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1. INTRODUCTION

If V, is a differentiable manifold of class C*, we may identify the tangent vector X,
at an arbitrary point p of ¥, with a real valued operator (denoted by the same letter X )
on the set of differentiable functions on ¥, the value of X, at the function f being the

number
. e
X, f=x! (—f) >
=7 §
ou'l,
here, x* are the coordinates of the vector X » and ul, ..., u™ are the local coordinates
on V,.

In what follows, the manifolds and mappings are of finite class C*. We do not
mention this class explicitly, and we only suppose that it is always sufficiently high.

Throughout the paper, we use (without explicit citation) the fundamental facts
from the theory of fibre bundles and connections in the sense of [1] and [2].

2. PROLONGATIONS OF A DIFFERENTIABLE MANIFOLD

Definition. a) The 1-vector at the point of p is a tangent vector at p, a differentiable
field of 1-vectors on V, is a differentiable tangent vector field.

b) The k-vector at the point p is an operator X}, which may be written as a finite
linear combination of operators of the type X{VX®*~, X! being a 1-vector at p
and X*~1 being a differentiable field of (k — 1)-vectors. The differentiable field of
k-vectors is a rule associating to each point p e V, a k-vector X at p in such a way
that the function g(p) = X{f is differentiable for each differentiable function f.

Theorem 1. The k-vectors at the point p € V, form a vector space with the basis -

al
1 ), e B, 205 i+, =1; I=10k,
M <(6u’)" (au")‘")p ! '
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where

the expressions (0u’)" for i; = 0 being omitted.

Definition. The vector space of all k-vectors at p is called the k-tangent space and
denoted by T;").

Remark. The symbols X(, X, and T{Y, T, are thus equivalent.

Let us write T® = (J T. Using Theorem 1, we can easily see that we may
peV

introduce local coordinates into the set T®, and we can make it into a differentiable
manifold.

Definition. The differentiable manifold T® is called the k-th prolongation of the
manifold V,.

Remark. If necessary, we shall write T{°(V,) and T®(V,) instead of T and T®
resp.

Theorem 2. Let ¢ : V, = V,, be a differentiable mapping. X" being a k-vector at
the point p € V,, the operator X\ = (k)X"‘) defined by

l(k) f X(k)(f (p)
is a k-vector at the point ¢(p) e V..

Proof. Using the local coordinates, the proof is evident.

Definitica. The k-vector X, is called the image of the k-vector X. The mapping
@® of the differentiable fields of k-vectors on V, be defined by

(k) yr (k) — R y®)
((p X )¢(p) = ¢p Xp >

X® being an arbitrary differentiable field of k-vectors on V,. The mappings P
and @™ are the k-th differentials of ¢; we shall write ¢’ instead of ¢*.

Lemma. Let V, be a differentiable submanifold of the manifold V,, and let us
associate to each p e V, a k-vector X'V e T{9(V,,) in such a way that lhlS mapping
is differentiable. To each point q € V there exists a neighborhood U <= V, of q and
a differentiable field of k-vectors X’(") on V,, in such a way that we have X — X
for each point pe U.
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Proof. There is a neighborhood U’ = V,, of the point g with local coordinates
u', ..., u™ such that V, is given, in U’, by u’ = 0 for i = n + 1, ..., m. The lemma
now follows easily if we express the vectors X{¥ by means of the bases introduced

in Theorem 1.

Theorem 3. Let V, be a differentiable submanifold of the manifold V., X®
a differentiable field of k-vectorson V,, X , € T,(V,) and ¢ the injection of V, into V,,.
We have

@) (03 (X ) = 0t (x,X%).

where the left hand side means the application of the operator ¢,X , to an arbitrary
differentiable field of k-vectors on V,, which coincides with p®X® on some neigh-
borhood U < V, of the point p.

Proof. This is almost evident. Indeed, apply both sides of (2) to an arbitrary

’

function f on V,,, and observe that f . ¢ is a restriction of f to V,.

Lemma. X® being a differentiable fieid of k-vectors on V, such that X'*) = 0 and
Y, € T,(V,), the (k + 1)-vector Y,X® is a k-vector.
Using this lemma, it is easy to prove the following

Theorem 4. Let XV e T(V,), Y, e T,(V,), V, being a differentiable manifold,
and let us choose an arbitrary differentiable field X® of k-vectors on V,, its value
at p being just the prescribed vector X*). Then the mapping (Y,, X3?) - Y, X® is
a bilinear mapping of T,V,) x T¥(V,) into T+ D(V,)[TI(V,).

Theorem 5. Let p be an arbitrary point of the differentiable manifold V,. The
assignment

(3) (X i X)) = (Xs X)),

1 X, ..., X being arbitrary differentiable vector fields on V, with values Xps i =
= 1,..., k; at p, defines a symmetric mapping of x* T(V,) = T(V,) x ... x T,(V,)
(k-times) into TSO(V,)| T*=D(v,).

Proof. It is sufficient to use Theorem 4 and the induction with respect to k. The
symmetry follows from the fact that after the replacement of two neighboring vectors
in (3) the expression remains unaltered up to a (k — 1)-vector at p.

3. TENSORS ON A VECTOR SPACE
Be given a vector space W,,. All the automorphisms of this space form a Lie group G.

Choosing a basis in W, every such automorphism is expressed by a matrix, this
giving the isomorphism between G and the full linear group GL(m). In the chosen
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basis, to each element A4 of the Lie algebra g of the group G there corresponds a homo-
morphism h(A) of W, into itself. It is easy to see that the mapping A — h(A4) does not
depend on the basis in W,,, and it is 1-1.

Let us now suppose that, on W, there is given a tensor f covariant of degree r, i.e.

a multilinear form t(x,, ..., x,); X, ..., x, € W,,. Denote by 'S the set of all vectors y
such that

H(Xgs ooy Xim gy Ve Xijpgs oe0r X,) = 0

for arbitrary vectors X;, ..., X;_, X;4 (s ... X, € W,;; S is called the i-th singular
space of t. Let S = {,\ 'S be the so-called singular space of t. If S = {O} t is said to
be regular. o

The set of all automorphisms g € G preserving the tensor ¢, i.e. the set of all g € G
such that

1(xq, .. x,) = 1(x49, ..., x,9)

for each x, ..., x, € W,, is obviously a group.

Theorem 6. The set of all automorphisms of a vector space W,, preserving a tensor t
is a Lie subgroup G, of the group G, and its Lie algebra g, consists of all elements
A e g such that

Yot(xgs oo Xio g, X h(A), Xiq, o X,) =0
i=1

for arbitrary vectors x4, ..., X, € W,,.

Proof. We have t € ®"W,,; denote by P the natural representation of G on ®@"W,,
Thus our group is the set of all elements g € G such that P(g) t = t. The rest of the
proof follows from [3], Corollary 2, p. 62.

4. AFFINE SPACE WITH A TENSOR STRUCTURE

Be given an affine space 4,,, denote by W,, its vector space. It is easy to see that the
manifold T(A,,) may be identified with 4,, x W,,

In A4,, let us choose a linear coordinate system. According to Theorem 1, this
coordinate system determines a basis of the space T{/(A4,,). Consider the mapping u®
associating to each k-vector X e T;¥(4,,) its projection into T,(4,,) given by the
mentioned bases of T;(4,,). (F being a vector space and e,, ..., e, its basis, the pro-

jection of Finto a space F' = F, F' = {e,, ..., ¢;}, | < h, given by the basis e,, ..., ¢,
h 1

maps each vector a = 3" ae; € F into a vector Y aeeF')
i i=1

i=1
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Theorem 7. The mapping p* of the space T%)(A,) into T,(Am) does not depend
on the choice of the coordinate system.

If X is a vector field on 4,,, denote by 4 : 4,, — W,, the mapping defined by A(p) =
= X,

Theorem 8. Using the notation just introduced, we have
4 HA(YX) = LY,

(5) #(k)(y;x(k—l)) — #(2)()/:Iu(k—1)x(k—1)) ,
where Y, € T(4,,).

Proof. The first part is obvious, the second one follows by induction.

Let us now consider that there is given a tensor ¢ on the vector space W, of an
affine space 4,,. The set of all affine transformations of 4,, inducing automorphisms
of W,, preserving the tensor ¢ is a Lie group H. Choosing a fixed point p € 4,,, each
transformation h € H has a unique decomposition consisting of a translation and
a transformation preserving p (these transformations being in 1-1 correspondence
with the automorphisms of W,,).

Definition. The affine space 4,, with the Lie group H is called the affine space with
the tensor structure.

In what follows, we shall consider an affine space A4,, with a fixed tensor structure
given by a regular tensor t.

5. MANIFOLDS IN 4,

Suppose that ¥V, (n < m) is a manifold in 4,,. The injection ¢ : ¥V, > 4,, is differen-
tiable and regular, and according to Theorem 2 it induces a mapping Tp(’"(V" -
— T¥(A4,,). Accoridng to 4, we have a mapping u® of T®(4,) into T(4,), i.e.
a mapping into W,,. The mapping #® = u® o ™ is thus a mapping of T®Y(V,)
into W,,. Denote by % the homomorphism.of the space T;°(V,,) into W, given by &®.
For I < k, the mappings ®® and & coincide on T®(V,,).

Definition. The vector space ®9(T{¥(V,)) is called the k-osculating space of the
manifold V, at the point p.

Let u', ..., u" be local coordinates in a neighborhood U < V, and let the injection
¢ :V,— A, be given (locally) by

xizxi(ul,.,,,u"); 1:1,,m;

x!, ..., x™ being the linear coordinates in A4,,. If Z% is one of the vectors (1) it is
mapped by ®*® on a vector of W, with the coordinates Z®xi This shows that the
osculating space has the usual geometrical interpretation.
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The mapping @ determines the image &®; = ;) of the tensor #(x,, ..., X,)
on W,, defined by

(@) (X©, . XO) = 100, X0, .., o, X©)

for arbitrary differentiable fields of k-vectors | X® ' x®_ Obviously, the tensor 1{"’
is differentiable on V.

Of course, 1 coincides with ¢’ on TO(V,). Thus it is possible to write simply t,
and we have only to say what is the space in consideration.

Definition. The tensor t, is called the fundamental tensor of the manifold V,.

Theorem 9. If (X, ..., X® are differentiable fields of k-vectors on V, and X,
is a tangent vector at the point p, we have

Xpr*(l)("‘), e rx(k)) =

,
k k k k k
=2 (X0, X XX, X, LX)
i=1

Proof. According to Theorems 8 and 9, we get
X t((X®, ., X %) =
= (¢'X,) t(d®, x®, ., o®,X®) =i§jlt(4>“‘nxf,"’, e @0 XP
KO(0'X,) (@0 X©), D0, XD, o, x®) -
- th@“‘),xg"’, ey @0, X0 @R (X )
P, XP L p® XD) =

r
k k k k k
=2t XP, o X, X, X, X, X W)
i=1

From now on, we shall consider only such manifolds V, in 4,, that there is a number
ko such that the ko-osculating space of the manifold ¥, (at each point p € V) is just
the space W,

Let S be the singular space of the tensor f, in the space T{(V,). Evidently,
S% js the kernel of ®%, and % is an isomorphism of T("°)(V)/s("°) on W,. The
spaces T¢(V,)[S5 as ‘well as the spaces U have constant dimension; the dimension
of S be denoted by s,. It follows that the assignment p — S js differentiable
in the following sense: to each point p € ¥, there is a neighborhood U and differenti-
able fields of ko-vectors ; X*o, . soX (ko) such that for each g e U the k,y-vectors
X0 X form a basis of S“‘°)
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The (ko + 1)-osculating space of ¥, being equal to W,, as well, all previous con-
siderations hold for ko + 1, ko + 2, etc. We have S < §%°* "/ and each equiva-
lence class of the factor space T{*)(V,)[S{ is a subset of exactly one equivalence
class of the space Tto* (¥,)/S{°* 1) The just introduced mapping is an isomorphism,
and we may identify the spaces T*(V,)/S$ and T{*V(1,)[S{o+ 1),

In what follows, denote by {X "} the element of the space T3(V,)/S¥® containing
the ko-vector X,

Theorem 10. If Y* is a differentiable field of ko-vectors and Y e S® for eqch
q €V, we have X, Y e %+ for eqch X, € T,(V,).

Proof. For arbitrary differentiable fields of ky-vectors XS =1, i
we have

" . ‘ k ko)
t*(lx( o), BRI S VAP GO ¢ ’)=0

fori=1,.... r. Applying the operator X, using Theorem 9 and the fact that Yiko)
€SI < St we get

(k 3 ki k ki .
t*(lXp 0)’ ey - 1X(pk0), XPY( 0)7 i+1X§70), L] rX;J 0)) =0 ’

the spaces Ty/S¥® and T{** D[S+ 1 being isomorphic, the theorem is thereby
proved.

The following theorem is an immediate consequence of the previous one.

Theorem 11. If X“ and Y** are differentiable fields of k,-vectors, X, € T,(V,)
and {X{} = {Y*} for each point q € V,, we have {X , X"} = {X,Y® )},
Denote by P, the set of all bases of the space T{)(V,)[SS. It is easy to see that the

space P = |J P, has the structure of the princial fibre bundle with the base manifold V,
geVn
and the structural group GL(m). The set E = (J TH(V,)[S¢ is then the fibre
qeVn

bundle associated to P with the standard fibre R,,.
Define the mapping ¢*” : E - V, x W,, by

¢(k°){XLk°)} — (p, @;kO)X;kO)) .

This mapping is differentiable, 1-1, induces an identity mapping on ¥, and it is an
isomorphism of the fibre of E over p on ,,. The regularity of ®* follows, and there
is an inverse differentiable mapping. In W, choose a basis ¢* and consider the bases ¢},
such that the vectors of these bases are mapped by <I>fl"°) on the vectors of ¢"; these
bases g, form a section " of the principal fibre bundle P, and it is easy to see that the
tensor t, has constant components (independent on q) with respect to them.

Let G, = GL(m) be the group of all matrices g such that the mapping o* — o"g
determines an automorphism of W,, preserving the tensor ¢, G, is a Lie group, and
the just constructed section ¢ determines a reduction P, of P to the group G,.
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Denoting by Q the space of all bases of the vector space W,,, the basis ¢* determines
the reductions 4,, X Qg and V, x Q, of the bundles 4,, x Q and V, x Q resp. to
the group G,,.

The space E may be considered as the fibre bundle associated to the bundle P,
with the standard fibre R,,. According to the definition of the group G,, the tensor t,
has the same components with respect to all bases which are the elements of the
fibre bundle P,,.

Let us choose an arbitrary local section o” of the fibre bundle P, over a neighbor-
hood U < V,; let pe U. If the symbol X,'¢" denotes the m-tuple of vectors from
T(V,)[S which we get applying successively the operator X, on the vectors of 'o"
(according to Theorem 11, we may suppose that the vector X, € T, associates to each
section of the fibre bundle E a vector from T{*(V,)/S\, i.e. a point of the fibre
over p), we may write

(6) XPIQU =l¢* wxl:(Xp) 4

w)(X,) being an (m x m)-matrix.

Theorem 12. Let w), be defined by (6). Then w), is a linear gy-valued form on T,(V,).

Proof. It is clear that w}, is a linear form taking values in the vector space of all
(m x m)-matrices, and therefore it is sufficient to prove that wl(X,) € §, for each
vector X,. Let X e T*(V,) be an arbitrary k,-vector. Let us extend the vector
{X$} e T(V,)[SY to a differentiable field {X“?} on some neighborhood U in
such a way that {X{} has, with respect to the basis ¢, the same coordinates as are
those of the vector {X )} with respect to the basis ob. Now, define the homomorph-
ism h, of the space T&(V,)[S into itself by {X%'} h, = X,{X"?}. Suppose
that {; X%}, ..., {{X®} are differentiable vector fields which are the just defined
extensions of arbitrary vectors {; X4}, ..., {{ X} e TH)(¥,)[S4). According to the
definition of these vector fields, the tensor ¢, has a constant value on them, and we
have

X t({ X%, .. (X%} = 0.

Applying Theorems 9 and 11, we get

T (X i X0 XX
i= )
(e XS} L (x5 =0,
and Theorem 6 shows that the homomorphism h, defines an element 4 € g,. Because
the matrix w,(X ) gives a transformation of the basis ¢, by means of the homomorph-

ism h,, we get w)(X,) € 8,
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Theorem 13. Be given a covering {U,} of the manifold V, and a section of the
principal fibre bundle P, over each U,. The forms w' constructed to these sections
by means of (6) determine a connection on P,,.

Proof. It is sufficient to prove: Let U = V, be a neighborhood and !, 2¢° two

sections over it with 29” = 19, g € G, then we have
o’ =ad(¢g™ o' +g7'dg
for the associated forms w! and w?. Applying X to both sides of 29" = 0%g, we get
XZQU — X(lgvg)
and
XZQv — (Xlgv)g + le(Xg) ,
ZQuwZ(X) — lngl(X)g +1deg(X),
IQvg U)Z(X) — lngl(X)g + IQudg(X) .
Finally, we get
g 0*(X) = 0'(X) g + dg(X),

this being the desired equation.

Theorem 14. The curvature of the connection constructed in Theorem 13 vanishes.

Proof. For an arbitrary differentiable field of k-vectors Z® and two differentiable
vector fields X and Y, we have

X(vz®) — y(xz®) = [X, Y] z®
for each k. Thus we have
(™ X(Y'e") — Y(X'¢") = [X, Y]' ¢

for an arbitrary section !o” over some neighborhood U. Let ! be the form associated
to the section *¢”. From (7), we get successively

X('e" '(Y)) = Y('e" 0'(X)) = "¢" 0'([X, Y]),

(X'¢") !(Y) + '¢"X 0'(Y) — (Y'0") 0'(X) —
- Yo' (X) = "¢’ '([X, Y]),

10" 0'(X) 0'(Y) + '0°X 0'(Y) — '¢" 0'(Y) 0'(X) —
— 'Y 0!(X) = ¢’ 0'([X, Y])
o'(X)0'(Y) — 0'(Y) 0'(X) + X 0'(Y) — Yo'(X) — o'([X, Y]) =0,
[0!(X), @'(Y)] + 2do'(X, ¥) = 0
and Q = 0.
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6. THE EXISTENCE OF SUBMANIFOLDS IN 4, WITH A GIVEN
FUNDAMENTAL TENSOR

Suppose now that on an abstract manifold V, there is given a tensor t,; we have to
find out the conditions for the existence of a differentiable regular mapping of V,
into A4,, such that the fundamental tensor of V, induced by this mapping and the
tensor ¢t on A,, is the given tensor t,.

Suppose that the following conditions are satisfied:

I. On V,, there is given a differentiable tensor t, covariant of degree r acting at
each point peV, on the (ko + 1)-vectors from T*(V,); ko is a fixed given
number.

From I, we get the possibility of the construction of the singular spaces of t, on
Ty(V,) and T*D(V,) denoted by S and S%o* D resp.; the construction is the
same as that for the embedded manifolds. In what follows, we shall denote all
objects constructed from t, by the same symbols as those constructed in analoguous
way from the fundamental tensor of a submanifold in A,,. For a manifold V,, we may
use all theorems proved above, we have only to check if all conditions are satisfied.
Further, let us suppose:

II. For any differentiable fields of ky-vectors X%, ..., , X% and any vector
Y, € T(V,), we have

Y1 X4, L x %) =

= Y 4(XE, L X0y XG0 G y o)
i=1

L dim T(V,)[SS = dim T+ D[s%* D = m for each point pe ¥, STV A
N T(V,) = {0} for each pe V,.

Let P denote the principal fibre bundle of all bases of the spaces T*(V,)[S¢,
pevV,

IV. To each point p € V, there is a neighborhood U < V, of p and a local section "
of the fibre bundle P over U such that the components of f, with respect to the
basis ¢} are constant functions of g on U.

V. There is a point p € V, such that the vector space W,, with the given tensor ¢
is isomorphic to the space T*/S{* with the tensor t,.

Now, it is easy to prove that V is satisfied at each point g € V,. Let us choose
a fixed basis @™ of the space W,,. It follows from IV and V that the set of all bases ¢},
of T¥(V,)[S%, for all points p € V,, is identical to " (i.e., the tensor t, has at p the
same coordinates with respect to o} as the tensor ¢ with respect to ¢*) forms a reduc-
tion P, of the principal fibre bundle P to the group G. At the same time, the basis "
determines a reduction 4,, x Q, of 4,, X Q to the group G,.

Let us now investigate the set of all isomorphisms of the spaces T /S% into
T(A,,) for all couples p € V, and x € A4,,. Consider the Cartesian product C = P, X

443



x A, x Q,. The group G, operates on this space to the right by the rule
(‘eb x, '0") g = ('0;9, x, '0"9) .
The factor space C’ of C with respect to the equivalence relation given by G, is the
space of all investigated isomorphisms; more precisely, if {X$”} = 'oix, x being
an (m x 1) — matrix, the element a = ("¢}, x, '@") € C determines the isomorphism
o e C’ given by
(X5} = (x, 'e"x).

Denote by o the natural projection C — C’; we have « = o(a). The space C' may be
given the structure of a differentiable manifold.

Let us now construct a mapping V, of the space Ty, .(P,) into the space T,(C)
where a = ('0}, x, '¢”): To the vector X e Ty, .(P,), we associate the vector ¥,(X)
given by .

Yo(X) = (X, o' X), ((X)) *) ;

here, x € C’, & = o(a), w is the connection form given on P, by the tensor t,, A*® s
the vector of the fundamental vector field given on Q, by the element A4 € g,, = is the
canonical projection P, — V,. If we construct, for each point a € C, the image of the
space T,QPV(PO) in the mapping V,, we get a differentiable distribution on C. Let us
denote by n¢ or 7. the projection of C or C’ resp. into V,, the projection 7c or ¢
of a = ("¢}, x, '0”) € C or « = o(a) resp. being just the point p € V.

Lemma. To each a e C’ there is a mapping », of T,(V,), p = nc(«), into T(C')

such that
0 Y (X) = n(n'X) for a=/(lop x,"0"), Xe Tlg,,"(PO) .

Proof. a) First of all, we shall prove: Choosing two vectors X, X' € Ty,,.(Po)
such that 7'(X) = n'(X’) = X, we have o' ,(X) = o’ Y,(X’). Evidently, we may
write X' = X + A*Po 4*Po being the fundamental vector field on P, generated by
A €go. We have o(X’) = o(X) + 4 and

Vol X') = (X + A%, o X), (0(X))* % + A7) =y (X) + 4*C .

b) Second, let us prove: If b = ag, X" = R}*' X, where X = Ty,,(P,) and RP is
the differential of the right translation (i.e. R,'¢" = '¢%), a = ("o}, x, 1¢"), we have
o’ Y (X) = o’ Y(X). In fact, we have

o(a) = a(b) =, 7'(X)=n'(X")=X,
Uu(X) = (X', o X), (@(X))*) = (R7” X, o(X), (R} X))*) =
= (RIX,5(X), (ad (5™) (X)) =
= (RJ”' X, o X), R (((X))*) = RY" ,(X),

RC° and R{ being defined analogously to R}°.
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The Lemma follows easily from a) and b).

Constructing, for all « € C’, the images #,(T}, (V,)), f = nc.(), we get a differenti-
able distribution on C’, and we have ¢, %,(X) = X for each vector X € T,_,,(V,)-

Let us suppose

VI. The curvature form of the connection w generated on P, by the tensor t, is
equal to 0.

Lemma. The just constructed distribution on C' is involutive.

Proof. To each point p e V, there is a neighborhood U and a section 'g” of the
fibre bundle P, over U such that the form ’ associated to this section is equal to 0
(this follows from VI). Introduce the mapping 7 (U) > U x A4,, x Q, as follows:
if x € C’, choose a € C such that o(a) = o and a = ("¢}, x, '¢”), "¢}, being the point
of the section '¢” over pe V,; we set o — (p, x, '0”)e U x 4, x Q,. The composi-
tion of x, with the differential of this mapping gives the mapping(z, given by #,(X) =
= (X, a(X), 0) because of w'(X) = 0 for each vector X.

Further, let us write %,(X) = X + «(X); here, we denote (X, 0,0) as X and
(0, (X), 0) as a(X). To prove the involutiveness of our distribution we have to show
that, for any differentiable vector fields X, Y on U, the bracket of the images of these
vector fields (given, for each «, by the mappings %,) into the space U x 4,, x Qy is
in our distribution. Because the third component of the vectors %,(X) is equal to 0,
we may choose a fixed basis '¢”, and we may consider the distribution on the space
U x A, x {'¢"} only. To each p € U, we have thus associated a uniquely determined
isomorphism o, and we have to prove

[2(X), 2(Y)] = [X, Y] + o([X, Y]),

this being equivalent to the involutiveness of our distribution. We have

[2(X), %(Y)] = [X, Y] + [X, «¥)] + [o(X), Y] + [«(X), «(Y)] -

Evidently, [a(X), (Y)] = 0; choosing a linear coordinate system in A4,, given by the
point x, (wiere we have to calculate the relevant bracket) and expressing the
vectors {X} and {Y} in the basis '¢’, an easy calculation leads to [X, a(Y)] +
+ [(X), Y] = o[ X, Y]). QE.D.

Consider a maximal integral manifold V, of our distribution; it follows from
e #(X) = X — see [4] — that the projection 7. is a local diffcomorphism of ¥,
onto V.

To each xe C’ with « = o(a) and a = (¢}, x, '@"), associate the point x € A4,
V, and V, being locally diffeomorphic, there is, to each point p € V,, a neighborhood
U c V,and a diffeomorphism of U = V, into a component of ' (U) n ¥,. Compos-
ing this diffeomorphism with the just produced mapping of C’ into 4,, we get
a mapping ¢ such that ¢'(X,) = o(X,) for nc.(x) = p. The isomorphism « being given
by the assignment of the basis '¢} (suppose that the section '¢” determines the
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form o' = 0) to the fixed basis '¢" constant for all « € ¥, we get X' = 0 and, at
the same time, (¢'X) 'o” = 0. The mapping ¢ and the considered mapping of ¥,
into A,, is regular, and the image of V, is a manifold V, = A,, which is locally diffeo-
morphic to V,. Further, there is given a differentiable mapping of ¥, into V, transform-
ing the tensor t; induced on V, by the tensor t on W,, into the tensor ¢, defined on V.

Theorem 15. Be given differentiable manifolds V,,and V, in A,, and a differentiable
mapping ¢ : V, = V, which is onto. The necessary and sufficient condition for the
existence of an affine collineation h of the space A,, onto itself such that h(p) = ¢(p)
for each p eV, is that the manifolds have the same fundamental tensor at the
corresponding points.

Let V, be an arbitrary abstract manifold endowed by a tensor t, satisfying the
conditions 1—VI1. Then there is, in the affine space A,, a manifold V, and its
differentiable mapping on V, which is locally diffeomorphic and which transforms
the tensor ti induced on V, by the tensor structure of the affine space A,, into the
tensor ty on 'V,

Proof. Everything has been proved above or it is very easy; compare with [4].

Remark. The space 4,, being equiaffine, the condition IV may be replaced by the
assumption of the skew-symmetry of t.

The space 4,, being Euclidean, we may construct, in each space T{¥(V,), the
space N orthogonal to the space T~ (V). If we define the function g* by

GCGX s oo iX s 1Y i Y,) = 1(XP, Y),

where

- — . )
Xy X, = XPeTHO(V), 1Y, Y, - YPeT* O(V,); X0, 7PeNd
(see Theorem 5), we have g*e @**T,(V,). It is possible to prove that these tensors
together with the condition II determine the tensor t,.
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