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INNER GEOMETRY OF SUBMANIFOLDS OF HOMOGENEOUS
SPACES

Avors Svec, Praha

(Recieved July 26, 1966)

It is well known from the classical differential geometry that the central role in the
theory of hypersurfaces of Euclidean, affine and projective spaces is played by certain
quadratic and cubic differential forms. The definition of these forms is always given
by the structure of the space, and presumably they have nothing in common for
different spaces. In this paper I show that there are certain invariant G-structures on
submanifolds in homogeneous spaces, these G-structures being just the generali-
sation of the forms which occur in the known situations.

1. Let G be a Lie group and H its closed subgroup. Assume that G is a linear group,
and let the normalizer of H coincide with H, i.e., let

(1.1) ad(9)h ch=geH,
(1.2) ad(A)hch=Aeh.

In the Lie algebra g, we have

(1.3) [4,B] = AB — BA, ad(g) A = gAg™",
ad(B)A =[B, A] for A,Beg, geG.

Recall the known relation
(1.4) ad (g9) [A4, B] = [ad (g) 4, ad (g) B] for A,Beg, ge€G.

Let N be a natural number, N £ dim G. Denote by St (N) the Stiefel manifold of
all N-frames in g; analoguously, let Gr (N) be the Grassman manifold of subspaces
of dimension N in g, 7 : St (N) - Gr (N) be the natural projection. The full linear
group GL(N, R) operates on St (N) to the right according to the rule

(1.5) (Ay, ..., Ay) (a)) = (éa';A,., ...,.gla;,Ai) ;
(A, ..., Ay)eSt(N), (al)e GL(N,R).
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The Lie algebra gI(N, R) operates on g" = g x ... x g (N-times) to the right accord-
ing to the same rule.

Consider the homogeneous space G/H; letn:G— G/H be the natural projection.
The group G acts in the well known manner on G/H according to the rule Lg(ng) =
= (99:) H.

2. Let M be a manifold, dim M < dim G/H, and be given an embedding V: M —
- G/H. The lift of this embedding is any mapping v : M — G such that the diagram

U/G
(2.1) My
VNG[H

commutes. To each lift v : M — G, we associate the g-valued 1-form w on M defined
by

(2.2) w=v"dv.

The form o satisfies the integrability condition

(2.3) do = -0 A w. ie, (do)(X,Y)= —}o(X),o(Y)].
Further, we have

(2.4) o(T,(M)ynh =0 foreach meM.

v: M — G being a lift of V, any other lift of Vis obtained as follows: choose any map-
ping h : M —» H and set

(2.5) v'(m) = v(m) h(m) for meM.
If o' is the 1-form associated to the lift v’ (2.5) then
(2.6) o' = ad (h(m)™") » + h(m)~' dh (m),

this being well known.
For the sake of simplicity, let us write

(2.7) K(m) = o(T,(M)), L(m)=K(m)®h;

of course, K(m) e Gr (dim M) according to (2.4). Denoting by Gr (h, N) the set of
all subspaces L of the algebra g such that ) = Land dim L = dimlj + N, we have
L(m) € Gr (b, dim M). Replacing the lift v by the lift v’ (2.5), we get

(2.8) L'(m) = ad (h(m)~*) L(m)
as follows from (2.6).
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Let Le Gr (b, N). Denote by H(L) the set of all h € H such that
(2.9) L=ad(h™")L.

The set H(L) is a Lie group and its Lie algebra H(L) consists of all vectors A€l
satisfying

(2.10) [4,L] = L;

see [1].
Suppose that, for a given embedding V: M — G/H, there is a lift v: M - G
such that

(2.11) L(m) =L foreach meM,

Le Gr (b, dim M) being a fixed space. The lifts with this property are called the
tangent lifts of the embedding V; the construction of a tangent lift from an arbitrary
lift v” consists of the construction of a mapping h : M — H such that ad (h(m)™').
. L"(m) = Lfor each m € M. In each concrete case, we have to decide whether such
a map h exists; the only known general result is contained in [1] according to which
such an h exists, at least in a neighborhood of a point my, e M, if dim§ —
dim h(L(my)) is sufficiently large. Now, let there be given a tangent lift v: M — G
satisfying (2.11). We obtain every other tangent lift v’ : M — G satisfying L(m) = L
if we choose a mapping h : M — H(L) and set (2.5). If P(V(M), H) is the principal
fiber bundle generated from the homogeneous space G(G/H , H) by the restriction of
the base manifold to ¥(M), the existence of a tangent lift ensures the existence of the
reduction of the structural group H of P to H(L).

Let us consider the vector space L[b; of course, dim L[l = dim M. Let = : L — L[
be the natural projection. If 4, Be L, A — Bel), he H(L) then ad (h) (4 — B) e},
i.e., mad (h) A = mad (h) B. We have thus proved that there is a representation of
the group H(L) in L[h denoted by

(2.12) ad : H(L) » Aut (LJp),

its precise definition being as follows: Let A, € L[h, and let A € L be any element such
that 74 = Ao; if he H(L) then ad (h) A, = n(ad (h) A). Let V: M — G/H be an
embedding and v: M — G its tangent lift satisfying (2.11). Because the map  :
: T,(M) - L[b is an isomorphism for each me M we get naturally an ad (H(L))-
structure on M. This structure may be called the inner geometry of the first order
on M. The just introduced structure does not depend on the choice of the space L
in (2.11). Indeed, let v’ : M — G be another tangent lift of the imbedding V: M - G
such that

(2.13) L(m)=L,.
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There is a mapping h : M — H such that we have (2.5) and (2.8); in our case,
Ly = ad(h(m)™") L. Let hy e H(L,). Then ad (h;')L, = L, yields ad (h(m).
Chith(m)™") L =L, ie., h(m) h, h(m)~" e H(L), i.e., hy € h(m)~" H(L) h(m), and
we have H(L,) = h(m)~" H(L) h(m). If we write h(m,) = h, for an arbitrary but
fixed point m, € M, the lift v"(m) = v(m) h,, is a tangent lift, and we have L'(m) = L,
for m e M. Because of that we have H(L,) = hy ' H(L) h, what is to be proved.

LetV:M — G/H be an embedding and v : M — G its tangent lift satisfying (2.11).
Because w(X) € Lfor each vector X € T,(M) and each m € M, we have (dw) (X, Y) e L
identically. From (2.3), we have

(2.14) [o(X), o(Y)]e L foreach X,YeT, (M), meM.

Denote by Gr (L, N) the set of all subspaces K such that K « L< g, dimK = N
and [K, K] < L. It is therefore obvious that o(T,(M))e Gr (L, dim M) for each
m e M. Itis well possible that thereisaliftv : M — Gsuchthat w(T,(M)) = H(L) ® K,
for each my € M, K, € Gr (L, dim M) being a fixed element. We may call such a lift
the osculating lift. The main thing is that we are now able to repeat all previous
considerations replacing the group H by H(L) and the space L by the space
H(L) ® K,. On the manifold M, we get the inner geometry of the second order.
In the optimal case, we continue in the reduction of the group H up to the moment
when H is reduced to a finite group; the reduction to the identity would mean an
orientation of M.

3. In this section, I will present another more geometric definition of the inner
geometry of the first order.

Be given an embedding V: M — G/H and an arbitrary lift v : M - G. We associate
to ¥ a mapping B : M - Gr (dim H) defined by

(3.1) B(m) = ad (v(m))h for meM.

The mapping B does not depend on the choice of the lift v. Let V' : M’ — G[H be
another embedding, suppose dim M = dim M’. Let m, € M be a fixed point, and let
there be given a local diffeomorphism F : U - M’, U = M being a neighborhood of
the point m,. The map F is the deformation of order k at the point m, realized
by g € G if the following is true: Consider the mappings
(3:2) (9B)o F: U - Gr(dim H) where (¢9%8)(m) = ad (g) B(m);

B':U - Gr(dim H) ;
then there are lifts
(33) 0:U - St(dimH), ¢:U - St(dim H)
of these mappings such that
(3.4) Jmo(@) = Jjmo(0) -
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Because St (dim H) < g*™", ¢ and ¢ are mappings of the neighborhood U into the
vector space g*™; j¥ (o) is the jet of order k of g at the point m,,.

Let us specialize the previous situation. Be given an embedding V: M — G/H, its
fixed lift v : M — G, the mapping B (3.1) and a fixed point m, € M. Let G, the set
of g € G such that there is a neighborhood U = M of the point m, and a mapping
F:U — M, F(mgy) = my, which is the deformation of order k of the embeddings V’

and gV at m, realized by g. Now, let Z be a fixed basis of the space .
(35) o(m) = ad (go(F(m))) @

is a lift of the mapping (¢98B) - F and ¢’(m) = ad (v/m)) £ is a lift of the mapping B.
An arbitrary lift of the mapping B is

(3.6) a(m) = ad (v(m)) BS(m)

where S : U — GL(dim H, R) is arbitrary. Thus we have g € G, if and only if there
is a neighborhood U = M of m, and mappings F : U > M, F(my) = my, S: U —
— GL(dim H, R) such that

(3.7 Jmo(@) = imo(0) -

We have g, = ad (gv,) 8, 6, = ad (v,) BS, where o(m,) = g, etc. The condition
(3.7)k=0 yields go = oy, i.e.,

(3.8) ad (vy 'gvy) B = AS, .

G, consists of the elemznts g € G such that there is S, € GL(dim H, R) satisfying
(3.8). # being a basis of b, we have vy *gv, € H and g € v,Hvgy '. This yields

(3.9) Gy = voHvy ', g, =ad(vy)h,

and we may write g = vohvy !, he H,

(3.10) o(m) = ad (vohvy ! v(F(m))) % ,
and (3.8) reduces to
(3.11) ad (h) B = &S, .

Let us now determine G,. From (3.10), we get
(3.12) o(m) vohvg * v(F(m)) = vehvg ' v(F(m)) 4% .

Let X be a vector field on M; it is sufficient to consider X only on a neighborhood
U <= M of the point m,. From (2.2), we get

(3.13) Xv = vo(X).
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Denote by

(3.14) J(m) = (dF),, : (M) - T,(M)

the differential of F at the point m € U; evidently,

(3.15) Jo = J(mg) € Aut (T, (M)) .

The known formula for the differential of a composed mapping and (3.13) yield

X(voF) = ((dF) X) v = v o((dF) X),

(3.16) Xo(F(m)) = v(F(m)) o(J(m) X) .

Applying the vector field X to (3.12), we get

X o(m) vohvg ! v(F(m)) + o(m) vohvg ' v(F(m)) w(J(m) X) =
= vohvg ' o(F(m)) w(J(m) X) 2% ,

(3.17) X o(m) = ad (vohvg ! v(F(m))) [w(J(m) X), #] ,
(3.18) X o(mo) = ad (voh) [w(JoX), #] .

From (3.6), we get
o(m) v(m) = v(m) B S(m) ;
applying X, we obtain
X o(m) v(m) + a(m) v(m) w(X) =
= v(m) o(X) B S(m) + v(m)BX S(m),

(3.19) X a(m) = ad (v(m)) [w(X), Z S(m)] + ad (v(m)) BX S(m),
(3.20) X a(mg) = ad (vy) [w(X), ad (k) ] + ad (v),) ZX S(m,) .

The condition (3.7),-, is now equivalent to

(3.21) X

According to (3.18) and (3.20), we may rewrite (3.21) as

omoy = Xo(mo) for each X .

(3.22) [0(JoX) — ad (h™") o(X), B] = ad (h™") ZX S(m,),
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and we get: The element g = vohv, !, h € H, belongs to G, if and only if there is an
automorphism J : T,, (M) — T, (M) such that
(3.23) o(JX) —ad(h™')w(X)eh foreach XeT,(M).

From (3.23), it is clear that g = uohuo"l, h € H, belongs to Gy if and only if we
have o(7,,(M)) ® b = '(T,,,(M)) ® b for the lifts v : M — G and v'(m) = v(m) h.
If v : M — G is a tangent lift satisfying (2.11) we get

(3.24) Gy = vy H(L)vg', g, = ad(vp) h(L).

Thus we have explained the role of the group H(L).
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‘Pe3rome

BHYTPEHHAS TEOMETPUSA TIOJMHOI' OOBPA3UI
OJJHOPOJHOI'O IMTPOCTPAHCTBA

AJIOUIC MBELL (Alois Svec), ITpara

ITokaseiBaeTCs, YTO Ha IOAMHOroo0pasusX OAHOPOAHOTO IPOCTPAHCTBA Cy-
LIECTBYIOT HEKOTOPBIE G-CTPYKTYPBI, KOTOPBIE B YACTHBIX CIYYasiX XOPOLIO U3BECTHBI

B KJ1accuieckoil qudpepeHuuanbHoii reoMeTpuH.
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