the basis subgroup of G/iV. 
Thus by Theorem 5.2 GJN is a normal lex sum of the o-group {N Ч- A^JN. 

Theorem 5.4. Suppose that {a^ : À e A} is a maximal disjoint subset of an 
l-group G and that each a^ is special. If each 0 < g e G is disjoint from all but 
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a finite number of the a;, then G is a restricted co4ex-sum of the groups A^^ = a^, 
and a normal lex-sum of the A^ if and only if A ~ ^у4; <i G. 

Conversely, suppose that G is a restricted o>lex~sum of a set [B^ : ke A] of 
maximal lex-subgroups and pick 0 < b^^e В^L{Bj) for each Xe A. Then (b^; Xe A] 
is a maximal disjoint subset of G, each b^ is special and each 0 < g e G is disjoint 
from all but a finite number of the b^-

Proof. The verification of the converse is straightforward and will be left to the 
reader. Let T = {C e M{G) :C ^ A^ for some XeA] and consider С = С^А,Х G T. 
If Л is infinite and с e C\L[C), then с > L{C) 3 Y^A^ and hence с A а§ > 0 for all 
д e A, я contradiction. Therefore A is finite and hence it follows from 4.6 that С has 
finite length in T. In particular, T satisfies the DCC. Moreover, if G is a lex-sum of 
the A;^, then it is necessarily a restricted co-lex-sum. 

In order to complete the proof of the theorem it suffices by Theorem 5.1 to show 
that for each 0 < g e G there exists з.п a e A such that g -{- a h finite valued. Now 
g A a;^. > 0 for / = 1, ..., П and g A a;^ = 0 for all other XeA. Let M be a value 
of g + a = g + a^^ -{- ... -{- a^^^. If a^. ф M, then M Я N the value of a^. and if 
M cz N, then a^. < g Л- a e N, a contradiction. Thus if a^. ^ M, then M is the 
value of a;^.. Suppose that M is not a value of a;^. for any i, then a;^^, ..., a;^^ e M. 
Suppose (by way of contradiction) that M ф a^. for i = 1, ..., n and pick 0 < x̂  
in Од . \ M for / = ! , . . . , n. Then x = g A x^ A ... A х^ф M but x e П^я = 0{Xe A) 
a contradiction. Thus M ^ a'^. for some i and hence M з G(Ö^.) © a^. = X. But 
by Theorem 3.6 in [4] X is a prime subgroup of G and hence there exists at most one 
value of g + a that contains it. Therefore g + a has at most n values. 

Corollary I. Let (a^ : Xe A} be a set of disjoint special elements of an l-group H 
and let G = (a^ : X e A]". If each 0 < g e G is disjoint from all but a finite number 
of a^y then G is a lex-sum of the maximal lex-subgroups a\. 

Corollary II. / / 0 < ö' e G has only a finite number of values, then G(gy = g" 
is a lex-sum of a finite number of maximal lex-subgroups. 

Proof, g = g I + . . . 4- б̂ „, where the gi are disjoint and special and clearly 

G{gy = {G{g,) 0 ... © G{g,)y = {g,,..., g^Y . 

The result now follows from Corollary I. 
If aĵ , ..., a„ is a finite maximal disjoint subset of G and each â - is special, then by 

Theorem 5.4 G is a lex-sum of the groups Ai = a'[. Byrd [2] has shown that the set S 
of all the conjugates of the Ai is finite. Thus G is a normal lex-sum of the minimal 
elements in S. Thus by Theorem 5.3 there exists an /-ideal N of G such that a^i N 
for i = I, . ., n and GJN is a lex sum of a finite number of o-groups. Whether or not 
this can be generahzed to an infinite set (a^ : Xe A} that satisfies the hypotheses of 
Theorem 5.4 is not known. 
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6. L-Groups with a finite basis. We shall first consider /-groups that satisfy (F) 
each 0 < g E G exceeds at most a finite number of disjoint elements or equivalently 
each bounded disjoint subset of G is finite. In [3] it is shown that if G satisfies (F), 
then G has a basis. Moreover, G satisfies (F) if and only if each G[g) has a finite basis. 
It is easy to show that a representable Z-group G satisfies (F) if and only if G is a sub-
direct sum of a small cardinal sum of o-groups (see for example [1]). The following is 
one of the main theorems in [3]. 

Theorem 6.1. An Ugroup G is an (o-lex-siim of o-groups if and only if it satis-
fies (F). 

Proof. Suppose that G satisfies (F) and let {a;^ : Xe A] be a basis for G. Then 
{a;i : AG A] satisfies the hypotheses of Theorem 5.4 and hence G is an o>-lex-sum of the 
o-groups a'{. The converse also follows from Theorem 5.4. 

Corollary. (Finite Basis Theorem) An l-group G is a lex-sum of a finite number 
of o-groups if and only if it has a finite basis. 

Let Г be an index set for the set of all pairs (G^, Gy) of convex /-subgroups of G 
such that Gy is a value of some g E G and Ĝ  covers G .̂ Define oc < ß in Г if G"" Я: Gß 
or equivalently Ĝ  с Gß. Then Г is a root system. The groups G у are called regular. 
From [3] and the theory in this paper it follows that the following statements about 
an /-group G are equivalent. 

(1) G has a finite basis. 
(2) Each disjoint subset of G is finite. 
(3) Г contains only a finite number of maximal chains (''roots''). 
(4) Each proper convex Isubgroup of G has a finite basis, 
(5) G is a lex-sum of a finite number of o-groups. 
(6) Each convex l-subgroup С of G has an irreducible representation 

С = Ci © ... e сJn finite). 

(7) G is finite valued and M[G) is finite. 
(8) The lattice of filets of G is finite. 

Corollary. For an l-group G the following are equivalent. 

(a) G has only a finite number of convex l-subgroups. 
(b) Г is finite. 
(c) G is a lex-sum of a finite number of o-groups and each o-group used in this 

construction has only a finite number of convex subgroups. 

Proof. Since each convex /-subgroup of G is the intersection of regular subgroups 
it follows that (a) and (b) are equivalent. 
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a) and b) -^ с). Clearly G has a finite basis, and hence G is a lex-sum of a finite 
number of o-groups. Let A^ be a group in the r-th level with N =•• L{Ä''I). Then since 
there exists a one to one correspondence between the convex subgroups of A^'^jN and 
the convex /-subgroups of G that lie between Л^ and N, A\JN has only a finite number 
of convex subgroups. 

c) -> a). If С is a lex-subgroup of G, then A\ ^ С ^ -^(^0 ^^^ some r and /. Now 
for a given r and i there exist only a finite number of such subgroups С and hence it 
follows that there exists only a finite number of lex-subgroups. But each convex 
/-subgroup of G is the cardinal sum of a finite number of lex-subgroups, and hence 
(a) is satisfied. 

This last result can be generalized. The rank of an o-group H is the order type of 
its chain of convex subgroups. In particular, Я has inversely well ordered rank means 
that each ascending chain of convex subgroups is finite. 

Lemma 6.2. For an o-group H the following are equivalent. 

(a) H has inversely well ordered rank. 
(b) Г = Г{Н) is inversely well ordered. 
(c) Each convex subgroup is principal {that is, has the form H[a)). 

Proof. Clearly (a) implies (b). 
b) -> c). If 0 < X e С a convex subgroup, then there exists a regular subgroup 

К cz C. Let M be the largest such subgroup and consider 0 < a e C\M. If 0 < с e 
G С\Н{а), then there exists a regular subgroup N such that M cz H{a) ^ N cz C, 
a contradiction. Therefore С = Н{а). 

c) -> a). If ^ is a set of convex subgroups of Я , then S = öce^^ = ^(<^) for some 
аеН. But then aeCe^ and hence H{a) ^ С ^ S = Н{а). Thus С is the largest 
element in ^ . 

Theorem 6.2. For an l-group G the following are equivalent. 

(1) Each convex l-subgroup of G is finitely generated. 
(2) Each convex l-subgroup of G is principal. 
(3) Г has only a finite number of roots and satisfies the ACC. 
(4) G has a finite basis and each of the o-groups used in lex-sum construction of G 

has inversely well ordered rank. 

Proof. 1) -> 2). If g I, •-., gn generate the convex /-subgroup С of G, then g = 
= \gi\ + .. . -b \gn\ e С and hence G{g) ^ C, but each \gi\ e G(g) and hence g^, ... 
...,gn^ G{g). Therefore G{g) = C. 

2) -> 3). If a 1, ^ 2 , . . . is an infinite disjoint set, then G(ai) ф G(a2) ® ••• is not 
principal. Thus each disjoint subset of G is finite, and hence Г has only a finite number 
of roots. To complete the proof of this imphcation it suffices to show that a chain of 
regular subgroups that contains a given minimal prime subgroup M is inversely well 
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ordered. Let ^ be a set of regular subgroups that contain M, Then exactly as in the 
above proof of c) -^ a) it follows that <^ contains a largest element. 

3) -^ 4). Clearly G has a finite basis. Consider Л^ with lex kernel N. We must show 
that the regular subgroups of Ä\ containing N are inversely well ordered. But if M is 
a prime subgroup of G that does not contain A], then M n A] is a prime subgroup 
of A] and this mapping a is one to one onto (see the proof of Theorem 3.5 in [4]). 
The set 6^ of regular subgroups of G that contain Na~^ but not A] are mapped by a 
onto the set of regular subgroups of A] that contain N. Since N(T~'^ is prime in G it 
follows that 5^ is a chain in Г and hence it is inversely well ordered. Therefore the 
regular subgroups of У4̂  containing N are inversely well ordered. 

4) -> 1). If С is a lex-subgroup of G, then Л^ ^ С =5 iV =~- ЦА*"^ for some r and i 
and AjJN has inversely well ordered rank. Thus by Lemma 6.2 CJN is generated 
by a single element N + c, where 0 < с e C. If 0 < x e C, then N + x < N + л^с 
for some m > 0 and hence x < mc. Therefore С ^ G(c) and clearly С ^ G(c). 
Thus each lex-subgroup of G is principal. But it is easy to check that each non-zero 
convex /-subgroup of G is a cardinal sum of a finite number of lex-subgroups. There­
fore each convex /-subgroup of G is finitely generated. 
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