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4. HIGHER ORDER CONNECTIONS AND PSEUDO-CONNECTIONS
ON VECTOR BUNDLES

In this paragraph we shall deal with sequences of pseudo-connections or con-
nections of subsequent orders. These sequences may be finite or infinite. All the
results are formulated in such a way that they apply to infinite sequences, nevertheless
it will be always evident how to modify these formulations to obtain the corresponding
results for finite sequences. These evident formulations will not be given explicitly.

Definition 4.1. Let ¢ = 1 be an arbitrary integer. A non-holonomic (or semi-
holonomic) pseudo-conection of g-th order on the vector bundle E is a bundle
isomorphism

(4.1) NH?: 5%E) - TYE),
(or-accordingly
(4.2) SH?: SYE) » TYE)).

One could define quite similarly the holonomic pseudo-connections on E. However
we shall not need it in the next as we are not concerned with the holonomic case in
this paper.

We begin with the study of the relation between non-holonomic pseudo-connections
and (first order) pseudo-connections on the non-holonomic jet and tensor prolonga-
tions.

Suppose we are given a sequence {H%} (¢ = 1) of pseudo-connections

43) A3 : S(E) = $'(S"(E)) - T'(5*~'(E))
on §"Y(E) (¢ = 1,2,...), or a sequence {H%} (g = 1) of pseudo-connections

(44) 5 - SY(T*7'(E)) » TH(T"'(E)) = TY(E),
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and consider the sequence of “diagram sequences”

o HE o THHE™ v
@5 SE)-TE. ey E) DY) peaEerym) o

T4 Y(HY)

TYE); g=1,2,...,
or

S1TYHD Sk

Seri(qamk-1(E)) S SHTHE)) - .

(4.6) S%E)
i TY(E); qg=1,2,...

Both define uniquely a sequence of non-holonomic pseudo-connections on E. The
correspondence is in both cases one-to-one. In fact, (4.5) can be written recurrently as

.7 NH' = fig; NHY= T'(NH"')AY%,
which can be inverted into
(4.8) A = NH'; HY= T'(NH"')NH?.

Analogously (4.6) gives rise to the recurrent formulae

4.9) NH' = f;; NH®= H{S'(NH*'),
or
(4.10) H} = NH'; H% = NHIS'(NH'"')~!.

Thus we have got a ““one-to-one-to-one” correspondence between sequences of first
order pseudo-connections on the non-holonomic jet prolongations, first order pseudo-
connections on the non-holonomic tensor prolongations and non-holonomic pseudo-
connections (of higher orders) on E. We express this by saying that the corresponding
sequences are associated and we write briefly {H%} ~ {NH*} ~ {H%}.

Definition 4.2. A sequence {NH?} (¢ = 1) of bundle morphisms (4.1) is called
a sequence of non-holonomic connections if NH* is a connection on E and each NH?
(g > 1)is a relative connection with respect to NH?™ .

Note that we do not define a non-holonomic connection of a given higher order
itself but only sequences of non-holonomic connections. Nevertheless we shall say
sometimes that {NH?} “consists of connections™. Each sequence of non-holonomic
connections is clearly also a sequence of non-holonomic pseudo-connections.

Theorem 4.1. If {Hi} ~ {NH} ~ {H%} and one of the sequences consists of
connections, then the same is true about the other two.

Proof. First note that necessarily A} = NH! = HL are connections on E. Now
if {NH?} is a sequence of non-holonomic connections, each NH? being therefore an
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isomorphism, we can apply by virtue of (4.8) and (4.10) Proposition 3.7. If {H%}
or {H4%} consists of connections we apply analogously Proposition 3.6.

Now let h be a connection on the cotangent bundle T(M)* of M and H a connection
on E. They induce a connection on each 797 *(E) since this bundle is obtained from
T(M)* and E by “tensor product and direct sum constructions”. Since 797 '(E) =
= T7"%(E) ® T"%(E) ® T(M)*, we get a canonical sequence {H%} of connections
generated by the connections H and &, which can be defined recurrently as 3 = H
and

(4.11) Hi = A% " (@) [HY ' (®) h] =
= T'(jp) ™' S'(ITy) + T'(7*) [AY ' (®) k] S'(1T7) .

Combining this with Theorem 4.1 we get

Theorem 4.2. Each connection on E together with a connection on the tangent
bundle T(M) canonically generate a sequence of non-holonomic connections on E
and a sequence of connections on the non-holonomic jet (or accordingly tensor)
prolongations of E.

On the other hand if one tries to associate sequences of semi-holonomic pseudo-
connections on E with sequences of first order pseudo-connections on semi-holonomic
jet and tensor prolongations in a similar way, one finds the situation much more
complicated than in the non-holonomic case. In fact, it seems to be necessary to
restrict the attention to only regular sequences which will be defined below. Let us
first introduce the notion of a sequence of semi-holonomic connections on E.

Definition 4.3. A sequence {SH?} (¢ = 1) of bundle morphisms (4.2) is called
a sequence of semi-holonomic connections on E if SH' is a connection on E and
each SH? (q > 1) satisfies

4.12) 1% SHY = SHT™ 1%
and
(4.13) ' SH‘*]Ke,ﬁqs =1I7.

Lemma 4.1. Each sequence of semi-holonomic connections on E is automatically
a sequence of semi-holonomic pseudo-connections.

Proof. We need to show that each SH? is an isomorphism. Since this is clearly
true about SH', we can proceed by induction. Thus suppose SH?~ ! is an isomorphism
and let SH?’X = 0. From (4.12) we get SH* '[T{X = 0= X e Ker IT¢ and thus
from (4.13) we conclude X = 0.

Note that we again do not define a semi-holonomic connection of a given higher
order itself, although we shall also say sometimes that {SH?} “consists of connections”
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Nevertheless, if an SH? appears in a sequence of semi-holonomic connections, then
by virtue of (4.12), (4.13) we can write

(4.14) SHY = SH* '[T? + ZH*

q
where ZH? : SYE) » E ® (® T(M)*) and ZH*|x g4, = I§. Thus ZH? gives rise to
a splitting of the exact sequence

(4.15) 0 - E® (®T(M)¥) » SUE) - 57 1(E) - 0

and hence ZH? corresponds to a semi-holonomic connection C? of g-th order on E
in the sense of [3].

In spite of this we shall not separate the “superfluous” part SHY™ 174 from SHY
and thus, as a matter of fact, consider only sequences of semi-holonomic connections
as introduced in Definition 4.3. The main reason for this is to retain the possibility of
comparing semi-holonomic connections with non-holonomic ones, where there is
no decomposition analogous to (4.14), since Ker T4 is not canonically isomorphic
to a “tensor bundle”.

Let {H%} (¢ = 1) be a sequence of pseudo-connections
(4.16) H%:S' (S5 Y(E)) » TY(S**(E))

on S"YE), (9 =1,2,...). We would like to associate with the sequence {HZ}
a sequence {SH?} of semi-holonomic pseudo-connections in a similar way as (4.5)
does it in the non-holonomic case. It is quite natural to define SH* = H}. Suppose
SH* are given for k = 1....,q — 1 and consider the “semi-holonomic analogue”
of (4.7)

SHY = T'(SH*™ ') H}.

This relation defines SH? : S'(S*"*(E)) — T*(T*"!(E)) and it may be quite natural
to connect with SH? a semi-holonomic pseudo-connection SH? subject to i{SH? =
= SHY. These heuristic considerations (c.f. also the “local” formula (2.61)) suggest
the following

Definition 4.4. We say that the sequence {HE}, (¢ = 1) of pseudo-connections
(4.16) is associated with the sequence {SH?}, (¢ = 1) of semi-holonomic pseudo-
connections (4.2) (and conversely) if SH* = Hg and

(4.17) i¥SHY = T'(SH*" ') H&i%

for each g > 1.
As already mentioned, in order to get — in some way — reasonable recults, we are
compelled to restrict ourselves to regular sequences. They shall be defined next.
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Definition 4.5. Call a sequence {SH?} of semi-holonomic pseudo-connections (4.2)
regular if there exists a sequence {477}, (q = 1) of automorphisms A2~* : 577 (E) -
— §771(E) such that

(4.18) %SHT = SHT™ 147 '[1% .

Here we have put for convenience SH® = 1.
Note that (4.18) is equivalent to

(@.19) T(SHY™ = (SHY)™ (B0) 7 1T
where {B?7'}, (¢ = 1) is given by
(4.20) SHY 14171 = BI~I1SHI~ 1

If {SHY} is a sequence of semi-holonomic connections, then it is clearly regular

with 477! and B?~! being identities.

Lemma 4.2. Let {SH?} be a regular sequence of semi-holonomic pseudo-
connections. Then for each g = 1

(4.21) (Q9)~! = O IY(SHY) ™ j§*
q

is an automorphism of E @ (Q T(M)*) satisfying

(4.22) I8~ jQ) ™ = (SH) ™' jf,

and if {SH?} is a sequence of semi-holonomic connections, then {Q?} is a sequence
of identities.

Proof. It suffices to prove that (4.21) is an injection. Thus let (Q?)~* X = 0.
Then TI$*T4(SHY) ™! j4*X = 0and also IT4I{(SH) ™! j%*X = Osince Im I = Ker IT%.
Thus I4(SH?) ™! j4*X = 0 and since the mappings here are all injections, we conclude
that X = 0 and consequently (Q9) ! is an injection. On the other hand
(I)~1 j3H(00)~F = (I9)™* G IS + 3778 I3(SH) ™ j#* = (SH)™* j3* and this
proves (4.22). If {SHY} is a sequence of connections, then (SH?)™! j4&* = (I§)~! j5*
and thus (Q7) ! is the identity.

Definition 4.6. Call a sequence {H$} of pseudo-connections (4.16) regular if there
exists a sequence {427} of automorphisms A?™* : 597 }(E) — 5?7 !(E) such that

(4.23) I HLY = AT71T%
and
(4.24) TY(AT ) HE ' iETY = HGEATmgt

hold for each g = 1.
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Note that, in distinction to the semi-holonomic connections of higher orders, not
each sequence {H%} of connections is necessarily a regular sequence. However, one
easily observes using (2.57) that if {H%} consists of connections, then the only con-
dition for regularity to be satisfied is

(4.25) T B it = HiS'(Img) it™
for each g = 1. In particular a sequence {H%} of connections is regular if each pair

H*', HE (¢ = 1) induces the same R-connection with respect to the projection IT%.

Theorem 4.3. Let {H%} be a regular sequence of pseudo-connections (4.16). Then
there exists exactly one sequence {SH?} of semi-holonomic pseudo-connections (4.2)
associated with {H%}. This sequence is regular admitting the same automorphisms
A%"1 as the sequence {HE}.

Proof. The unicity of {SH?} is evident from (4.17) and we need to prove only the
existence and the regularity of {SH?}. We shall proceed by induction.

Suppose again SH® = 1and put SH = H. Then (4.17) is satisfied also for ¢ = 1.
Consider now the relation

(4.26) SHIAYIL " = T'(i5 ") T'(1I%) T'(SHY) HE st

If ¢ = 1 we have on the left hand side of (4.26) HiA'iZ. Observing iy, i}, i are
identities we see that the rlght hand side in (4.26) can be given the form T'(IT Hj) .

CHi = TY(A°M) H2i3' = H3A'T;. Here we have used (4.23) and (4.24) with
g = 1. Thus (4.26) holds for g = 1.

Suppose now that (4.26) holds for ¢ = k — 1 = 1. We shall show that (4.17)
defines for ¢ = k an SH* and that (4.26) holds for g = k. According to (2.63) in
order to prove that (4.17) defines an SH" it suffices to show

(4.27) T4 %) TV(SH 1Y) Hyis = 1% ', T'(SH*™ ') Hyiy .
But we have by virtue of (4.26) (with ¢ = k — 1)
T ?) T ) T'(SH*Y) Hiiy' = iy ' SH* ™' A* "I,
and using (4.23), (2.14) and (2.53) with ¢ = k we have also
iU TY(SHY ) HEY = % 'SHY 1A* ' T% .
Hence (4.27) holds and this means that SH* is well defined and satisfies
(4.28) iy SH* = T'(SH*™') HEi .
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Now we have to prove (4.26) for g = k. From (4.26) written with g = k — 1

k+1-k+1’

applying T* and “multiplying” by Hs" 'is™ " we get
(4.29) T'(i7" ") T'(SH*™') T'(A*~'mg) Hs " 'is™ =
= TT'(% ) T'(I% ") TY(SH* ') Hiis | Hy 'ig™".
The left hand side of (4.29) can be transformed, using (4.24) with ¢ = k, (4.28) and
(2.62), into
T'(i7" ") T'(SH*™ ') Hyig AMIs ™ = T'(i% ") iy SH*AMIS ™ = ipSHYAMIS™

which is one side of the formula to be proved. The right hand side in (4.29) transforms
by virtue of (4.28), (2.64) and (2.62) into

THT'(5 %) T (% Y) i SHY) By st = T'( Iy SHY) Hs st

which proves entirely the formula (4.26) for g = k.

Now after having proved the existence of {SH?} we need to show that it is regular.
Clearly IT;SH* = A°ITg since SH* = Hg. Thus let ¢ > 1 and apply T'(I14?) to
(4.17). Using again (2.64) we get

4 VII4SHY = TY (114 'SH™ 1) Hiif

and from (4.26) with ¢ — 1 substituted for g, observing that i} ' = T'(i% %) i% Y,
we finally get
iV IgSHY = 157 VSHYT AT I,

which is (4.18) since i3 !" is an injection. This completes the proof.

Corollary. If {H3} is a sequence of connections then {SH?} given by this theorem
is a sequence of semi-holonomic connections.

Proof. First note that if we write (2.73) in the form j1*(i3~ ' j%* ® 1) = T'(i% 1)
L1275, (g > 1) and use (2.68), we get

(4.30) IOt e ) =15y,
Further (2.66) yields for each X e Ker IT%
(4.31) ITYI YY) g X = (I3 X.

Now since in this case all the 497! are identities, (4.12) holds and SH'! = Hy is
a connection. Thus it suffices to show (4.13) for each g > 1, or equivalently

(4.32) (SHY)™! j&¥ = (Ig)~* j&*.
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This holds clearly for ¢ = 1 and thus supposing that
(4.33) (SHH) ™™ =1y )y
holds, we shall prove (4.32). Writing (4.17) in the equivalent form
(4.34) iE(SHY)™ = (H)™' T'(SH*" )1
we have, using subsequently the relations (4.34), (4.30), (2.68), (4.33), (3.10), again
(2.68), (4.30) and finally (4.31),
iL(SHY) ™ j&* = (HY) ' TY(SHT™ ) ' i} j&¥ =
= (HY I (SHTH) T @ ) = (L) @) e (F e 1) =
= (L)™' T'(Ie™ )™ iy 5" = i (I0) g

But since i is an injection, this proves the corollary.

Theorem 4.4. Let {SH?} be a regular sequence of semi-holonomic pseudo-

connections (4.2). Then all the sequences {HZ} of pseudo-connections (4.16) associat-
ed with {SH?} are regular admitting the same automorphisms A~ as {SH?}.

Proof. Letg = 1. From
(4.35) i¥SH? = T'(SH"™') HYY ,
(4.36) 9P USHTTY = TY(SHY) Hi gt
we get applying T"(IT%) to (4.36) and using the regularity of {SH?}, (2.64) and (4.35)
Tl(ﬁqr) ilp-l'SHq+1 — Tl(l_]%—SHq) Hg+1iqs+1’ s
from there
i SHIATIE " = TY(SHY A" '1g) B gt
and finally
T'(SH"™ ') HG§ Al = TY(SH'™ ') T!(A* 'g) HE g™

which proves (4.24). On the other hand applying IT; to (4.35) we get again from the
regularity of {SH?} and (2.53)

I5SHY = SHY [T HiiZ
or
SHe™ 149~ [I} = SHY T H4Y

which is (4.23) and this completes the proof.

Corollary. If the sequences {H&} and {SH"} are mutually associated and one of
them isregular, then the same is true about the other with the same automor phisms
A7 (g z 1)
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Remark 6. Using direct calculations with coordinate expressions it could be shown
that if {HZ} are connections, then — at least in the case of a finite sequence Hyg,
H} — the condition (4.25) is also necessary for the existence of an associated sequence
{SH?}. Thus our restriction to only regular sequences does not seem to be essential.

We have seen that the regularity of {H{} guarantees the existence of an associated
sequence {SHY} uniquely. Our next task will be to solve the inverse problem, i.e. given
a regular sequence {SH’} find a sequence {H%} associated with {SH1}.

First note that if {H$} is associated with {SH”} then another sequence {H%} is
associated with the same {SH?} if and only if H%i% = H%iZ for each ¢ = 1. Con-
sequently we cannot expect unicity in the inverse problem. In particular, if {H{} is
associated with a sequence {SHY} of semi-holonomic connections, it need not consist
of connections itself. Nevertheless in the following theorem we shall construct to each
regular sequence {SHY} a special regular sequence {H¢} associated with {SH?},
which will consist of connections if {SH’} is a sequence of semi-holonomic con-
nections.

Theorem 4.5. Let {SH?} be a regular sequence of semi-holonomic pseudo-
connections (4.2). Then there exists a regular sequence {H%} of pseudo-connections
(4.16) associated with {SH%}. This sequence consists of connections if {SH} is
a sequence of semi-holonomic connections.

Proof. We shall prove the existence by direct construction. First define for each
qg>1

(4.37) =45+ (e e N(e)T (I e 1),
where Q4 (g = 1) are defined in Lemma 4.2 (c.f. (4.21)). We have
R2:TYE) ® T(M)* > T Y(E) ® T(M)*

and it is an automorphism. In fact, if R%X = 0 we conclude, applying (115" ' ® 1)
to (4.37), that (IT% ' ® 1) X = 0. Using again RX = 0 and observing that
(%0 @ 1)(Q9) ! is an injection, we get (% '* ® 1) X = 0 and hence
X = 0. Consequently R?is an automorphism.

Define now H = SH' and if ¢ > 1 put

(4.38) (H9)~ Y= Q0 + Q05 + Q117

where

0
!

= i{(SH)™! j4SH*™*
—Io ' TY(SHY 1)~ jy*RUTGiy j%SH ™!
Q= Ig'TY(SHT ) ' ji*RY(SH™ ' ® 1).
We must verify (4.34). We have
(4.39) QITETH(SH™ )™ #4114 + QI T (SH™) ™" ig = 0.

Q
(5]
It
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In fact, we get from (2.14), (2.62) and (2.67)
— QI T (SH™ )™ iy =
=I5 ' TY(SH 1)~ jL*RUTEi474.SHI T, T (SHO ™ 1)~ 1
=I5 T (SH*™ ')~ jI*RUTi%j401% =
= QIIFT(SH*™ ')~ if j4.1% .
This proves (4.39). On the other hand we have from (2.67), (4.34), (2.68)
QUIFTY(SH™ ) Vil j9II5* = Q3((SHT ) ' @ 1) (j4 " @ 1) 1% =
= I T (SH )™ (s I @ 1) +
+ Tt e D) IF T ® D) (T @ NI =
=I5 ITI(SHq 1) 1 I*(Jq 1*Qq—1 ® 1) (Qq)—l ﬁq* —
_ I ITI[(SHq 1) q I*Qq 1]]1*(Qq) Hq*
But this can be further transformed by virtue of (4.22), (2.68), (4.30) and (4.31), into
ITI(Iq 1) 1 I*I(Jq 1% ® 1) (Qq)-—l ﬁ%‘* —

= 1T QYT I = () QN T
Using now again (4.22) we obtain
(4.40) QIITT(SH™Y) ™1 i j& 5 = 14 (SHY) ™! j&' 1% .
Finally we have from (2.14) and (2.53)
(4.41) QIT, T (SH™ )™ if = i(SHY) ™! j4
Adding the relations (4.39), (4.40), (4.41) we obtain the required result

[QIT; + QI + Q7] T'(SHT™ )1 if = iZ(SHY)™*.

It remains to show that HY is really deﬁned by (4.38), i.e. that (4. 38) is an isomor-
phism. But this is almost evident. If (H%) ™! X = 0 then ITg(H%) ™' X = 0 and this
implies IT;X = 0, since [I;Q; =132, = 0 and II3Q, = 1. Thus we get again from
(HY)™* X = 0 that Q;IT3X = 0 and since 2; consists of injections only, we conclude
that IT¥X = 0 and hence X = 0. Thus (4.38) is an injection and consequently it
defines a pseudo-connection.

Suppose now that {SH?} is a sequence of connections. If ¢ = 1 the proof is evident
and for g > 1 applying IT5 to (4.38), as we have already seen, we get ITg(HE) ™! = II;.
On the other hand we see immediately that (H%)™!j;* = Q,. But if {SHY} is
a sequence of connections then each Q% and also each RY are identities and we see
that in this case Q; = I, !j+*. This completes the proof of Theorem 4.5.
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Now we shall associate with sequences {SH?} of semi-holonomic pseudo-con-
nections sequences {H%}, (¢ = 1) of pseudo-connections

(4.42) H% . SY(T*Y(E)) » TV(T* (E)).

Analogous considerations as in the case of pseudo-connections on jet prolongations
lead to

Definition 4.7. We say that the sequence {H%}, (¢ = 1) of pseudo-connections
(4.42) is associated with the sequence {SH?}, (¢ = 1) of semi-holonomic pseudo-
connections (4.2) (and conversely), if SH! = Hy and

(4.43) WSH? = HYS'(SH™ 1) iy

for g > 1.

On the other hand each sequence {SH?} of semi-holonomic pseudo-connections
defines a on-to-one correspondence between all the sequences {H%} of pseudo-
connections (4.16) and all the sequences {H%} of pseudo-connections (4.42).
A sequence {H%} corresponds to {H%}, and conversely, if each HZ induces the same
R-pseudo-connection as H% with respect to SH?™ 1, i.e. for each ¢ > 1,

(4.44) T'(SH'" ') H: = H4S'(SH*™1).

We shall say briefly that {H%} corresponds to {H%} (and conversely) by means of
{SHT}. Note that we put SH® = 1 and therefore (4.44) implies H§ = Hj. We have
then the evident

Theorem 4.6. Let {H%} correspond to {H%} by means of {SH?}. Then {HE} is
associated with {SH?} if and only if {H%} is associated with {SH1}.

Definition 4.8. Call a sequence {H%} of pseudo-connections (4.42) regular if there
exists a sequence {B?"'}, (¢ = 1) of automorphisms B*~': T4 '(E) » T¢"'(E)
such that

(4.45) ()~ i = (1) 1Ty
and ‘
(4d0)  SU(BTNTUME) (HET) TN = (HDTH (BT TS

hold for each g = 1.
Again, not each sequence { H%} consisting of connections is regular, however if {H%}
consists of connections, then its regularity is guaranteed by the condition

(4.47) Sy (HY )™ i = (AD T T T

which is fulfilled especially if each pair H4 !, HY, (¢ = 1) induce the same R-con-
nection with respect to IT%.
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Theorem 4.7. Let the sequence {H%} correspond to the sequence {H%} by means
of {SH%}. Then {H%} consists of connections if and only if {H%} consists of con-
nections.

This theorem is an immediate consequence of Propositions 3.6 and 3.7.

Theorem 4.8. (c.f. Theorem 4.3). Let {H%} be a regular sequence of pseudo-
connections (4.42). Then there exists exactly one sequence {SH"} of semi-holonomic
pseudo-connections (4.2) associated with {H%}. This sequence {SH?} is regular
admitting the same automorphisms B*~' in (4.19) as the sequence {H%}.

Proof. First transform the relation (4.43) into the equivalent form
(4.48) i$(SH)™! = SYSHT™ )~ (H%) iy .

A comparison with (4.17) shows that the proof can be made in a similar manner as
that employed to prove Theorem 4.3. Therefore we give only an outline of it.

First note that (4.43) or (4.48) holds for g = 1 if we put SH! = Hy and also
(4.49) YSHY™ ' (BY)' g = S'(iE7Y) SY(TTd) S'(SHY) ™ (AT ity
holds for ¢ = 1. Suppose now that (4.48) and (4.49) hold for ¢ = k — 1 and we shall
prove them for ¢ = k. We must again verify (c.f. (2.54))
ST S (SHA ) () =
=iy "TSY(SH* )~ (HY) "'k .
But both the sides here can be brought to the form 7§ '(SH*"1)~1 (B*~*)~! IT} and
thus SH* is well defined.
Now applying S* to (4.49) with ¢ = k — 1 and “multiplying” this by (H%"*)~* 5"
we get
Sl(ig—l) Sl(SHk—l)—l Sl(Bk—l)—l Sl(ﬁl}) (ﬁl;‘- 1)-—1 i’;~+1, —
= SIS I (SH ) () B ()
and from there
SY) SY(SHA) () () T =
= S[S'(%%) S*(ms ) i (SHY T (HE )T,
and further
i§(SHY)™* (BY) ™ T = S*(i71)S'(s) S'(SHY) ™ (HEH )~ i)
This proves the existence of {SH?}. Applying S'(TT4™") to (4.48) we get
iqg—]’ﬁg(SHq)—l - -g—l' (SHq—l)—l (Bq—l)—-l ﬁ%,

and this completes the proof.
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Corollary. If {H%} is a sequence of connections, then {SH?} given in this theorem
is a sequence of semi-holonomic connections.

Proof. In fact, denoting by {HZ} the sequence corresponding to {H%} by means
of {SH?}, then according to Theorem 4.7, {H%} consists of connections and according
to Theorem 4.6, {H%} is associated with {SH?}. From there and the Corollary of
Theorem 4.3 we conclude that {SH?} is a sequence of semi-holonomic connections.

Theorem 4.9. Let {SH?} be a regular sequence of semi-holonomic pseudo-con-
nections (4.2). Then all the sequences {H%} of pseudo-connections (4.42) associated
with {SH?} are regular admitting the same automorphisms B~ as {SH?} in (4.19).

We omit the proof since it is quite analogous to that of Theorem 4.4. We have
also the

Corollary. If the sequences {H%} and {SH?} are mutually associated and one of
them is regular, then the same is true about the other with the same automorphisms
Bq'ls (q g 1)'

The corresponding inverse problem in the “tensor case” is de facto already solved.
We have namely

Theorem 4.10. Let {SH'} be a regular sequence of semi-holonomic pseudo-
connections (4.2). Then there exists a regular sequence {H%} of pseudo-connections
(4.42) associated with {SH%}.This sequence consists of connections if {SH?} is
a sequence of semi-holonomic connections.

Proof. It suffices to take for {H%} the sequence corresponding to the special
sequence {HZ} by means of {SH?}, where {H{} has been defined in Theorem 4.5.

Given a connection H on E together with a connection & on the cotangent bundle
T(M)*, we have again a canonical sequence {H%} generated by the pair H, h. In

pr— p— -Ql .
fact, since T""Y(E) = T" (E)® E® (q® T(M)*) we have for this sequence the
recurrent formula H}. = H and

R _ -1
(4.50) HY = B (@) H (@) [(®) h] =
— Tl(j%_l) H_%-_l Sl(ﬁqT—l) + Tl(j%-_l*) ﬁ%—l SI(I—TIT—I*),

where we write briefly

(4.51) Ayt = H(@®)[(®)h].

Theorem 4.11. The canonical sequence {H%} generated by an arbitrary connec-
tion H on E and an arbitrary connection h on T(M)* is regular.
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Proof. Since {H%} consists of connections it suffices to show that H% !, HY,
(g > 1) induce the same R-connection with respect to 1% *. But applying T*(I14"")
to (4.50) we get

TN By = By SNIIEY) + 0,
and this completes the proof.

Combining again this result with the preceding we have

Theorem 4.12. Each connection on E together with a connection on the tangent
bundle T(M) canonically generate a sequence of semi-holonomic connections of
higher orders on E and sequences of connections on the semi-holonomic jet and
semi-holonomic tensor prolongations of E.

Proof. The canonical sequence {H%} has been just defined, the canonical sequence
{SH?} being then given by Theorem 4.8 and its corollary. But there are a priori two
ways in defining the canonical sequence {HZ}. It is either the sequence corresponding
to {H%) by means of {SH?}, or the special sequence defined in Theorem 4.5 associated
with {SH?}. However we shall prove later the following lemma which states that
there is de facto no difference between these two possibilities of defining th> canonical
sequence {HZ}.

Lemma 4.3. Let {SH?} and {H%} be two canonical sequences generated by a pair H
and h of connections on E and T(M)* respectively. Then the sequence {H%} construct-
ed from {SH?} according to Theorem 4.5 coincides with that corresponding to {H%}
by means of {SH?}.

Now we are passing to the problem of reducibility of non-holonomic pseudo-

connections to semi-holonomic ones.

Definition 4.9. A non-holonomic pseudo-connection NHY, (g = 1) is said to be
reducible to the semi-holonomic pseudo-connection SH? if the diagram

Sm) " T(E)
7§ it
s(E)— . T(E)
is commutative, i.e. if
(4.52) i1SH? = NH .

Note that NH? is reducible to one SH? at the most.
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Definition 4.10. A pseudo-connection A% given in (4.3) (accordingly a pseudo-
connection H% given in (4.4)) is said to be reducible to a pseudo-connection H%
in (4.16), (accordingly to a pseudo-connection HY in (4.42)) if A and H% induce the
same R-pseudo-connection with respect to i~ ! (accordingly if % and H% induce
the same R-pseudo-connection with respect to 1%~ 1), i.e. if

(4.53) Ags'() = T'68 ) HE,
(accordingly if
(4.54) A S'(i5Y) = T'(i4" ') HY) .
Note again that A% and A% are reducible at the most to one H% and H% respectively.
Similarly one could define the reduction of SH? or H% or H% to a holonomic pseudo-
connection or a pseudo-connection on holonomic jet or tensor prolongations of E.

However we do not bring these definitions explicitly since we are not concerned with
the “holonomic case” in this paper (but c.f. [3]).

Theorem 4.13. Let HZ (or H%) be a connection which is reducible to H (or to H%).
Then HE (or HY) is also a connection.

Proof. Applying IT; to (4.53) we get by virtue of (2.13) and (2.57)
ITs Sl(ig_l) = iqs_lnrﬁfé >
ie.
4T = 1T
and thus IT; HZ = IT; since i4~ ' is an injection. On the other hand (4.53) implies
| S (Y = (B T
and hence from (2.68) and (2.65)
S ()5 = (1)1 0 1) -
4 =1I;! T‘(i"s Nirt =S Ig!
and this completes the proof since S*(i{~!) is an injection. A similar argument applies

to the case with A%, H%.

We shall say that the sequence {NH9} or {4} or {f%} is reducible to a sequence
{SH?} or {H%} or {H%} if (4.52) or (4.53) or (4.54) respectively hold for each g = 1.
We have just proved that if {{%} or {4} consist of connections and they are reducible
to {H%} or {H%} respectively, then these sequences also consist of connections.

Theorem 4.14. Let {NH?} be a sequence of non-holonomic connections which is
reducible to a sequence {SH?}. Then {SH} is a sequence of semi-holonomic con-
nections.
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Proof. We have for each ¢ > 1, I[T;NH? = NH?" [T and
(4.55) (NHY)™j3* =I5 TY(NH )7 jp.
Hence applying IT; to (4.52) and using Lemma 2.3 we get first
NH L% = Ii%SHY, NHY™ Y% 1% = 1% ' [14SHY,
i9T'SHIT T = 1% ' TI4SH

and this is (4.12). In order to prove (4.13), i.e. (4.32), note that (4.32) clearly holds
for g = 1. Thus suppose that it holds for some g — 1 = 1, i.e.

(4.56) (SH) 7 = (1)
Further from (4.52) we get
iYSHY) ' j&* = (NHY) ™ i4j%F .
But using subsequently (2.73), (4.55), (4.52), (4.56), (4.30), (2.65), (4.31) we have

(NH)™ i j5* = (NHY) ' G i e 1) =
=1 T(NHY) ™ T'(if 1)TI(J" ™irt =
=1 T'(i§" ) T'(SH )™ T'(j§ 1) ir* =
= I T TS G @ ) =
= SIG I TS T i = ) g

and from there we conclude (4.32), which completes the proof.

Theorem 4.15a. Let {H} ~ {NH"} ~ {H%} and suppose {H%} is reducible to
a sequence {H$} associated with {SH}. Then {NH"} is reducible to {SH?} and {H%}
is reducible to the sequence {H%} corresponding to {H%} by means of {SH%}.

Theorem 4.15b. Let {H2} ~ {NH} ~ {H%} and suppose that {H%} is reducible to
a sequence {H%} associated with {SH?}. Then {NH?} is reducible to {SH*} and {H%}
is reducible to the sequence {H%} corresponding to {H%} by means of {SH?}.

Proof. Both the theorems are similar and so we give the proof of only the first.
We have SH' = NH!. In general suppose

(4.57) i9"'SH™' = NH* 'ii™!
and prove (4.52). From (4.53) using (2.53) we get

(4.58) TY(i% ') Hiig = ALS'(it™Y) i = AL,
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Now applying subsequently (2.53), (4.57), (4.58) and (4.7) to (4.17), we get
i9SHY = T'(i{" 'SH™ ') Hiif =
= TY(NH ") T'(i4™ ") Héig = TY(NH™ ) Afif = NHiE

and this proves the reducibility of {NH?} to {SH?}.
Further applying the functors S* and T* to (4.57) we get

(4.59) S S'(SH™Y) = SY(NHY) S'(igTY) ,
(4.60) T'(i4 ) TY(SHY™Y) = TY(NH ) T'(it™ 1)
and from (4.7)
(4.61) NHYS'(i¢™!) S'(SH ™')™ = TY(NH*™') AL S'(i¢™") S'(SH*™")™* .
But the left hand side of (4.61) can be transformed by (4.59) and (4.10) into

NHYSY(NH ')t SY(is™ 1) = HL S'(i%7 1) .
The right hand side of (4.61) goes by (4.53), (4.60) and (4.44) into

T'(NH* ') T'(i4™") HE S'(SH*™')™" =
= T'(i$"") T'(SH* ') H{ S'(SH*™Y)™' = T'(i%" ') HY. .

Hence the sequence {H%} is reducible to {H%} and this completes the proof.

Note that by virtue of Theorem 4.6 the sequence {H%} given in Theorem 4.15a
(accordingly the sequence {H{} given in Theorem 4.15b) is associated with {SH?}.
Further from Theorems 4.3 and 4.8 we deduce the

Corollary. Let {H%} ~ {NH} ~ {H%}. If {HZ} or {H%} is reducible to a regular
sequence {H%} or {H%} respectively, then {NH?} is reducible to a regular sequence
{SH).

Theorem 4.16. Let {H%} ~ {NH} ~ {H%} and let {NH"} be a sequence of non-
holonomic connections reducible to a sequence {SH?} of semi-holonomic pseudo-
connections. Then {HE} and {4} are reducible to regular sequence {H%} and {H%}
consisting of connections.

Proof. First note that {SH?} is necessarily a sequence of semi-holonomic con-
nections (see Theorem 4.14) and hence it is regular. Our task is to prove the relation
(4.53), i.e.

(4.62) S (H)™ = (AP~ T

for some sequence {HZ}. In fact, we shall show that namely the special sequence
associated with {SH?} defined in Theorem 4.5, i.e. (4.38), satisfies this relation. Note
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that in our case this {H%} consists of connections. First it is evident, that (4.62)
holds for ¢ = 1, since Hy = SH' = NH! = H}. Thus suppose g > 1. By virtue of
(4.8) and (4.52) or (4.57) we have

(AY~' T(I™") = (NH) ™! T'(NH*) T'(7Y) =
= (NHY)™* T'(i4" ") T'(SH*™Y).
This means that (4.62) with (4.38) goes into the equivalent relation
(4.63)  S'(EY QT TY(SH™ )™t + S'(id™ ") Q01 TY(SHT H)™! +
+ S'(#7) I TI(SH'™) ™! = (NHY)™! T'(3577)

and our next task is to prove it.
First we shall show that

(4.64) S'(i™ Y @1, TY(SHT™ )™t +
+ S'(i& ") QoI TH(SHY™ ') ™! = (NHY) ™" j I, T'(157Y) .

In fact, we have from (2.53) and (4.52)
(4.65) S~ QI TY(SHT )™t =

= Iy(SH")™" jilly = (NH*) ™' i{jill, .
But since, according to Lemma 2.3,

it = (rllr + j7"07) 1975 = jrit™" + jr'T7igjg

and {NH?} is a sequence of connections, i.e.
(4.66) (NH)™ jr* = Ig P TNH) ™ jr*,

we transform the right hand side of (4.65) by the relations (2.14), (4.66), (2.62),
(2.67), (2.68), (4.57) and (2.65) into

(NHY)™! jpll T'(i57") + Lo ' THNHTY) ™! jp TG =
= (NHY) ™' j I, T'E47Y) + 19 TI((NHYY) ™1 i) jLN s 40T, =
= (NH)™ ' jpll; T'(i57") + S'(87 ) I T'(SHT™ )™t j*Ifit j3IT ;.

Noticing that — since {SH?} is a sequence of connections — R? = 1, we establish
(4.64). On the other hand we get applying (2.65), (4.57), (2.67), (2.68) and (4.66)

SYiE N QI TY(SH ) ! =
= I TANH )T T ) = (NHO) TP T ()
and adding this result to (4.64) we get finally (4.63).
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Thus we have seen that the sequence of connections {H%} is reducible to the
sequence {HZ} of Theorem 4.5. But from Theorem 4.15a we conclude that the
sequence {H%} is reducible to the sequence {H%} corresponding to {HZ} by means
of {SHY}, i.e. to the special sequence given in Theorem 4.10. Observing that both
{H%} and {H%} are sequences of connections, we complete the proof.

Lemma 4.4. Let {H%} ~ {NH} ~ {H4} and let {H%} be a sequence of connections
reducible to a sequence {H%} (and thus {NH?} reducible to the corresponding
sequence {SH?}). Then the sequence {H%} connected with {SH} by means of
Theorem 4.5 coincides with the sequence corresponding to {H%} by means of {SH?}.

Proof. We easily conclude that all the sequences in view are sequences of con-
nections. By Theorem 4.16 the sequence {H%} is reducible to the sequence {H%}
obtained from {SH?} by means of Theorem 4.5. On the other hand Theorem 14b
states that {1} is reducible to the sequence corresponding to {H%} by means of
{SHT}. Noticing that {H{} is reducible at the most to one sequence {H%}, we establish
the lemma.

Up from now to the end of the paper suppose that we are given fixed connections H
and h on E and the cotangent bundle T(M)* respectively. Our purpose is to show
that the canonical sequence {f%} defined in (4.11) is reducible to the canonical
sequence {H%} defined in (4.50).

Lemma 4.5. Let g > 1. Then the canonical connections satisfy
(4.67) [H{ ' (®) h] S (I3 Y) = T35 ") HY.,
ie. H" '(®) h and H% induce the same R-connection with respect to IT3i% .
Proof. We shall proceed by induction. If g = 2 then (4.67) becomes
| [H (®) K] 513) = T(T5) .
which follows immediately from (4.50). Thus let ¢ = 3 and suppose
68 [y (®)H] S Y) = Tr ) By
Applying Lemma 3.4 to the “direct sum™ H4™! = H% ? (@) H% ? and noticing from
(4.51) that A3 (®) h = A" we get
H7 (@) h =TG5 @ ) (H* (@) h) S'(IF* @ 1) +
+ TI(j5* @ ) AY ' ST * @ 1).
From this relation we get using succeedingly (2.67), (2.64), (2.74), (2.75), (4.68) and

(2.69) B
[Hy ' (®) h] S'(T7) S'(i5 ') = .

= T3 @ 1) (A2 (®) ) S'(ITS) §'(15 ) S'(AF") +
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+ T T TG ) A S =
=T'(j§ 2 @ 1) T'(Ip) T'(% ) By s'(g ) +
+ T T T ) A SU (S =
= Ty 7' ) {T'(G5 1) By P s'(I) +
+ T3 ) A SY (g} = TV () T ) HY:

and this completes the proof.

Theorem 4.17. The canonical sequence of connections {FI‘}} is reducible to the
canonical sequence of connections {H%} for any generating connections H and h.

Proof. Since H} = H: = H, (4.53) holds for ¢ = 1 and ¢ = 2. Thus let g > 2
and suppose again
(4.69) A4t SY (i) = T\ ) HE .
First from (2.70) and (2.76) we have
T = TG Y - ) =
— (i?r—l ]-1;‘—2* ® 1) ﬁqr—l* + (ig‘—Zj%——Z ® 1)H;~i%~_2lﬁ%_l
and hence we have the decomposition
T'(j1*) [A5 1 (®) h] SY(IT3) S'(i5 ") = o) + o,,
where
oy = T'(j5) [ (@) h] $'(1572)57>* © 1) S'(115 ")
wy = T'(j7") [AT" (®) h] S'(i5 /5% ® 1) S'(1Ty) S*(i~*) s'(7% ™) -
From (4.69) and the recurrent formula for H{ ™' we get
A S ) S'GY ) = T ) BY T SHG3 ) =
= T TG A
and
A S $'05%) = T3 ) T'GF ) By 2.
Both these relations justify the application of Lemma 3.3to @ = i472j4"** and ¢ =
= 14727472 respectively. So we get
o = T T'@ 257 @ 1) A S (5 )
and
(4.70) w, = T'(j7*) T'(57%/572 @ 1) [HF > (®) h] x
x SY(Iry) S'(i5*) SY(IE ) -
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Combining these results we easily see that the relation (4.53) to be proved now
becomes

T'(jp) A% ' S'(I17) S'(i57 1) + (01 + @) =
= TG TE ) Y S + o,
and it remains to show that w, equals
T TG HY SN — T(p) A SN SYY,
which can be transformed by Lemma 2.3, (4.69) and (2.78) into
(T ) TG ) = T'G) T'@F )} HYy ' SH (s =
= T'(jn) T'(5 25 * © 1) T'(I3ig*) Hy ' S'(1I5 ).

But applying Lemma 4.5 to @, in (4.70) we get immediately the required equation and
this completes the proof.

An evident combination of this theorem and Lemma 4.4 establishes now the proof
of Lemma 4.3.

From Theorems 4.17 and 4.15b we conclude

Theorem 4.18. The canonical sequence of non-holonomic connections on E is
reducible to the corresponding canonical sequence of semi-holonomic connections
on E, whatever be both the generating connections on E and on the tangent bundle
of M.

We finish the paper with this result. Note only that it states de facto that “iterating
the computation of covariant derivatives (to obtain higher order derivatives) one
need not care about the position of the derivatives of order zero”, a rule which one
could quite expect by intuition.

However on the other hand an analogous result, concerning the reducibility of
canonical semi-holonomic or non-holonomic connections to holonomic ones, cannot
be expected in general. In fact, in this case the problem of reduction depends, roughly
said, on the curvature of the generating connections. See for this purpose e.g. [3],
where the question is discussed from a point of view very near to that employed in
this paper.

References

[1] Ch. Ehresmann: Les prolongemenis d’une variété différentiable, C. R. Acad. Sci., Paris 233
(1951), 598—600, 777—779, 1081—1083; 239 (1954), 1762—1764; 240 (1955), 397—399,
1755—1757.

[2] W. Greub: Zur Theorie der linearen Ubzrtragungzsn, Ann. Ac. Sci. Fennicae, Helsinki 1964.

[3] P. Libermann: Sur la géommétrie des prolongements des espaces fibrés vectroiels, Ann. Inst.
Fourier, Grenoble 74 (1964), 145—172.

220



[4] A. Lichnerowicz: Théorie globale des connexions et des groupes d’holonomie, Roma 1955.

[5] S. Mac Lane: Homology, Berlin 1963.

[6] J. M. Singer, S. Sternberg: The infinitive Groups of Lie and Cartan, Part 1 (The Transitive
Groups), Inst. of Technology, Harvard Univ. 1965 (polycopied notes.)

[71 L. Schwartz: Varizdades Analiticas Complejas. Ecuaciones Diferenciales Parciales Elipticas,
Bogota 1956.
Author’s address: Bratislava, Obrancov mieru 41, CSSR (Matematicky tustav SAV).

Pe3rome

HEIOJIOHOMHBIE CBA3HOCTU
HA BEKTOPHBIX PACCJIOEHHBIX ITPOCTPAHCTBAX

FOPAM BUPCUK (Juraj Virsik), Bparucnapa

W3y4arorcst CBSI3HOCTM U ICEBIOCBS3HOCTH BBICIIMX IOPSIKOB Ha BEKTOPHOM
PacCIOEHHOM IIPOCTPAHCTBE IPU MIOMOIIY IIPOAOJIKEHIH PACCIIOCHHBIX IIPOCTPAHCTB
(B cmbIcite Opecmana, cM. [1]). I'raBHOe BHMMaHue o6palllaeTcsi Ha HETOJIOHOMHBIE
¥ JIOJTYTOJIOHOMHBIE IPOJOJDKEHUS U CBSI3aHHBIE C HUMU HETOJIOHOMHBIE U ITOJIYrO-
JIOHOMHBIE IICEBOCBA3HOCTH U CBSI3HOCTH BHICIINX MOPSAKOB. [ JTaBHbIC IOHATHS U pe-
3yJILTAThl TEOPUHU HPOJOJDKEHUIT DpecMana BEKTOPHBIX PACCIOCHHBIX IPOCTPAHCTB
KpaTKo IpHBOIATCA B paboTe. HekoTophle cBOiiCTBA 3TUX NPOLOJDKEHHHM IOTyYa0TCS
HX CPaBHEHHEM C COOTBETCTBYIOMMM, TaX HA3bIBAEMbBIMHI TEH30PHBIMH IIIIPOI0JIKE-
HUSIMH UCXOJHOTO BEKTOPHOro mpoctpancTBa. IlocTaBieHa M pemnieHa mpobiema
IIpUBEICHHUS! IOCIIEIOBATEILHOCTH HETOJIOHOMHBIX IICEBIOCBSI3HOCTEH BCEX MOPSIKOB
K IIOCJIEIOBATEIbHOCTH HOJIYTOJIOHOMHBIX ICeBIOCBsI3HOCTEH. [lokas3bIBaeTcsi, YTO
IIaHHasl CBA3HOCTh HA MICXOAHOM BEKTOPHOM PAacCIO€HHOM IPOCTPAHCTBE BMECTE CO
CBSI3HOCTBIO Ha 6a3e IOpOXIAIOT KAHOHMYECKYIO IIOCJIEOBATEIbHOCTh HETOJIO-
HOMHBIX CBSI3HOCTEH BBICIIMX IOPSAOKOB M KAaHOHMYECKYIO IIOCJIEOBATEIBHOCTD
TOJIYTOJIOHOMHBIX CBSI3HOCTEH, 1 4YTO TIepBasi MOCJEeI0BATEIbHOCTh BCEIr/a NMPUBO-
J¥Ma KO BTOPOIA.

Ilycts E — BEKTOPHOE PACCIOEHHOE MPOCTPAHCTBO ¢ 6Gaszoit M. Ilycts S(E) —
BEKTOPHOE PACCIOCHHOE HPOCTPAHCTBO, SIBJISFOLICECS NMPOIOJDKEHHEM OpecMaHa
nepBoro mopsaka npocrpanctsa E. Ilycts, nanee, T'(E) = E ® E.® T(M)*, rae
T(M) — BEeKTOPHOE PACCIIOCHHOE IMPOCTPAHCTBO, KacateibHoe K 6aze M, u T(M)*
copmspkeHo ¢ T(M). O603HaYAM COOTBETCTBEHHO 4epe3 ITg i I1 eCTeCTBEHHBIE MPO-
exuna S'(E) u T'(E) na E, u vepe3 I, earecTBennblii nsomopdusm smpa Ker Il
npoekuuu ITg Ha sanpo Ker IT; npoexmuu I1;. Vi3oMopdu3M BEKTOPHBIX PACCIOEH-
HbIX mpoctpadcts H : S'(E) — T'(E) wHaswBaetcs ncesdocéasnocmpio (IIEPBOTO
nopsinka) Ha E. B wacTHocTH, 3TOT M30MODP(}HU3M Ha3bIBaeTCs cga3Hocmbio Ha E,
eciu ITH = Il v ecmu cyxenne H Ha Ker ITg coBnanaet ¢ /. IToxa3siBaeTcs, 4TO
B 3TOM ClIyuae 3ajanie H 9KBHBAJEHTHO 3a/IaHUIO CHCTEMBI JIOKATbHBIX Jubdepen-
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HUaTbHBIX GOPM, U 3aKOHBI IPeoOpa3oBaHUA ITHX HOPM COOTBETCTBYIOT 3aKOHAM
npeoGpa3oBaHus KOMIIOHEHT CBA3HOCTH B KJIACCHYECKOM CMBICHTE cioBa. ITomyva-
FOTCSl HEKOTOPBIE CBOMCTBA ICEBHOCBI3HOCTEH M CBA3HOCTEH, COOTBETCTBYIOLINE
U3BECTHBIM (pakTaM M3 KJTaCCHIECKOU TeOPHH CBA3HOCTEH. IToka3bIBaeTCsl B YaCTHOC-
TH, KaK JJaHHAs CBSI3HOCTh NMOPOXKIAET CBA3HOCTh HA CONMPSDKEHHOM IIPOCTPAHCTBE
1 KaK CBSI3HOCTH Ha E U F MOpOXAaroT CBSI3HOCTh Ha E ® F.

I'oMopdH3M BEKTOPHBIX PaCCIOCHHBIX IPOCTPAHCTB @ : E — F HOpOXIAET ecTe-
CTBEHHBIM 06pazom romomophusmer S*(P) : SY(E) - SY(F)u TY(P) : T'(E) » TX(F)
TaK, uro S* 1 T ABIAIOTCS. KOBAPHAHTHLIMU (DYHKTOPAMH U3 KATETOPHH BEKTOPHBIX
DACCJIOEHHBIX TPOCTPAHCTB B cebs. Mzomopdusm Hy : S'(E) — T'(F) naswBaeTcs
CBSI3HOCTBIO OTHOCUTEJIbHO romomopdusma @ : E — F, ecimu I Hy = PIlg u cy-
xenne Hy na Ker ITg cosnamaet ¢ TY(P) .

COOTBETCTBEHHO I'OJIOHOMHOE, TTOJTyTOJIOHOMHOE ¥ HETOJIOHOMHOE ITPOJIOJDKEHHS
B cMBICTe DpecMana mopsiaka g = 1 mpocrtpanctBa E obo3Havarores yepes SUE),
SUE)u S4E). C npyroit croponst TU(E), T%(E) u TU(E) 0603H24a10T COOTBETCTBEHHO
FOJIOHOMHOE, IIOJIyrOJIOHOMHOE M HETOJIOHOMHOE TEH3ODHBIE IPOJOJIKCHUS IpPO-
crpanctsa E, ompemenensable pekyppeHtHO (cM. (2.16), (2.17) u (2.18) B pabore.
VMeroTcst ecTecTBeHHbIe BiIoxenus it : TE) - TU(E), i : SYE) - SYE) u npoex-
man 1% : TYE) - TP Y(E), T4 : SYE) —» 57 Y(E). Yepes I o6o3nauaeTcss ©30MOp-
¢usm sapa Ker T2 na Ker [7%.

T0/10HOMHOTI, NOAY20A0HOMHOU UAU HE20A0HOMHOL NCEBOOCEAZHOCMBIO NOPAJKA
wa E Hnasvisaemcs coomeemcmsentno usomoppusm HHY: SUE) - THE), SH?:
:SYE) > TYE) n NH?:8%E)— T%E). Ho okxaspmBaercs, 4to GoJee YIOOGHBIM
SIBJISICTCSL PACCMATPUBATH HE OT/EJIbHBIE NICEBIOCBSI3HOCTH BBICIINX ITOPSIKOB Ha E,
HO WX N0C/Ae008aMeAbHOCMY TTOCTEIIEHHBIX IIOPSIIKOB, HAUMHASL C MOPSAKA IEPBOTO,
WM KOHEYHBIX JUIM OecKoHeuHBIX. Bee pe3ynbrarhl B pabore GpopMyIupoBaHbl IS
OECKOHEYHBIX ITOCJIETOBATEIbHOCTEH (T.. COHEpXkALIUX OJHOBPEMEHHO IICEBIO-
CBSI3HOCTH BCEX MOPSIKOB), HO HETPYIHO ,,TIEPEBOAUTL  3TH Pe3yIbTATHl HA CITydai
TOCJIeIOBATENILHOCTEH, OKAHUMBAIOLIUXCS TICEBIOCBI3HOCTHIO OINPEHETICHHOIO IIO-
psaxa.

TTocienoBaTenbHOCT {NH?} Ha3BIBACTCSL NOCACO08AMEALHOCHIbIO HE20AOHOMHBIX
cesznocmeii na E, ecmu NH' SBISETCS CBA3HOCTBIO (mepBoro mopsinka) Ha E U ecinu
cesikoe NHY, (g > 1) mpencramiseT coGOH CBSI3HOCTB OTHOCHUTENbHO NH' a1
3aMeTHM, YTO He OIpeessieTCs MOHSITHE OTIeIbHOM HErOJIOHOMHOM CBSI3HOCTH JaH-
HOTO IIOPSIAKA, XOTSL MHOTAA M ToBopuM, 4To {NH?} ,,COCTOUT M3 CBSI3HOCTEH.
IToxa3piBaeTCs, YTO CYLIECTBYET ,,0/HO-OTHO-OHO3HAYHOE COOTBETCTBHE MEXAY
BCEMH IOCIeNOBaTebHOCTSIMI { NH?} HErOJIOHOMHBIX IICEBIOCBSI3HOCTEM U MOCITe-
nosatembrocTsivu {HE} u {H%}, o6o3navaemoe xak {HE} ~ {NH} ~ {H{}. 3necp
Besxoe HE wmu HY% ects HekoTOpast mceBIOCBA3HOCTD (MEPBOTO MOPSIIKA) COOTBET-
ctBenno Ha S Y(E) wm T4~ (E). loxaseBaetcs, uto ecmu {H} ~ {NHY} ~ {H%}
1 OJTHA M3 9THX MOCJIEeIOBATEILHOCTEH COCTOMT U3 CBS3HOCTEH, TO U OCTAIBHBIC JBE
cocTodT u3 cBs3Hocteil. Ho Tax kak onpenesieHHast CBS3HOCTh H mepBoro mopsaxa
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Ha E BMecTe Co CBS3HOCTBIO /1 Ha T(M) oueBMAHBIM 06pa30M HOPOXAAIOT HEKOTO-
pyto cBssHocTh HY ma Temsopuom mpomomkenuu T4 (E) mns Beskoro g 2 1,
MBI TIOJTyYaeM Kanonuueckue nocaedosamenviiocmu {HE ~ {NH?} ~ {H]}, nopoorc-
Oennvie napoii (H, h).

OnHaxo B IOJIYTOJIOHOMHOM CiIydae IOJIOXkKeH!e He Tak mpocro. IlocmenoBaTesb-
HOCTh {SHY} Ha3bIBACTCSL NOCACO08AMENLHOCbIO NOAY2OAOHOMHBIX c8A3HOCmell Ha E,
ecmu SH' sBnsercs cBsasHOCTBIO Ha E (mepBoro mopsgka) u Besikoe SHY (g > 1)
ynosieTBopsietT otHowmenuto IT, SH? = SHY™! I u cyxenue SH? na siupo Ker IT¢
cosmazaer ¢ I§. OmsTb He OMpPENENSeTCsl HOHATHE OTAEIBHOM MOJYrOJOHOMHOM
CBSI3HOCTH JIAHHOTO TOPSAAKA, XOTS HHOrAA u roBopuM uto {SH?} ,,cocTOUT U3
cesa3HOCTel . OmnHako ecan SHY mpuHaUIeXXuT HEKOTOPOH MOCIENOBATEILHOCTU
MOJIYTOJIOHOMHBIX CBSA3HOCTeH, To uMeeM SHY = SHY ' ITT¢ + ZHY, u 3p¢ech cia-
raemMoe ZHY TOYHO COOTBETCTBYET IOHSTHUIO IOJIYTOJIOHOMHOM CBSI3HOCTH HOPSI-
Ka ¢, paccMaTpuBaeMoii B [3].

BBoaurcst mousiTHe mocienosarenbHocTi {HE} wim mocnemobarensroctn {H%),
CONPSDKEHHOM C MOCIIEOBATENBLHOCTEIO OJIYIOJOHOMHBIX ICeBIOCBsI3HOCTeH {SHY}.
IIpu stom HE u H% (¢ = 1) 0603Ha4ar0T HEKOTOPYIO IICEBIOCBA3HOCTE (HEPBOIO
nopsinka) cooTBeTcTBeHHO Ha ST Y(E) m T4~ !(E). Onpenensiorcs peeyasapHvie
nocenosatenbrocta {HE}, {H%} u {SH?}. IIpu 5ToM Beskast MOCTEN0BATENLHOCTD
{SH?}, cocrosiias U3 CBA3HOCTEif, aBTOMATHUYECCKH SIBISETCS peryJsipHoit. Ipu
JaHHOW mocienoBaTenbHOCTH {SH?} BBOIUTCS HOHSATHE COOTBETCTBHS IOCIENO-
pareprocteit {HE} n {H}}. D10 cooTsercTBHE (3aBUCAmEee oT {SHY}) sBiseTcsH
ofHO-oqHO3HAYHEIM. Eciu npu maHHOW mocienosarenbHocTH {SHY} mociemosa-
tesbHOCTh {HE} coorsercryer {H%}, To {HE} conpsxena ¢ {SH?}, perysspHa win
COCTOMT M3 CBSI3HOCTEH TOTZa M TOJBKO TOIJa, €CIH MOCHenoBaTebHOCTh { HE}
COOTBETCTBEHHO CONpsDKeHa ¢ {SHY}, peryJisipHa i COCTOUT U3 CBSI3HOCTEH.

JloKXa3bIBaETCs, UTO K JAHHOI perynspHoit mocnenosarensoctn{ HE} cymectnyer
TOYHO OJIHA IOCIENOBATEIBHOCTE {SHY}, compspkeHHast ¢ Hedl. ITociemHss Toxe
PeryJIsipHa M COCTOMT M3 CBSI3HOCTEH, €CIH 9TO BepHO aist ucxomuoi {HE}. Boiee
Toro, eciu { HE} conpspxena ¢ {SH?} 1 o1iHa U3 3TUX OCIEAOBATEILHOCTEH PErYIISp-
Ha, TO BTOpas TOXe peryisipHa. OQHAKO, PEeryjipsHas MOCIeIoBaTeIbHOCTh {SHY}
He OIpeJeNsieT OAHO3HAYHO IIOCTeqoBaTebHOCTh {HE} ¢ Hell conpshKeHHyHo, HO
B paboTe moKa3bIBAacTCs CYIIECTBOBAHHE BCETHa XOTS OBI ONHOI Takoil IociieqoBa-
tesprocTr {HE}. VimMenno, IUIs DAHHON DerynsipHOH mociemosaTesbHOCTH {SHY}
CTPOUTCS SIBHO TOCIEI0BATENBHOCTD {H4}, 06JIaatONIast TeM CBOHCTBOM, 4TO OHA
COCTOHT 3 CBSI3HOCTEIA, ecitut { SH?} COCTOHT U3 CBA3HOCTE.

AHAJIOTUYHBIE PE3YIBTATHI UMEIOT MECTO M B CIy4yae CONPSDKEHHOCTH HOCIIEHO-
BartempHOcTelt {SHY} u {H%}.

CkaxeM, 4TO IOCJIEOBATENHHOCTh HETOJOHOMHBIX ICeBROCBsi3HOCTel {NH?}
NPU0OUMA K NOCAE006AMEAbHOCI NOAY20A0HOMHBIX ncesdoceasnocmeii {SH}, ecin
IUtst Beskoro q = 1 mmeem i% SH? = NHYif. TlocnemoatensHocTh {NH?} mpu-
BomuMa He Golee 4eM K OJHOIA nocieoBateabroctu {SHY}, n ecomn {NH?} cocTout
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W3 CBSI3HOCTEH, TO TO Xe camoe BepHo mnsa {SHY}. Tlocnenosatempuocts {HE} wmm
{{%} wmaspBaeTcs npueodumoii K nociedosamenviocmu {H } wm {H%}, eciu co-
otserctBenHo HES'(iE™Y) = T2~ Y HE wm AL S5 1) = T'(i% Y) H% mnst Bes-
KOro ¢ = 1, ¥ B 9TOM CiTy4ae IOCIeIOBATEIbHOCTD, COCTOSIIAS U3 CBSI3HOCTEH IpH-
BOAMMa TONBKO K MOCIEHOBATEIbHOCTH CBSI3HOCTeH. J{OKa3bIBAaeTCs, YTO ecin
{B% ~ {NHY} ~ {H%} u {H%} npusomuma X pPeryJsipHO#l TOCIeNOBATETHLHOCTH
{HE} (wm {H%} npusomuma x peryssipHoii mocienosatenboctn {H%}), To {NH?}
NPMBOMMA K PEryJspHO# mocienosatenbHoctu {SHY}. Hao6opor, ecmu {HE} ~

~ {NHY} ~ {H%}, {NH} cocTouT u3 c6asnocmeii u npupomuma k {SH?}, To u mocire-
nosatensHocTH {HE} m {HA%} mpMBOXMMBI K HEKOTOPHIM IOCIENOBATETHLHOCTIM
{H%} u {H%}, cocrosiuum u3 CBA3HOCTEH.

Omnsite napa (H, h) cBsaznocteit cootBeTcTBeHHO Ha E U T(M) nopoxnaet xaHo-
HuuecKkyro nocaedosamevhocms {H%}. DTa MoCie0BATEBHOCT peryispHa, ¥ Ka-
HOHHMYECKAS, TIOCTeN0BATeNbHOCTS { %}, moposxaennas Toil xe camoii mapoit (H, h),
BCerja  Het npuBouma. Tem cameim napa (H, /) 0HO3HAYHO IIPOXKAAET ¥ KAHOHU-
veckue nocnenosateabuoctn {SH?} n {HE}.

HaxoHenl 3aMeTHM, 4TO aHAJOIMYHOE YTBEPXKICHHE O IPHUBOIMUMOCTH BCSKOI
KaHOHHMYECKOH IOCIIeIOBATEIILHOCTH IIOJIYTOJIOHOMHBIX CBSI3HOCTEH K COOTBETCTBYIO-
el KaHOHMYECKOM MOCITeJOBATENBHOCTH 2010HOMHbIX CBSI3HOCTEHl (ommpemestsieMon
OYEBHIHBIM 00pa3oM) BoOOIIe HE BEepHO. 3/1ech npobiieMa CBsi3aHa C ,,KpUBU3HOM
TIOPOXJIAIOIIMX CBSI3HOCTE! U B paboTe HE peaeTcs, Ho cM. [3].
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