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SOME ESTIMATES IN THE THEORY
OF NON-NEGATIVE MATRICES
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Dedicated to academician VOITECH JARNIK on the occation of his seventieth birthday
on December 22, 1967

This paper presupposes the knowledge of some results proved in [1] and [2].

We briefly recall the notions necessary in the following which have been introduced
in [1] and [2].

Denote N = {1,2,...,n} and consider the set S of all “n x n matrix units e;;”
together with a zero 0 adjoint: S = {e;; I i, j € N} U {0}. Define in S a multiplication
by

e, for j=m,

e..e., = i
N0 for j 4 m,

the zero element 0 having the usual properties of a multiplicative zero. The set S
becomes then a 0-simple semigroup.

Let A = (a;;) be a non-negative n x n matrix. By the support C, of A we shall
mean the subset of S containing 0 and all ¢;; for which a;; > 0.

The sequence of powers

(1) Cy CLCh, ...

contains only a finite number of different elements (subsets of S). Let k = k(4) = 1
be the least integer for which C appears in (1) more than once and let d = d(A) be
the least integer =1 for which C% = C%" holds. Then the sequence (1) is of the form

2 k—1 k k+d—1 k
Cur Chr s O O Ol O

and contains exactly k + d — 1 different elements. The system of sets {C%,...
..., C&¥471} forms with respect to the multiplication of subsets a cyclic group of
order d with the unit element C¢, where ¢ = o(A) is a uniquely defined multiple of d,
say td, satisfying k Sgo=twd <k +d— L
Denote S; = {0, e;, €;3, ..., €y}, so that S; U S, U...u S, = S. For a given 4
denote F; = F(A4) = S;n C,, so that F, is the “support” of the i-th row of 4.
Consider the sequence

2 F,F.C, FC2, ...
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and define F,C§ = F,. Clearly F,C} = S; n C';"! for any integer t = 0. The sequence
(2) contains again only a finite number of different elements. Denote k, = k(4) the
least integer k; such that F,C% ™" occurs in (2) more than once. Let further d; = d;(A)
be the least integer =1 such that F,C'{™! = F,C%*% ™', Then the sequence (2) is
of the form

F FCyy ..., FCY 2| FCY™Y L FCHH T2 [ FCYT, L

Clearly F,C™" = F,C~'**( = 0) holds if and only if d;[z. Since C = C%*?, we
have S; n C% = S; n C4"¥; hence F,C% ' = F,C4"*~ . Therefore k; < kandd; < d.
In [2] we have proved the following more precise result:

Lemma 1. For any non-negative n x n matrix A we have:

a) k(A) = max k(A);
i=1,.., n
b) d(A) = the least common multiple of d,, d,, ..., d,.
The main purpose of this paper is to find estimates for the number k(4), whereby
we restrict ourselves to the case of an irreducible n x n matrix.
For an irreducible matrix 4 we have proved in [1] that d is the index of imprimitivi-
ty of A4 and we always have 1 < d < n. Also A4 is irreducible if and only if

(3) ckcuckftu.. ottt =8,

Here the summands on the left are quasidisjoint, i.e. the intersection of any two of

them contains only the zero element 0. More generally: Any d consecutive powers

Cy, CY, CiF? ., CY9 1, t = 1, are quasidisjoint. This implies that for an ir-

reducible matrix A4 any d consecutive members in the sequence (2) are quasidisjoint.
If A4 is irreducible, then (3) implies

(ChknS)u..u(C¥*'ns)=5nS;,
ie.

(4) FCK U OF.Chu... UFCY 2 =,

i

It should be noted, by the way, that for an irreducible matrix 4 each member in
the sequence (2) contains at least one non-zero element € S;. (For if there were F,C}; =
= {0} for some = = 0, we would have F,C’, = {0} for all t = r, a contradiction with

(4))

The relation (4) implies |J F;C/ = S, or, which is the same,
j=0

F,UFC,u..UFC Y. UFCH* "2 =5

i

Since an irreducible matrix contains in each column at least one non-zero element,
we have S;C, = S,. Hence, multiplying the last relation by C¥~* from the right we
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get
(5) FCM ' OUFCYU...0FCHT2 =5,
Since any set on the left has at least one non-zero element and any d consecutive

members in (2) are quasidisjoint, we necessarily have d; = d. Therefore, in the case
of an irreducible matrix, d; = d. We summarize:

Lemma 2. Let A be an n X n non-negative irreducible matrix. Then:
a) d(A4) = dy(4) = ... = d,(A) = d(A);

b) FCY ' UFCY U ... UFC™ 2 =5

c) the summands on the left are quasidisjoint.

Lemma 3. If A is irreducible and there are two integers k = 1, 6 = 1 such that

FC'UFCLU...uFC 2 =5,
then 6 = d.

Proof. Suppose that 6 < d. Multiplying by a sufficiently high power C% we get
FCTM O FCEM UL U F,CYP 2" = §,C = S,

The 6 summands on the left, which are equal to some of the quasidisjoint sets
F,C™1, ..., F,C{**"2 cannot exhaust the whole set S, This proves our assertion.

For further purposes we introduce a positive integer h; associated with the “row F;”
in the following way:

By h; we shall denote the least integer >1 such that F;, = F,C%.

In [2] we have proved that 1 < h; < n.

Lemma 4. For i = 1,2,..., n, we have d/h,.
Proof. We have F,C%™! < F,ClC%~' = F,C{*" " and
S;=FC 1t U, .OFCY™M 2 c FCYPMt L U FClgtkitd-2

Hence,

c= F Oty G FClithita=2

Since the sets on the right are quasidisjoint, we have F,C% ™' = F,Ck~1*" This
proves d/h,.

Lemma 5. Let A be irreducible. If for some t = 1 we have

(6) FC'UFCL,U...UFC/ =5,
thent = k.
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Proof. As in the proof of Lemma 4 we have
FCy ' c FChCyt =FCyitm 1,
and consequently
F_Cfd—l+u - F-C54+h‘+u-1

foru =0,1,...,d — 1. This implies
S;=FCy'u...UFCM 2 cFCt ... uFCH"M2 =5,

Since the summands are quasidisjoint, we have F,C'{ ! = F,C,""~'. Hence, F,C, "
appears in the sequence (2) more than once. Since k; is the least exponent with this
property, we have t = k;, q.e.d.

We shall also need the following

Lemma 6. Let A be irreducible. If for some t = 1 we have

chucCftu..ucCciti =5
then t = k(A).
Proof. In [1] we have proved that there exists a power C%, ¢, < ¢(A4), such that
E = {e;y, €23, ..., ¢,} = C4. We have Cj = C4E < C4'%, and consequently
Citt < cirertt . Now :

S=Cyu..ucftcciru.. .vuciitta =g,

Since the d summands on the right are quasidisjoint, we have C = C'}fe, .

L CF4T = ¢4 e n particular, the first of these equalities implies k(A4) < ¢,
q.e.d.

We now give a series of theorems concerning k = k(A) all being consequences of
the following Theorem 1.

Theorem 1. If A is an n x n non-negative irreducible matrix, then
k(A) £ n — 1+ min k(A4).
" i=1,..,n

Proof. Let e;, be any element € S;. Take j #+ i and write e;, = ¢;;¢;,. By Lemma 2
in [2] we have e;; € F,C, with t = t(l j) satisfying 0 < t < n — 2. By Lemma 2 we
have (for any J)

ki—1 kj+d—2
e,€8;=F,Ci™ u...uF,CY .

Hence,
k 1 kj+d—2
S =1{0, ey, e€5,...,e,} = FiCY{F,CY~ LU FCETT <
c FC{Mu.u Finf"’“ T
Therefore
(7) S;=FCHM O FCY L FiCirant,

402



By Lemma 5 we have k; <t + k; + 1. Since j is arbitrary, we have k; S n — 2 +
+ min k; + 1. By Lemma 1 we finally obtain k(4) < n — 1 + min k;, g.e.d.

J J
In [2] we have proved: If F; contains g; non-zero elements, then k; < (n — g;)* +
+(n—g)+1=1+(n—-g)(n—g;,+1). This implies:

Theorem 2. If A is irreducible and the i-th row of A contains g; = 1 non-zero
elements, then

k(4) £ n + m?n(n —g)(n—g;,+1).

Remark. If A4 is primitive and n = 2, 4 contains at least one row with g; = 2, so
that k(4) < n + (n — 2)> + (n — 2) = n® — 2n + 2. It is known that this result is
sharp in the class of matrices with C, = {0, €;2, €23, ..+, €41 1 €n1s €42

In [2] (see Theorem 1) we have proved: If A is irreducible, then k; < (n — g;) h; +
+ 1. This implies by Theorem 1:

Theorem 3. If A is irreducible, g; and h; have the meaning introduced above, then
k(A) < n + min(n — g;) h;.

Corollary 1. If A is irreducible and if it contains a row with F; = F,C,, then A is
primitive and k(A) < 2n — 1.
This follows from h; = 1, d/h;and g; = 1.

Corollary 2. If A is irreducible and if it contains a non-zero element in the main
diagonal, then A is primitive and k(4) < 2n - 2.

Proof. The row containing e;; contains at least one other non-zero element
(since otherwise 4 would not be irreducible). Hence g; = 2. Further F, = ¢,,C, =
< F,C,, hence h;=1. Therefore d = 1, and our statement follows from Theorem 3.

Theorems 4 through 6 below give information concerning the relations between
k(A) and d(A).

It is known: If A is irreducible with index of imprimitivity d = 1, then there is
a permutation matrix P such that P~ ' AP is of the form

0 M, 0 0
0 0 M,...0

P AP = ,
0 0 0 ..My,
M,0 0 ...0

where in the diagonal there are square blocks of orders ny, n,, ..., n; such that
ny 4+ n, + ...+ n, =n. Also, A* is completely reducible into primitive matrices
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and
(8) P AP = diag (4,, A,, ..., A)),
where A; = M;M; ... M;M, ... M;_, is of order n,.
Clearly, k(P~'AP) = k(A) and d(P~'AP) = d(A).
We now prove:

Theorem 4. Let A be irreducible with the index of imprimitivity d > 1. Write
n = rd + s with the integers r, s satisfying r =2 1,0 < s <d — 1. Then

K(A) < (n?ld)y =20 +3d-5s—1, if r=2,
T s+ 1 if r=1.

Proof. Consider the matrix 4. Since it is primitive, it contains in the case n, > 2
at least one row with two non-zero elements. Hence

9) ‘_lmzin k(A,) < (ny —2)* +(ny —2)+ 1 =n}—3n, +3.
This result holds also in the case n; = 1. This implies that
__Imzin ki(P‘.lAP) <d(n} - 3n, +3).
Since the same holds for A,, A, ..., 4;, we have with respect to Theorem 1,
(10) k(A)y<sn-1+d Inzm d(nf——3nj+3).
=12,

Note for further purposes that at least one of the numbers ny, n,, ..., n, is gr.‘)
We shall consider two cases:

a) If r = 2, we have

k(A <n—1+d0r* =3r+3)=dr+s—1+dr*—3r+3)=
=dr* —2r+3)+s—1.

To get a result in terms of n we write

k(A)gd[("d‘S)z_z.";us]ﬂ_1:

n? s
=2 3d —1—=(2n —s — 3d).
y n + d( )

1) For if there were n; = r 41 for all j, we would have an =dr+ 1) >dr+s=n,
a contradiction. J
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Now

()

2(2”‘5—3d)=§[2(dr+s)—s—3d]=s(2r—3)+igs+

[¢

=%

Therefore

2
k(A)g%—2n+3d—s—1.

(This is slightly better than a corresponding result in [3].) ?)

b) Ifr =1l,ie.n=d +50=<s <d— 1,wehavefrom(10), k(4) < n — 1 + d.
This result can be strengthened. Since 4 is irreducible, we have C, U C3 U ... U C" =
= S. Now it follows from the results in [1] that the non-zero idempotents € S, i.e.
the elements of the set E = {e1 15 €225 + vy e,,,,} can be contained only in the powers
C4, C3, CY, ... Hence (in our case) we necessarily have E < C4. This implies
C,=CEcCi, CicCi?...,C %= C% hence Ch 7Yty C 20U, U
U C% = S. By Lemma 6 we have k(4) < n — d + 1 = s + 1. This completes the
proof of Theorem 4.

In the “extreme case” s = d — 1 we have k(A4) < n?|d — 2n + 2d for r = 2,
and k(4) < d for r = 1. Since d < (n — d)?/d + d = n*[d — 2n + 2d, we have
k(A) < n*|d — 2n + 2d in both cases. We next show by modifying our argument
that the same is true in the second “extreme case”, namely s = 0.

Theorem 5. If A is irreducible and d|n, then
nZ
k(A)g—d« —2n+2d.

Proof. There are two possibilities. Either all matrices 4, 4., ..., A, are of order
r= n/d, or there is at least one matrix, say 4,, such thatn; < r — 1.

A) The first case. Since Ay, ..., A, are primitive of order r, we have k(4;) <
Srr—2r+2forj=12..d and k(4) <d(r* —2r + 2)for i = 1,2,...,n.
By Lemma 1

2
k(A) = max k(4) < d(r* - 2r + 2) = %— —-2n + 2d.

B) In the second case we have to distinguish the following possibilities.

2) In the meantime the papzr [4] appeared in which even a slightly better result than our is
proved, namely k(4) <d(r® — 2r + 2) + 2s.

405



a) 2 < ny <r— 1. Then r 2 3. We have from (10):
2
k(A)gn—1+d[(r—1)2—-3(r—1)+3]=%—4n+7d—1=
n2
=7—2n+2d+(5d—-2n-—1).

Butforr > 3wehave5d —2n —1=5d —2rd -1 =(5-2r)d -1 £ —d — 1,
so that k(4) < n*ld — 2n +d — 1 < n*[d — 2n + 2d.

b) 1 =n,<r—1 Here r=2 By (10) we have k(4d) < n—1+d=
=(r+1)d -1

«) If r > 2, then (r + 1)d — 1 < d(r* — 2r + 2), so that our statement holds.

B) If r = 2 (i.e. n = 2d) our result k(4) < 3d — 1 is not sufficient for the proof
of our statement. It can be strengthened in the following way.

Since ny; = 1, we have in (8) A; = I, o (I, = the unit matrix of order 1, o is a posi-
tive number) and I« = MM, ... M,. Therefore A} = (M,;... M;M,...M,_,).
M MMy M) = (M M) LMy . M ). Now MMy ... Myl is
an n; x 1 positive matrix, since the existence of a zero row in M;M;,, ... M, would
imply the existence of a zero row in A?, contrary to the fact that A4; is primitive.
Analogously, I, MM, ... M;_; is a 1 x n; positive matrix. Hence A? is positive.
Therefore k(A) <2d for i =1,2,...,d, so that k(A) < 2d = n*|d — 2n + 2d.
This completes the proof of Theorem 5.

Remark 1. The result of Theorem 5 is sharp in the sense that to any n and d, d/n,
there exists a matrix A for which k(4) = n*/d — 2n + 2d holds. (See [3].)

Remark 2. The fact that in the two extreme cases, i.e. s =d — 1 and s = 0, we
have k(A4) < n*/d — 2n + 2d leads to the conjecture that the last inequality holds
in all cases. However, at this time I am unable to prove or disprove this conjecture.

The next Theorem 6 gives a result which in the special case d = 1 goes back to
Frobenius.

Lemma 7. Suppose that e;; € F,C4™ . Then

ki{=1’ if d=n,

<n-d, if d<n.
Proof. a) If d = n, then
(1) F,UFC,4u...UFCy ! =8,

implies (with respect to Lemma 5) k; < 1; hence k; = 1.
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b) If d < n, we have (see [2], Lemma 2)
(12) F,UFC,u...UFCy?=S5,.
Further
F;=e,Cyc FC4, FC,c FCy', .. .FCy9"2 c FCYV2,
Hence, (12) can be written in the form
FCya YU, .UFCyE=5,.

Lemma 5 implies k; < n — d, q.e.d.

Suppose now that C% contains at least one element € E = {e11, €22, -+, €,,}. Then,
ifd=n,C4qu...0C§ =S implies (by Lemma 6) k(4) = 1. If d < n we may use
Theorem 1 and Lemma 7 by which

k(Ay<n—1+mink(d)sn—-14+m—-d)y=2n—d—1.

We have proved:

Theorem 6. Let A be irreducible with the index of imprimitivity d > 1. Then
if A* contains at least one non-zero element in the main diagonal, we have k(A4) <
<2n-—-d-1.
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Pesrome

HEKOTOPBIE OLIEHKU B TEOPUU HEOTPULIATEJIBHBIX MATPUIL]
IITE®AH HIBAPILI (Stefan Schwarz), Bpa"r’ucnana

Ilycts C4 — Hocutesb HeoTpuuaTenbHoil MaTpuubl A (B cMbicie paGorsl [1]).
Mycrs CY — camas nuskas crenenb, KOTOpasi BCTPEYAETCS B MOCHIEIOBATEIBHOCTH
(1) 6osee yem ommu pas. Llesib cTaTb — [OKA3aTEJIbCTBO HEKOTOPHIX TEOPEM, Ka-
caroluxcs oueHku uncia k = k(A).
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