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1. INTRODUCTION AND NOTATION

The present paper is essentially an appendix to the preceding papers [3], [4]. All
relevant definitions and assertions which are necessary for our present development
may be found in detail in [4]; however, for the reader’s convenience, some of them
are also briefly listed here in Sections 1 and 2.

Let X be a general abstract space of points x, with a Borel o-field 2 of subsets in
it. Consider a (sub-stochastic) transition function p, that is a function p = p(., .) of
two variables x € X and A € Z satisfying:

(i) p(x, .)is a c-additive non-negative measure on & for each xeX, and p(x, X)<1,
(ii) p(., A) is an Z-measurable function on X for each 4 € Z.

Further, p is called a stochastic transition function if p(x, X) = 1 for each x € X.
The iterates p™ of p are defined as usually by

p"(x, A) =J p" Ny, A) p(x,dy), with p" =p.
X

Throughout the whole paper we shall assume that the transition function p is ir-
reducible, which means that all of the measures

Ve = 27"p"(x, .)
n=1

on Z have, for all x € X, the same null sets.

Furthermore, we shall suppose that we have some sub-invariant measure p for p,
i.e. some o-additive non-negative o-finite measure g on %, which is not identically
zero, and which satisfies

J p(x, A) p(dx) < p(4) forall AeZ.
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Moreover, in the whole paper we assume that this p has the same null sets as the
measures v,. (This assumption causes no loss of generality, see [4].)

By the space La(u), for 1 < o < o0, we understand the well-known Banach space of
all complex-valued Z-measurable functions f on X integrable in their a-th power with
respect to the measure p, the norm being given by |f]|, = [[x [f(x)|* n(dx)]"/=
Similarly, L, (u) is the Banach space of all complex-valued Z-measurable p-essentially
bounded f on X, with the norm ”f”00 = ess sup If(x)l The notation f % 0 will be

used for the fact that u({x; f(x) + 0}) >
In the present paper we deal with the operator T, defined in the space La(ll),
1 £ o £ o0, by the formula

T.f = j £0) (. d).

It is well known that T, is a linear continuous operator in L (u) with the norm
| T.]l« < 1, whenever p is a sub-invariant measure for p. (Note that the form of the
operators T, is the same for all o, the index « being used only for distinguishing the
Banach spaces in which they act.) It is also immediately seen that

7W=jﬂﬁﬂ%ﬂﬁ,n=hlm.
X

Finally note for clarity that by an eigenvalue of T, on the unit circle we mean
a complex number A such that W = 1 and T,f = Af p-almost everywhere for some
£ %0, feLn).

The purpose of the present paper is to find the eigenvalues of the operators T, on
the unit circle for different types of transition functions p. The results and methods
are analogous to those in the previous papers [2] and [1] but, of course, they are
much more general.

2. KNOWN PRELIMINARIES

Recall that in [4] (see also [3]) we have shown that an irreducible transition
function p with a sub-invariant measure p belongs precisely to one of the following

types: either Z p(")(x A) = oo for cach A € Z such that y(A4) > 0 and each x (p is
then called recurrent) or 2 p™(x, A) < oo for each A € Z such that u(A) < co and

p-almost all x (p is transzent). Further, a recurrent p belongs precisely to one of the
following types: either

(1) llm n~t z p("')(x A)

exists and is positive for each x and each 4 €2 such that u(4) > 0 (p is called
positive-recurrent), or the limit (1) is zero for each x and each 4 e % such that
u(A) < oo (p is null-recurrent).
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In the whole present paper we shall assume that the following two conditions are

satisfied.
Condition CD (cyclic decomposition). There exists a decomposition of X into

d + 1 disjoint subsets C,, Cy, ..., C;_y, D from Z such that p(D) = 0, and
p(x,X — Cj4,) = Oforeachxe C;,j = 0, 1,...,d — 1(where we also put C;, = C,).

Condition PS (positivity for the same n). If A,, A, = C; for some j, Ay, A, € Z,
and p(A,) > 0, u(A,) > 0, then for each x there exists some n = n(x) such that
p™(x, 41) > 0, p"(x, 4,) > 0.

Now define the functions ¢,, k = 0,1,...,d — 1, by
2 efx) = &4 for xeC;, j=0,1,....,d -1,

=0 for xeD.

(In particular, ey(x) = 1 for xe X — D.)

Let us now recall several known results, which will be useful for our future develop-

ment.
Lemma 1. If the function e, € L,(y) and p is stochastic, then
(3) T.e, = e*"*e, p-almost everywhere .
This lemma appears as Lemma 6 in [4].

Lemma 2. For any complex &-measurable function f on X we have, for all x and
alln=1,2,...,

(4) ff(y) P*(x, dy)

~ provided the integrals involved exist. If in (4) the case of equality occurs for some x
andalln = 1,2, ..., then f is constant p-almost everywhere on each C;,j = 0,1, ...,

,d—1

"< p(x, X) f SO p™(x, dy)

This lemma appears as Lemma 2 in [4].

Lemma 3. If p is a recurrent transition function, then it is stochastic.

This is an immediate consequence of Theorem 1 in [4].

Lemma 4. If p is a positive-recurrent transition function, then u(X) < 00,

This assertion is a part of Corollary 2 in [4].

Lemma 5. If p is either null-recurrent, or transient and such that p(x, X) = 1 for
p-almost all x, then p(X) = co.

This lemma coincides with Theorem 10 in [4].
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3. EIGENVALUES OF T,, | = a < ®

Lemma 6. Let h be an Z-measurable function on X such that h(x) = 0 and
fx h(y) p(x, dy) < h(x) for pu-almost all x. Then either h(x) > 0 for p-almost all x
or h(x) = 0 for p-almost all x.

Proof. If the last assertion of the lemma is not true, then h(y) > 0 for all y
belonging to some set 4 € Z having the measure p(A) > 0. By our constant assump-
tion on g and v,, we have also v,(4) > 0 for each x. This gives, for each x, the exi-
stence of some n = n(x) such that p®(x, A) > 0. Hence, for p-almost all x,

h(x) gj h(y) p(x,dy) = ... = J h(y) p™(x,dy) > 0.

X

Lemma 7. If h £ T,h and h = 0 p-almost everywhere, where he L(p), 1 £ a <
< oo, then T,h = h p-almost everywhere.

Proof. Obviously, we obtain

Iz = L[h(X)]“ u(dx) = L[(Tah) ()T u(dx) = | TG = |4l

Since the two extreme terms here coincide, also the second and the third terms must
be equal, which gives the desired conclusion.

Lemma 8. If T,h = h p-almost everywhere for some function he L), 1 £ a <
< 00, then h is constant p-almost everywhere.

Proof. Clearly it is sufficient to give the proof only for h real. Let f be the func-
tion on X identically equal to a non-negative constant a. Then [y f@(y) p(x. dy) =
= ap(x, X) < f@(x) for all x. Setting g = h — f@ we have g(x) < h(x) and
Tx 9(y) p(x, dy) = g(x) for p-almost all x. Finally, denote by g* the function defined
by g*(x) = g(x) whenever g(x) = 0, and by g*(x) = 0 whenever g(x) < 0. It follows
that 0 < g*(x) < |(x)| for all x, so that g* e L(u), and it is easy to verify that
9%(x) = Jxg*(y) p(x, dy) for p-almost all x. Lemma 7 now implies g (x) =
= [y g%(y) p(x, dy) for p-almost all x, and by Lemma 6 either g*(x) = 0 for
u-almost all x or g*(x) > 0 for p-almost all x. The first case yields, for y-almost all x,
the inequalities g(x) < 0, h(x) — f@(x) < 0, h(x) < a. The second case yields, for
p-almost all x, g(x) > 0, h(x) — f@(x) > 0, h(x) > a. On choosing first a = 0 we
see that the function h is either non-positive or positive, p-almost everywhere.
However, if h is positive it must be constant u-almost everywhere, since a is an
arbitrary non-negative number; if h is non-positive it suffices to change h
into —h.
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Lemma 9. Let [y f(y) p(x,dy) = Af(x) for p-almost all x, where |2| =1, f is
Z-measurable, and |f(x)| = ¢ + 0 for p-almost all x. Then

(a) p(x. X) = 1 for p-almost all x,

(b) 2 =1, i.e. A = ™™ for some k = 0,1,...,d — 1,

(¢) f(x) = cq ex) for p-almost all x, with e, being the function introduced in (2)
and ¢, some constant.

Proof. First, by our assumption we obtain easily that also
(5) ff(y) p(x,dy) = 2" f(x) for n=1,2,..., and p-almostall x.
X

Hence, if x is such that |f(x)| = ¢, we get by (5) and Lemma 2

2
=

© & = [FOP = (9 =

f 703 P, dy)

IIA
GN

= ", X)f [F 2 p™(x, dy) = [p(x, X)]?

Since the two extreme terms in (6) coincide, all terms here must be equal. Therefore
p™(x, X) = 1; in particular, for n =1, p(x, X) = 1. Thus, since |f(x)| = ¢ for
p-almost all x, the assertion (a) is proved.

Further, since we have equalities in (6), we get by Lemma 2 that f is constant
p-almost everywhere on each C;, j =0,1,...,d — 1. In other words, there exist
some constants ¢g, ¢y, ..., ¢4 such that

7 ' f(x) = ¢; for p-almostall xeC;.
J J

- Taking some x € C; for which the last equality holds and for which p@(x, X) = 1
(which is possible in view of (a)), we obtain, using (5) for n = d, that

Me; = 24 f(x) =Jf(y) p(x, dy) = ch p(x, dy) = ¢;,

X

which gives the assertion (b).
Finally, the assertion (c) is obtained easily from (5) forn = 1,2, ...,d — 1, taking
into account (7), (a), and (b). :

Theorem 1. Let the transition function p be positive-recurrent. Then the set of all
eigenvalues of the operator T,(1 < a < oo) on the unit circle consists precisely of the
numbers e*™*/4 | = 0,1, ...,d — 1, and every eigenfunction f € L(u) for which

(8) T.f = 2™  -almost everywhere

is equal p-almost everywhere to some multiple of the function e
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Proof. First, by Lemma 4, ¢, € L,(1). Hence, by Lemma 3 and Lemma 1, each of
the numbers e?"*/4 is an eigenvalue of T,.

For the proof of the opposite assertion let us assume that T,f = Af u-almost every-
where, where [A| = 1, f % 0, fe L,(u). Now, denoting by |f| the function whose
value at the point x is |f(x)|, we obtain |f| = |Af| < T,|f|. Hence, Lemma 7 gives
T,|f| = |f]. and, by Lemma 8, |f] is constant g-almost everywhere. Thus we may
use Lemma 9, and the theorem follows.

Theorem 2. Let the transition function p be null-recurrent or transient. Then the
operator T, (1 < o < o) has no eigenvalues on the unit circle.

Proof. Suppose, on the contrary, that T,f = Af u-almost everywhere for some
SeL(p).f %0, = 1. Then |f| = |4f| £ T,|f|, which gives, by Lemma 7, T,|f| =
= |f|, and, by Lemma 8, |f| is equal p-almost everywhere to some constant ¢ # 0.
Hence we may use Lemma 9(a), obtaining p(x, X) = 1 for p-almost all x, which
further shows, by Lemma 5, that u(X) = co. Thus [ |f(x)|* u(dx) = ¢* p(X) = oo,
but this contradicts the assumption fe La(u).

4. EIGENVALUES OF T,

Lemma 10. If the transition function p is recurrent, and if h < T, h p-almost
everywhere, with h being some real function in L,(y), then T, h = h p-almost
everywhere.

Proof. Setting g = T,h — h, we have ge L, (1), g =0, and T ,h=h + g.
We obtain successively T2h = T h + Tyg, ..., T""*'h = T"h + T"g. On adding

these equalities we get
n+1 n

SToh=Y Toh+ Y Thg,
r=1 r=0 r=0
that is
©)
Consider now the set N, = {J; q(y) = k™'}, k being a positive integer. We have
(10)

>(120) ) = ¥ [ g(0) P75 0) Z,\;J o) 270 ) 2 k—lr;"op s M)

Thg = T:o+1h — h.

irs

r

Therefore, by (10) and (9), we obtain

$ 00wy = £ 7ol = HITZ L + D) < 2600 <
r=0 r=0
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for each positive integer n and for p-almost all x, which gives
0

Y p(x,N,) < oo for p-almost all x .
r=0

However, since p is recurrent, this may occur only if ﬂ(Nk) = 0. Now, k was arbitrary,
and hence #({y; g(y) > 0}) = p( U N,) = 0; this means that g = 0 p-almost every-
. k=1

where, and the assertion follows.

Lemma 11. If the transition function p is recurrent, and if T, h = h p-almost
everywhere, with h e Lw(,u), then h is constant p-almost everywhere.

The proof follows the same pattern as that of Lemma 8, only L,(y) is replaced
by L.(u), and Lemma 10 is used in place of Lemma 7.

Theorem 3. Let the transition function p be recurrent. Then the set of all eigen-
values of the operator T,, on the unit circle consists precisely of the numbers e***/4,
k=0,1,...,d — 1, and every eigenfunction f € L() for which

(11) T.f = ™% y-almost everywhere
is equal p-almost everywhere to some multiple of the function e,.
The proof follows the same pattern as that of Theorem 1, only Lw(u), Lemma 10
and Lemma 11 are used in place of L,(), Lemma 7, and Lemma 8, respectively.
Theorem 4. Let the transition function p be transient and stochastic. Then each
number ™4 | — 0,1, ...,d — 1, is an eigenvalue of the operator T, ; namely,
(12) Toe = 2™, .
The proof is immediate by Lemma 1.

Example 1. Under the assumptions of Theorem 4, the operator T, may have
also other eigenvalues on the unit circle in addition to the eigenvalues e?"*/¢, k =
=0, 1,...,d — 1. This is seen by the following example (given as Example 1 in [1]),
even for a denumerable space X : Let X = {..., =2, —1,0,1,2,...}, and let

p(isj =1 =% p(j,j+1) =% for j<O,
p(ij — 1) =1% p(j,j+1) =% for j>0,

p(j, k) = 0 otherwise. Puting f(k) = 3(—1)" — 2(—%)!" for every integer k, we
have f e Lm(u), T.f = —f, sothat —1 is an eigenvalue of T, though d = 1.
Similarly, T,, may have also other eigenvectors associated to the eigenvalues
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¢***/4 in addition to the eigenvectors e,, shown in (12). This may be seen again with
the aid of the preceding transition function p. Namely, putting g(k) = 27X, g(—k) =
=2 —27%for k = 0,we have g € L,(p) and T,g = g, in addition to T, e, = e,.
(See Example 2 in [1].)

Example 2. It is easy to find a sub-stochastic transition function, which is transient
but not stochastic, such that the corresponding operator T,, has no eigenvalues on the
unit circle. For example, choose some p such that p(x, X) < r for all x, where r < 1.

Then it is immediately seen that | T,,||,, < r so that, by a well-known theorem, each
eigenvalue A of T, satisfies |1| < r.

Example 3. On the other hand, if p is transient and not stochastic, the cor-
responding operator T,, may still have some eigenvalues on the unit circle; this may
be seen by the following example. First, choose for each n = 1, 2, ... some number b,,,

0 < b, < 1, such that the infinite product [ | b, = b exists,and 0 < b < 1. (E.g., we

w1
may put b, =exp[—1/n*], so that f[lb,, = exp [—nill/nz] = exp [ —n?/6].)
Further, choose also a, such that 0 < a, < 1 — b, Now, take X = {..., =2, —1,
0, 1,2, ...}, and define the transition function p by

p(0, 1) = p(0, —1) = £,

p(n,n+1)=p(—n, —n — 1) =p, for n=12, ...,

p(n,n —1)=p(=n, —n + 1) = q, for n=1,2,...,

p(j, k) = 0 otherwise. Note that, in particular, p(x, X) < 1forallxeX.

We shall now construct a function fe L, (x) satisfying T, f = f. First, setting
f(0) =0, f(1) = 1, f(—1) = —1, we have clearly (Tf) (0) = f(0). Further, T,.f =
= fmeans, forn=1,2,...,

(13) f(n) = p(n,n + 1) f(n + 1) + p(n, 7 ~ Df(n—1)=
=b,f(n+1)+a,f(n~ 1),

that is

(14) f(n+1) = Ll_ [(n) — a,f(n = D]-

Therefore, evidently, the values f(n + 1), n = 1, 2, -~ 4" be computed successively
from (14). Finally, put f(—n) = —f(n) for n = 2,3
Now, we shall prove

(15) fy>f(n—1)20 for n= L2



Clearly, these inequalities (15) are true for n = 1. Further, if (15) is true for some p,
then (13) and (15) gives :

f(m) < b, f(n+ 1) + (1 = b,)f(n — 1) < b f(n + 1) + (1 — b,) f(n),

that is f(n) < f(n + 1), which shows the validity of (15) in general. On the other
hand, (14) and (15) entail, forn = 1,2, ...,

16) fnrny<lWS=) < g
by ~ by bbos b [, D
n=1

Thus 0 < f(n) < b~ ' forn = 0,1, 2,..., and, more generally, —b™" < f(n) < b~!
for all n € X. Therefore, on gathering the results, we have fe L(u), f £ 0, T,.f = f,
so that the number 1 is the eigenvalue of T,.
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Pe3ome

COBCTBEHHBIE 3HAUEHUA OIEPATOPOB B ITPOCTPAHCTBAX L,
JIJ1s1 LETIEM MAPKOBA C ITPOU3BOJIbHOM CUCTEMOM COCTOHHI/H/I

3BBIHEK IIMJAK (Zbyné&k Sidék), ITpara

PaccMaTpuMBaeTCS HEMPUBOMMAs CyGCTOXacTHYECKAs MepexoHas QyHKUus p =
= p(x, A) B IPOU3BOTLHOM MPOCTPAHCTBE X COCTOSHUIA X, LTSI KOTOPOM CYIIECTBYeT
cy6unBapuanTHas Mepa p. O603nawnm vepes L () (1 £ o < oo) TIPOCTPAHCTBO BCEX
KOMIUIEKCHBIX GyHKuuit f Ha X, s kotopsix | f||, = KOHEYHa;

L,(1t) GyneT aHaOrHYHOE IPOCTPAHCTBO TeX f, Mtst KOTOpbIX | f|, = ess sup |£x)]

xoHeyHa. Ompenemmim omepatop T, (1 £ « < o) B mpocTpancTse L (ﬂ) coomome-
meM T,f = fx f(¥) p(., dy).
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Ipu HEKOTOPHIX MPEANONOXEHUsIX (TEX XKe caMblIX, Kak B [3], [4], Ho oyensb mupo-
KMX) [JOKa3blBaeTcs: st OJIOKMTENBHOR BO3BPATHOM P C MEPUOIOM d MHOXECTBO
Beex cobcTenHbIx 3HaueHni T, (1 < o < 00) HAa AUHMYHON OKPYXKHOCTH COBMAJAET
¢ muoxecrBom {e*™*% k =0,1,...,d — 1}, u cobCTBEeHHbIE TOANPOCTPAHCTBA,
NpYHAJIeKAUME K ITUM 3HAYSHUSM, OJHOMEPHBI; aHAJIOTHYHBIA PE3yJbTaT BEPEH
mast T,, K BO3BpaTHOM p. It HYJIeBOI BO3BPATHOW W TSI HEBO3BPATHOI p omepa-
top T, (1 £ a < o) He MMeeT HUKAKMX COOCTBEHHBIX 3HAYCHMIM HA €IMHUYHOM
OKpYXHOCTU. JIJisl HEBO3BPATHOM CTOXACTUYECKOH p Bce wiciaa e2™*d k = 0,1, ...,
...y d — 1, IBIAOTCS COOCTBEHHBIME 3HAUYCHWSAMU T, M HEJIb3SI YTBEPXAATH OoJIblile.
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