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Czechoslovak Mathematical Journal, 17 (92) 1967, Praha 

NON-HOLONOMIC CONNECTIONS ON VECTOR BUNDLES 1 

JuRAj ViRSiK, Bratislava 

(Received December 14, 1965) 

Linear connections on vector bundles can be treated in a way that is formally 
independent of the general theory of connections in principal fibre bundles developed 
by EHRESMANN, NOMIZU and others. There are, roughly said, two such possibilities 
of defining a connection on a vector bundle. 

One possibility is that employed by W. GREUB in [2], where the connection is 
defined by means of a system of local differential forms with a priori given transforma­
tion formulae, a way similar to that used in the classical theory of linear connections. 
The other possibility is that of defining the connection as a linear mapping of certain 
vector bundles derived from the bundle in view. This method employs the theory of 
jets introduced by Ch. Ehresman (cf. [1]), and is applied also in this paper. 

The definition of a connection on a vector bundle E given here differs slightly from 
that introduced by Вотт (cf. [6]). It allows to develop a formalism, that is later used 
in the definition and study of holonomic, semi-holonomic, and non-holonomic 
connections of higher order on E, the semi-holonomic connections defined here 
being in a simple relation to those investigated by P. LIBERMANN (cf. [3]). The main 
stress is laid however on the relation of non-holonomic connections to semi-holonomic 
connections, i.e. on the "reduction" of non-holonomic connections to semi-holonomic 
ones. 

We start with a brief definition of a vector bundle which is slightly different from 
the usual one. It does not include a priori the notion of the structure group and 
a structure group appears only as a characteristic of a chosen collection of local 
coordinates in E, i.e. of an atlas of E. The main reason for this is to avoid the explicit 
use of the structure group, which may be complicated for calculations (e.g. in the case 
of semi-holonomic prolongations) and is not necessary for the description of problems 
studied below. 

Next the prolongations of the vector bundle E, in the sense of Ch. Ehresmann ([!]) , 
are investigated. The prolongations of E are compared with certain "tensor prolonga­
tions" obtained from E and the tangent bundle T(M) by " tensor product" and "direct 
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sum" operations. There is a system of local isomorphisms between each prolongation 
of E and the corresponding tensor prolongation. All the basic properties of the 
prolongations are derived — in some way ~ from there by "diagram chasing" 
methods without explicite calculations. Coordinate expressions are, but for some 
exceptions, avoided, and they are used only sometimes to illustrate the results 
obtained. 

A pseudo-connection on E (of first order) is simply a bundle isomorphism of the 
first order prolongation of E onto T^(E) = E ф E ® Т(МУ^. It is a connection if it 
satisfies some further conditions. This definition as well as the definition of a relative 
connection with respect to some bundle morphism, as given in Definition 3.3, 
coincides in fact with that given in [6]. In the form of an illustration one shows also 
that it is equivalent to the definition of a connection on a vector bundle given by 
means of the associated principal fibre bundle. One proves some evident generaHsa-
tlons of facts known in the classical theory of linear connections. 

Pseudo-connections of higher order are defined as bundle isomorphisms of higher 
order prolongations of E onto the corresponding tensor prolongations. There are 
some relations between these isomorphisms and first order pseudo-connections on 
higher order jet prolongations of E and on the corresponding tensor prolongations. 
These relations are relatively simple in the non-holonomic case. It seems to be 
advantageous to study rather sequences of pseudo-connections of subsequent orders 
(starting with the first order) than isolated pseudo-connections of a given order, this 
fact being due to the very definition of a higher order e.g. semi-holonomic connection 
given here, which differs from that given in [3] by a "superfluous" part including de 
facto pseudo-connections of lower orders. 

A connection on E (of first order) together with a connection on the tangent 
bundle T{M) give rise to canonical semi-holonomic and non-holonomic connections 
of any order. Especially, a semi-holonomic or non-holonomic connection of any 
higher order exist "almost always". Furthermore, it is shown that the sequence of 
canonical non-holonomic connections is reducible to the corresponding sequence of 
canonical semi-holonomic connections, whatever be the generating connections on E 
and T(M). 

The basic results are contained in the theorems of the last paragraph. 

1. SOME REMARKS ON VECTOR BUNDLES 

In the whole of this paper only real numbers are considered. A differentiable 
manifold, differentiable mapping etc., or simply manifold, mapping etc., means 
always a C°°-dififerentiable manifold, mapping etc. 

Let M be a manifold, dim M = n. If ^ c: M is a coordinate neighbourhood on M 
and cp :^ -^ <p(^) «= K^ the corresponding diffeomorphism defining the local 
coordinates, we call the pair {^, cp) simply a chart on the manifold M, <Ш is the domain 
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of this chart. The collection of charts defining the dififerentiable structure on M is 
called the atlas of M. 

Let now £, M be differentiable manifolds and let p = p^ : E -^ M be a differenti-
able mapping which is "onto". Let dim E = n + m. Further let EQ be a fixed vector 
space, canonically isomorphic with R'". Denote also E^ = p~^{x) for each x e M. 

Definition 1.1. Let ^ с M be open and let r^ : E^ -^ EQ be a one-to-one mapping 
for each x e % with the property, that 

r : р~'\<Ш)~-> % X EQ, 
given by 

КУ) = ЬУ^ ^РУУЛ ' 

is a diffeomorphism. Then the pair (^ , r^) is called a chart of the triple (E, p, M), 
?̂/ being the domain of {^, r j . 

Clearly, if (^ , r^) is a chart of (£, p, Af), then for each x e ^ r^ : E.̂  -» £o is 
a diffeomorphism. 

Definition 1.2. A collection % of charts (^,, r J ,̂ ^ is called an ar/as of the triple 
(E, p, M) if 

1) {^J.e/ cover M 

2) for all ,̂ t' e / such that ^ , n '̂ ^̂  Ф 0, the one-to-one mapping 

r,{fy^ : m, n %,, X Eo -> ^ , n %, X Eo 

is a diffeomorphism, and for each xe%^r\^^, 

r,'x(r,x)~^ :Eo-^ EQ 
is an isomorphism. 

Two atlases 91 and Ш' of (E, p, M) are equivalent if Ш: u Ш:' is again an atlas of 
(E, p, M). The atlas ^ is called a full atlas of (E, p, M), ilf it has the following 
property: 

If (-r, Q^) is any chart of (E, p, M) such that for any (^ , r^) e Ш, ̂  n -Г Ф 0, 
there exists a diff'erentiable mapping ^^^^ : ^ n iT ~> GL(JR, EO) = ОЕ(Я, m) satisfy-

• ing Q^r~ ^ = g^^{x) for all X G ^ П1Г, then (iT, ^^) e 21. 
It is evident that any atlas of (E, p, M) can be prolonged to a full atlas. Moreover^ 

there is a one-to-one correspondence between all full atlases of (E, p, M) and the 
equivalence classes of atlases of (E, p, M). In fact, each equivalence class contains 
exactly one full atlas. 

Definition 1.3. The structure defined on (E, p, M) by an equivalence class of atlases 
is called a vector bundle structure. Thus a vector bundle E over M is a triple (E, p, M) 

110 



provided with a vector bundle structure. The corresponding full atlas of (E, p, M) is 
called the full atlas of the vector bundle E and any atlas of the equivalence class 
defining JE, i.e. any subatlas of the full atlas of E, is called an atlas of E. 

Now it can be shown (see e.g. [7]), that a vector bundle structure on (E, p, M) 
defines an m-dimensional vector space structure on each fibre E^ such that if {%, r J 
is any chart of the full atlas, then r^ : E^ -> EQ is an isomorphism. As usual, EQ is 
called thQ fibre type of the vector bundle E. 

Given a manifold M, all the vector bundles over M form a category é^M). 
A morphism Я : E -> E in this category is a differentiable mapping of the manifold £ 
to F such that Pß = ppH and for any x e M the corresponding H^ : E^ ~^ E^ is 
a homomorphism of the induced vector space structures. We shall call such H 
simply a bundle morphism. A bundle isomorphism, projection, injection, are defined 
in the usual way. Denote by i^ = R{M) the trivial vector bundle corresponding to 
differentiable real valued functions on M. 

Let E be a vector bundle over M, ^ a M any open subset. A differentiable 
mapping f \4l -^ E, with the property p ^ / = identity, is called a (local) section 
over % in E. Denoting by R{4l) the ring of all differentiable real valued functions on 41, 
it is clear that the set of all local sections over ^ is an m-dimensional i^(^)-module 
if and only if 41 is the underlying domain of a chart {%, r J belonging to the full 
atlas of E. There is a natural basis of this module given by the local sections i^\x -^ 
~^ ^'х^{кФ)) {к = 1, .,., m), where {̂ (̂O)} is the canonical frame in EQ. This basis {ij^} 
will be called the frame of the chart (^ , r j . It induces a frame {i/c(x)} in E^ for 
each X e%. 

Let now E be a fixed vector bundle over M and ЭД an atlas of E (not necessarily 
the full atlas). This atlas induces a set of isomorphisms 

(1.1) r;r;^Eo-^Eo 
or, more precisely, if (^ , г J e % (%', r'^ e 91, % r\4l' ^ 0, then x -> r'^r^ ̂  is 
a differentiable mapping of Ш сл%' into GL{R, EQ) ^ GL{R, m). The smallest 
closed subgroup G(5l) c: GL{R, EQ) containing all the isomorphisms (LI) is called 
the structure group of the vector bundle E spanned by the atlas ^ . It is well known 
that G(^) can be given the structure of a Lie group of left transformations on EQ and 
thus the atlas 21 defines on E a fibre bundle structure in the usual meaning of the 
word. 

Two atlases % 9Г of E are called G-equivalent if G(^) = G(9I'). Let G be any 
closed subgroup of GL{R, EQ). We shall say that an atlas 2Ï of E is G-complete if it 
has the following property: 

If {i'\ Q^) is any chart of the full atlas of E such that for any {m, Г^)Е%4/ ni^ Ф 
Ф 0 there exists a differentiable map g^ir :4/ ni^ -^ G satisfying QJ~^ = gqi^r{x) 
for all X e ^ n - r , then (f", Q^) e 4L 

Each atlas of E can be completed in a unique way to a G-complete atlas Ш, where 
G = G(2I). Ш is called the completion of 5X. A fibre bundle structure on the vector 
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bundle E, or briefly a G-structure, determines uniquely a complete atlas of E. An 
atlas is called complete, if there exists a closed subgroup G a GL{R, EQ) such that 
this atlas is G-complete. Note that the full atlas of £ is the only atlas that is GL{R, ЕоУ 
complete. The vector bundle E is trivial if there exists a 1-complete atlas of £, where 
1 c= GL{R, EQ) is the trivial subgroup. 

An atlas Ш̂ of Е is called semi-complete if to each (i^, Q^) G ^ and each XQ e f̂  
there exists a chart {^, r j e 51, XQ E ̂  such that Q^. = r̂  . 

Remark 1. Let ЭД be the "natural" atlas of the tangent bundle T{M) defined by 
local coordinates on M. Then 51 is clearly semi-complete, its completion being the 
full atlas of T{M), Let further 5Г be a complete atlas of T(M) defining a G-structure 
on M (i.e. on T{M), in our terminology). Then this G-structure is by definition шГ -̂
grahle iff there exists an atlas W с ^ such that W = 5Г. 

Let now Я : E -^ F be a bundle isomorphism and let the fibre types EQ and FQ be 
identified. If (^, r^) is any chart of the full atlas of E, then clearly (^, r^H~^) is 
a chart of the full atlas of F, In this way H defines a one-to-one mapping between 
atlases of E and F respectively. 

Lemma 1.1. If H : E -^ F is a bundle isomorphism, ШЕ, ^Ip ci^e atlases of E and F 
respectively such that Н{ЖЕ) == ^^F. then ЩЩ) = ^j, and G{%E) = Gi'up), 

Proof. We first show Gi^p) = G(Säp). Let (^, r^) G Л̂̂ , {%\r'^^)e^E, xe 
e4l c\ %', G{^^ is the smallest closed subgroup of GL{R, EQ) containing all such 
ГхЧг1)~К But on the other hand (̂ ,̂ г^Я^^) e ̂ ^., (^', r;^) G Ŵ , and thus 
rJ^H;^HXrl)~^ ^ G(^). This means that G{Säp) contains all the "generators" 
r!f(r^)""^ of G(2l£)andthus G(4l£;) с G{^p). Reverting these considerations (note that 
H : Шр -> ^p is one-to-one) we get the converse relation and hence G(^E) = G{%p). 

Let now (ir, QI) = ( r , Q^H;') G H(%\ i.e. (^ , Q^) e Шр. This means, that for 
any {%, rf) e 2l£, '^ n i T Ф 0, we have the differentiable map 

(L2) xE^nr-^Ql{r^)-'EG(np), 

Let (^, r^) G Шр and ^ n f " Ф 0. We wish to show that 

(13) x-.QlH;\rl)-' 

is a differentiable map % слГ -^ Gi^^p) = Gi^Hp). But since (^, r^ G 21/. = Я(ад£), 
we conclude that (^, г^Я^) G Ш £̂, and the expression in (L3) gets the form (1.2). 
Thus Н(Шр) E "up. The converse is similar and this completes the proof. 

Let 21 be any atlas of the vector bundle E. The set of all frames at the points of M? 
generated by all the charts of Ш, forms a principal fibre bundle ^{E, 21) associated 
with the fibre bundle structure on E given by 21, its right transformations' group 
being G(2I). This acting of G(2I) upon ^(E, 21) can be expressed expHcitly as 
follows: 
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Let g e G(̂ 2l), {ф)} e ^ ( £ , 21^ and let (^ , r j , (^Г, г;.) be charts of l̂ I such 
that XE^ n%\ g = Kr;\ r^{ik{^)) = ЦО) (к = 1, ..., m). Then 6?{f;,(x)} = 
= {(г;)-^^.(Ф))}. 

Let again Я : £ -> F be a bundle isomorphism, H{^IE) = "up. Then H generates 
a one-to-one mapping ^{E, Ш^) -> ^ ( F , Ш̂ ,̂) assigning to the frame {/^W} e 
G ^ ( £ , "îll̂ )̂  the frame {Я^(г;,(х))}. It would not be difficult to show that this mapping 
is a "fibre preserving" diffeomorphism and that it commutes with the acting of the 
group G{^E) = С{Шр). 

Lemma 1.2. Let E, F be vector bundles and H : E -^ F a bundle morphism. 
Suppose that there exists a homomorphism HQ : EQ -^ FQ such that to each a еМ 
there exist charts (ß^, r^) and (^ , r^) (a e ^) of the full atlases of E and F respective­
ly, satisfying 

(L4) xe^ => Hç^rl = rlH^ . 

Then Ker Я с E and Im Я с F are vector bundles and the canonical injections 
Ker H -^ E, Im H -> F are bundle morphisms. 

Proof. It is not difficult to see that the difierentiable structure on E induces 
a differentiable structure on Ker Я . Now the vector bundle structure on Ker Я is 
defined by the atlas consisting of all charts (^ , r^j^er H J ? where {Ш, rf) satisfies (L4). 
We have namely from (L4) 

x̂ |кегя. : Ker Я , - > Ker Яо . 

A similar argument leads to the vector bundle structure on Im Я. 
Let now Я1 be again a fixed atlas of E. Without loss of generality one can always 

suppose that if ЭД contains a chart (^, r j , then it contains also all the "restrictions" 
of this chart. Now let (^ , r J 6 Ш be such that ^ is simultaneously a coordinate 
neighbourhood on M. Denote by 2Ï' c: ЭД the atlas of all such charts. Clearly ^il' = Ш, 
G(2t') = G{%) and 91' is semi-complete if and only if 91 is semi-complete. An explicite 
chart (%, r^, (p) of 91 is defined by a chart (^ , r^ e 9Г and a chart (^^, cp) on M. 
Denote by 91 the set of all explicite charts of 91. 

2. JET AND TENSOR PROLONGATIONS OF VECTOR BUNDLES 

Let E be a vector bundle as above, i.e. E e S{M), The (holonomic) jet prolongation 
of ^-th order {q ^ 1) of £, denoted by S\E), is the set of all jets of ^-th order of 
differentiable local sections in E. It is well known, that S\E) can be given a vector 
bundle structure with the fibre type Jo(^"? ^o)? where 3%{К^, EQ) is the vector space 
of all jets of ^-th order of local mappings from i^" into EQ with source 0 e JR" (cf. [1] 
and below). 
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We shall be mainly interested, however, in non-holonomic and semi-holonomic 
prolongations of the vector bundle E, and the purpose of this paragraph is to derive 
all the basic properties of these prolongations without using their structure groups, 
only from the properties of the first order prolongation S^{E). 

Let {^, r^, (p) be an explicite chart of the full atlas of E. It gives rise to an explicite 
chart S\%, r^, cp) = {%, rl, cp) of {S\E\ p, M) such that (^ , rl) belongs by defini­
tion to the full atlas of the vector bundle S^{E), It is defined by 

S\EX~^Jl{R\Eo). ae% 

as 

(2.1) r%j)^j\{ff4>-'i) 

or, respectively, 

(2.2) ( a - 4 / o ) = j : ( r % r » . 

Here we have used the following notations:/ = j ^ / e S^(£)^, where/is a local section 
in E over a neighbourhood of a, and similarly /o = j^ /o e Jl{R", EQ), where /o is 
a dififerentiable map of a neighbourhood of 0 G JR" into EQ. The symbol t denotes the 
translation in JR" taking 0 into the source of the preceding component, i.e. into cp{a) 
in (2.1). Analogously t~~^ takes the target of the succeeding component (i.e. the (p{a) 
in (2.2)) into 0 6 JR". 

If (^ ' , r^, ф') is another explicite chart of the full atlas of E and a e % n %\ one 
easily derives from (2.1) and (2.2) the expression 

(2.3) . r'firlr' (/o) = Mf'f-%r'cp{<pr' t). 

Now let Ж be a fixed atlas of E (possibly, but not necessarily the full atlas of E). 
There exists to each explicite chart of Ж an explicite chart of the full atlas of S^{E), 
In this way 91 defines an (explicite) atlas 8\Щ of S\E). 

Proposition 2.1. / / 41 is semi-complete then 8^{Щ is also semi-complete. 

Proof. Let a e M be fixed. Clearly all the mappings of the form (2.3) belong to the 
group of all automorphisms of the fibre type JJ(JR", EQ), On the other hand, if ^ =jlg 
is a one-jet of a map JR" -> С{Ж) and Ф = ]1Ф is a one-jet of an invertible transforma­
tion of a neighbourhood of 0 in JR" with source and target 0, then there can be found 
charts (^ , r^, (p\ {%', r;, ip') e à , a E41 г\ ̂ ' such that the corresponding transition 
formula at a given in (2.3) has the form 

(2.4) fo^Jliigfo)^), 
where g acts upon /o "pointwise". This follows from the semi-completeness of Ш. 
The relation (2.4) defines clearly an automorphism of Jl{R", EQ) and the set of all 
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such automorphisms form a group S^{G, M) which is a group of linear effective right 
transformations of JJ(JR", EQ). Thus its contragradient S^(G, M)* is a subgroup of 
the group of all automorphisms of J^{R^, EQ). It is also not difficult to see that 
S\G, МУ is closed and thus S\G, M)* = 6{8'{Щ). From there we conclude easily 
that iS^(^) is semi-complete. 

The fibre type Jl{R", EQ) of £ is canonically isomorphic with 

(2.5) £o e -^0 ® ^"* = Eo ® {R @ Я"*) , 

which is clearly also the fibre type of the bundle T^{E) = E @ E ® T(M)^ = 
= E ® T\R). Here T{M) denotes as usually the tangent bundle of M, TiM)"^ its 
dual. The atlas ^ generated from the atlas % of E defines in an evident way also an 
explicite atlas Т^(Щ of T^(E), and if Ш is semi-complete, then the same is true about 
Т\Ш). 

Denote by {//c(0)}/c-i,...w the canonical basis of EQ and by {e'(0)} ,̂= î  . „ the 
canonical basis of i^"*; г^(0) let be the image of 1 under the natural injection 
jR -^ jR © R"^. T^hus the canonical basis of (2.5) consists of elements of the form 
еЩ ® i\(0) (a = 0, 1, •.., 't; fe = 1, ..., m). Given a chart (^ ,̂ r^, cp) e îî, the 
basis {s%0) ® ï'/c(0)} defines a frame {si} of the chart S^{%, r^, (p), and a frame 
{tl} = {dx̂ ^ ® ik} of the chart Г^(^, r^, cp). Here again dx^ denotes the image of 1 
under the natural injection R{M) -^ R{M) © T(M)''. Consequently {5^(х)} or 
{tl{x)} = {ax'' ® i/c(x)} are frames in S^{E)^ or T\E)^ respectively, for each 
xe^. 

Using these notations we can now calculate explicitly the matrix M of the transition 
automorphism (2.3). Let G(5l) consist of matrices (gX). This means, that '\{{%, ?\, ф),. 
{^il\ r^, cp') 6 % and / is a local section in E over ^]/ n %\ then 

f{x)=f\x)l,(x)^f{x)i,{x),') 

where p\x) ^ g]^{x)f\x) and (Ö^^) : ^ / n ^ / ' -^ G(̂ 2l). Thus {gX) corresponds 
to r ; r ~ \ 

If now a r\4l r\ 4l' is fixed, we have 

(2-6) i\f = fA{a) = fXia), 

where/o' = f\a\f\ = [(a/ôx')/*]„ (/ > 0) and similarly for/^',/*.'. Denoting by A\. 
the Jacobian (ох'/ох'')^, we obtain from (2.6) 

(2.7) î%. = зГ(а) /5 , /f' = A'.^ (^ <7Г) /о + A\.gX{a)f] . 

) The usual convention of summation over repeated upper and lower indices is applied 
throughout the paper. 
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In other words, if УИ = (M ,̂°:) is defined by") /*; = M^'^fl then (2.7) yields 

(2.8) м,7 = 0Г(«); 'KJ. = o; M̂ ;? = / i ;YA.^rV MĴ ;; = зГ(«) л;,. 

We shall need in the next also the explicite formula for the inverse matrix M~^ = 
= ( М Й 

(2.9) Ml^^gUa); M^« = 0 ; М^^! = Ai'f~ gÙ ; M^'i = 0*,(a) ЛГ , 

where gf,'gl = ôl'.. 

On the other hand denoting {'Ш, r\,(p) = T^{^, r^, (p), we have 

This gives for any point a in the intersection of the domains of two charts the transit­
ion formula 

pfe' _ /j« ^k' к 
>a ' — ^а'Ук Уа -> 

where AQ^ = 1 and A^^ = A^^ = 0 for i, Г ф 0. In order to have a comparison with 
(2.8), represent r7(r j)~^ by a matrix N = (iVĵ "̂̂ ). Then 

(2Л0) iV .̂o =. ^J:'(a) ; iV,̂ ô ; = 0 ; 

The atlas ЭД defines a class of local differentiable isomorphisms {/^} of S^(E) 
onto T^{E). If (^ , r^, cp) e 41, then /c^ : PSHE){^) ~^ PTHE){^) is the isomorphism 
given by the correspondence of the frames {si} and {tl}. It is evident that it commutes 
with the operation of restriction of charts. This class {/<?/}, however, cannot be 
obtained by "restrictions" of a bundle isomorphism J : S^{E) -> T^{E) unless G{%) = 
~ 1, which implies that E is trivial. In particular, the natural atlas in R{M) has this 
property and thus iS (̂jR) is canonically isomorphic with T^(JR). We put simply 
S\R) = T\R). 

There are natural bundle projections Я^ : S^(£) -^ E and Tlj : T^(£) ~> E, the 
first one being nothing but the target map. These projections clearly satisfy the 
conditions of Lemma L2, and thus КегЯ^ с: S^{E) and КегЯ^^ с: T^(E) are 
vector bundles. One establishes easily from (2.8) and (2.10) that {/^} gives rise to 
a bundle isomorphism 

(2.11) Jo :КегЯ5-> КегЯг 

observing that in a given chart of ^l the element / = flsl{x) e S^{E)^ (y = yltl{x) e 

'^) For the sake of simplicity we sometimes omit in the whole paper the argument x, a, etc. 
in expressions "over a point x, a, etc. of M " if this cannot lead to confusion. 
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G T\EX) belongs to КегЯ^ (to КегЯ^^) if /^ = О (yl = 0). Further denote by 
jj^ : E -> T\E) = E @ E ® Т{му the natural injection. 

Let F e S'(M) be another vector bundle and Ф : £ -^ F be a bundle morphism. 
Define 

Т\Ф) = Ф®\гчк)'ТНЕ)~-Г{Е), 

and 8\Ф) : S\E) -> S\F) by 

(2.12) 8\Ф)]1/ = ]1{Ф/), 

It is not difficult to see that S^ and T^ thus defined are covariant functors from the 
category é\M) into itself. 

R e m a r k 2. For the sake of simplicity we shall not indicate the vector bundle E 
in the symbols Я5, Я^, / | , etc., so that we shall use the same symbols for these 
projections or injections connected with any bundle of ^(M). 

Now it is not difficult to verify the following properties of the functors S^ and T^ : 

(2.13) ЛsS'(Ф) = ФП^ 

(2.14) Ilj Т\Ф) = ФПг 

(2.15) Т\Ф)]\^]',Ф, 

The non-holonomic jet prolongation S'^{E) of E and the non-holonomic tensor 
prolongation f\E) of E or order ^ > 1 are defined recurrently as S%E) = S^(S^ ~ ^(E)) 
and T%E) == T\T^~\E)). A non-holonomic jet of order q is thus an element of S%E). 
Our task will be to derive the basic properties of the jet prolongations of £ by compar­
ing them with the tensor prolongations which we are now going to introduce. 

Let q ^ 1 and define recurrently the holonomic tensor prolongation 

(2.16) T\E) = T^~'(E) e £ ® ( 6 Т{МУ) = f £ (X) ( о T{Mf) , 

the seml-holonomic tensor prolongation 

(2.17) T%E) = T^-\E) e £ ® (® T{Mf) - f £ ® ( | ) Т{МУ) , 

and the non-holonomic tensor prolongation 

(2.18) f%E) = f^-\E) @ f^-\E) ® Т{МУ = E®{®{R@ Т(МУ)) 

putting T%E) = T\E) = T%E) = £. The atlas Ш of £ generates canonically atlases 
Т%Щ Т%Щ Т%Щ of the vector bundles T%E), T%E% T%E) respectively. 

We shall use three kinds of multiindices in the explicite formulae below: 

1) Y consists of all indices p = {p^, ..., P},\ where each p^ runs from 1 to n and 
\p\=k 

p = 0 if /c = 0; 
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2) о X consists of all ordered indices p = {p,,..., p^), p. running from 1 to n. In 
lPl=fe 

other words, p e ^ belongs to О ^ iff i < j =^ p. g p.; 

3) # ^ consists of all indices p = (p^, ..., p j , where each p̂  runs from 0 to n. 

The same symbols are thus applied to indicate the way of summation as well as the 
set of the indices. 

Denote by Я : ̂  ~> o j ] the rule of ordering the components. Note that iî p e О J^ 
and the integer i {i = 1, ..., n), occurs in p /i^-times, then '^'"^ 

(2.19) card;r^(p)= '̂• 

Further (D : Ф ]̂ ~^ !E d̂ '̂̂ Ĵtes the rule of dropping all the zero components in a multi-
index (but (i){p) = 0 if p consists of zeros only). Note again that if 0) : Ф ^ -> YJ 
and I? G Y ' then '̂ '==̂  ^^1 '̂=^ 

(2.20) cMdœ--'(p)==(A^Ct, 

Now we can pass to coordinate expressions in the bundles (2.16) —(2.18). A chart 
(^, r^, (p) e Ч1 gives rise to the frames 

(2.21) {Otf,} = {h ® (O f)} , /c - 1, ..., m ; ре О ^ , 
Ou\p\âq 

(2.22) {® Г?} - {/, ® {®t^)} , к = h..., m ; p e E ' 
OS\p\uq 

(2.23) {Ф€} = {h®{mt').} k=h...,m; pe®Y 

of the charts T%^i/, r ,̂ cp), T%%, r^, (p) and f%^, r,, (p) respectively. Here we have 
used the abbreviations 

p e oX => 0(^ - dx'' О ... О dx'\ 
ре J^=> ®f = dx^' (X) ... (8) dx''̂ ,̂ 

pem'Y^^m t^ = dx^' ® ...®àxP' 

and O^̂  = 0^0 = 1. 
There are natural bundle injections 4 : T%E) -^ ТЧ^). 1̂ : T%E) -^ T%E) defined 

locally as follows: If (^, r ,̂ ^) e Д̂ is a fixed chart, then 

\P\=4 

(2.24) ги= I - - rFT7I7^^ '^< ' '>® ' ' ' ' ^ ' ^^^ ' 
Iplaecardx (Я(р)) 
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and 

(2.25) 

Note that /7 G T%E)^ belongs to Im f^ if À{p) == À{p) imphes ifp = rj^. for all к = 
- 1, ..., m; i?, p ' e E . and С = ® E C > f̂c e f\E%, xe^ belongs to Im '^ if 

o;(p) =- co{p') imphes Ĉ  = с,^' for all /c = 1, ..., m; p, p еф Y, -
\p\=a 

The direct sum decompositions in (2.16), (2.17) and (2.18) give rise to the diagrams 

(2.26) 

(2.27) 

and 

(2.28) 

T^-HE) <- J T%E) -г——--> E®(o Т(МУ) , 
УТ JT 
Щ' лр d 

1 ^ \^t) ^ ^ I \ t ) < —^ t (X) ((X) i i^M) ' ) , 
J T J T 

1 ^ \L) ^ > i {̂ i i j < ^ i ^ (£.) (X) i (Л2 )^ 
,1 - l* 

JT JT 
which, together with evident relations between the corresponding projections and 
injections, totally characterize the direct sum structures of T\E), T%E) and f%E). 

q 

Note that in particular КегЯ^^ is canonically isomorphic with .E ® (® Т{МУ). 
Given a bundle morphism Ф : E-^ F, the formulae (2.16) —(2.18) suggest in 

a natural manner the morphisms 
(2.29) Т%Ф) : T%E) -> T%F), Т%Ф) : T^(£) -> T^F), Т%Ф) : f%E) -> P(F), 

and it is not difficult to see that T^, T^ and f ^ are again covariant functors from the 
category S'(M) into itself. 

The following lemmas are either evident or can be aesily verified by direct calcula­
tions with local coordinate expressions. 

Lemma 2.1. The diagram (D|-): 

T%E) -

T%E) -

^T\ 

f%E) ~ 

n% 

n% 

U ~ i 

T«"^(£) 

\fq-i 

f'-'iE) 

is commutative for any q ^ 1, 
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Lemma 2.2. Let Ф : E -^ F be a bundle morphism, q ^ 1, Then the "'three-
dimensionaF' diagram, obtained by connecting (D| ) with (Dl) through bundle 
morphisms of the form (2.29), is commutative. 

The non-holonomic jet prolongation S%E) is a vector bundle with the fibre type 

EQ ® (® (K ® -R"*)) and the atlas Ш of E defines by recurrence an atlas Б%Щ 
of S%E). 

Let {%, r̂ ., (p) be a chart of il and let {^s^}, к = h ...,m; p em Y, be the frame of 

the corresponding chart S\%, r^, (p). The atlas X̂ defines a family {J|r} of local 
isomorphisms 

h : P§4E)W -^ PT4E)W 

given by the correspondence of the frames {#sj[} and (ф^Й-
The target mapping Щ : S%E) -> S^~^(£) is a bundle projection and takes each 

element / e S\E)^ with local expression 

(2.30) 

into the element with local expression 

\p\=Q 
'И 

ml Z fp,o^s^,{a). 
\--=q~l 

Hence we have a commutative "local" diagram 

S\E) ?"(£) 

(2.31) 

^ Û}/ 

m 
S'^-^E) > f^-^E) 

The dashed arrow means that the morphism is only local, depending on the choice of 
the chart. 

Now l e t / be any local section in E ovfer a neighbourhood, say i^{a), of a e M. The 
section X -^ jlf (x e i^{a)) in S\E) over i^{a) is called the flot of f. The flot of this 
section is again a section in S^'{E), and repeating this procedure we get a local section 
^ ~̂  jl~ ^ f ^^ S^'~''^{E) which finally gives rise to an element j ^ / of S\E)^. An arbitrary 
element of S\É) which can be obtained from a local section in E in this way is called 
a holonomic jet of ^-th order. If {i\} is the frame of a chart {%, r^, (p) e Û and 
f(x) = f\x) ik(x), then the corresponding j^/(fl e ^^), being by definition an element 
of S%E), can be expressed as 

(2.32) 

where 

jtf = 

д д 
дх"' дх"' ' 

• 2: c\fs',{a). 
\P\=Q 

д , д 
. and 

ёх"- дх° 
= identity . 
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However, the set of all holonomic jets is nothing but the holonomic jet prolonga­
tion S%É) of £, and we shall show below explicitly that the atlas % together with the 
family of local isomorphisms {!%], defines an atlas S%W) of S%E). But before that 
define semi-holonomic jets. 

Definition 2.1. (cf. [1]). Each element of S\É) is a semi-holonomic jet. An element 
/ e S%E)^ — written in the form f = jig, where x -^ g{x) is a local section in 
S^~^{E) ~ is a semi-holonomic jet if ö̂ (x) is a semi-holonomic jet of order q — \ for 
all X in a neighbourhood of a and 

(2.33) }\(n\~'9) = Q{si). 

R e m a r k 3. The non-holonomic jets or prolongations are introduced relatively 
simply by "iteration" of the first order prolongations, and therefore some of their 
properties are evident. This is the main reason for starting with non-holonomic jets 
and introducing not only semi-holonomic but also holonomic jets a priori as subsets 
of the set of non-holonomic jets. 

Vro^^iiion 1,1. A)Iffe S%E\ is semi-holonomic and {%, r^, cp) e il, ae%, then 
the local expression (2.30) satisfies 

(2.34) œ{p) = œ{p') =>Ц = Ц. for k=h,..,m and р^р^еф^.-
\р\=д: 

В) If fe S%EX in (2.30) satisfis (2.34) for some chart (^ , r^, cp) G à , ae m 
then f is semi-holonomic. 

Proof. A) We shall proceed by induction. Suppose that A) is true for all semi-
holonomic jets of orders less than q. If f = jig, where g{x) e S'^'~^{E) is semi-
holonomic for each x in a neighbourhood of a, then comparing (2.30) with 

(2.35) 

we get 

(2.36) 

(2.37) 

and (2.33) yields 

(2.38) 

ф ) = * Y: g%x)' 

fßo = g'ßia), 

'''-{£Л 
«у«) = (£. Ä 

If û)(p) = a>(p') = О, then (2.34) is trivial. Thus suppose со(р) = o}(p') + 0(|p| = q). 
If 0 is on the end of both p and p', one easily concludes by recurrence from (2.36) 
that /p* = !•;.. Let p = (ßO), p' = iß'r), r + 0. Then 

(2.39) n-9%a); Л'= (£; 4') • 
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Since g(x) is semi-holonomic and a)(p) = (o{p'), we have gp' = gp"o^ 9ß = QfVr^ 
these relations being vahd in a neighbourhood of a. But then (2.39) yields 

/;, = (£;*.) . я = *,«.) = (Arf...)̂  
and hence/^, = Д . Finally let p = (/^r), p ' = {ß's\ r, 5 ф 0. But this is not possible 
unless r = s which imphes m{ß) = сь̂ (̂ 0 and the rest is now evident. 

ß) Suppose again that ß) is true for all jets of orders less than q and l e t / e S\E)^ 
satisfy the condition in a given chart. One can find functions gl{x) defined in a neigh­
bourhood of a such that g\{x) = g\'{^) if oj{ß) = 0}{ß') and such that (2.36) and 
(2.37) hold. From the recurrence assumption we conclude that these functions define 
a local semi-holonomic section g in S^~"^(£) such that / = j^g. It remains to show 
(2.33) or (2.38). But this is evident since [(dldx') f̂̂ ola == fyos = fU = oU^)- This 
completes the proof. 

Corollary. Each l\ induces an isomorphism 1% of the set of all semi-holonomic 
jets with source contained in % onto pZ}ç^{^). 

Proof. In fact we have seen that С = / | / b e l o n g s to Im fj iff (2.34) holds. 
It is not difficult to see that any holonomic jet is necessarily a semi-holonomic one. 

Moreover we have the 

Proposition 2.3. A) If f e S''(E\ is holonomic and {%, r^, cp) e 91, a e %, then the 
local expression (2.30) satisfies 

(2.40) lœ(p) = Aœ{p') =>Ц = /^^ , for ^ - 1, ..., m and p, p'еф Y -

ß) / / / G S%EX in (2.30) satisfies (2.40) for some chart (m, r^, ц>) e % ae^, 
then f is holonomic. 

Proof. A) follows immediately from (2.32) and ß) is a consequence of a well 
known fact in classical analysis. 

Corollary. Each 1% induces an isomorphism 1% of the set of all holonomic jets 

with source contained in % onto РТЦЕ){^)-

Proof. In fact, С = / | / b e l o n g s to Im {1^1%) iff (2.40) holds. 
Denote by S\E) с S%E) the set of all holonomic jets, and by S\E) с S%E) the 

set of all semi-holonomic jets. Note that 5^(£) a S\E). We have just seen that the 
atlas ад induces an atlas 3\Щ and 8%Щ of S%E) and S\É) respectively. In fact if 
{^, /\., (p) e Й, then the frame of the chart S\^, r^, (p) or S^('^, r^, cp) is given by 
{Osl] ov {®sl], where 

O s ? = ( / y ~ 4 o t D , fc = l , . . . , m ; peoY. 

122 



or 

\p\aq 

respectively. It is not difficult to verify that they really define vector bundle structures 
on S\E) and S%E) respectively. Denote by i | : S%E) -^ S\E) and ï | : S%E) -^ S%E) 
the natural bundle injections and by Я | : S%E) -^ S^"^(£), Щ : S%E) --> S^^-^E) the 
projections induced by Я5. Note that Я | and Я | satisfy the conditions of Lemma 1.2 
and consequently КегЯ^ and Ker Я | are also vector bundles. 

The following lemma can be again easily verified using local coordinate expressions 

Lemma 2.3. Let (^, r^, (p) еЖ. Then the "local three-dimensionaV' diagram 
obtained by connecting the diagram 

S%E) 

S'{E) 

S%E) 

^q- 1 
(£) 

S^-'{E) 

.-q-l 

S^~^(E) 

with (Dl) through suitable local isomorphisms induced by 1% and I%~ ^ is commutative. 
Let q > r ^ 0 and {^^^ r^, xp) e 41. The chart S\^, r^, cp) induces a local 

isomorphism 

(2.41) / ^ , : S'-'^E) = S\SXE)) -> T'{S'{E)). 

Let us define the local isomorphism 

(2.42) Л̂ ;̂  : rXS'^'XE)) -> f'""̂  '{S'^-'" \E)) 

as Ж̂ "̂  = T'"(L^r,g-^_i). An element/G T''{S'^~''{E))^,X e ^ , can be expressed in the form 

(2.43) / = • E /p. p,» sr--"'- ® (•("'-—•••"'') 
|P|=4 

and (2.42) takes it into 

(2.44) A^f = • I /p, . . . . .p,» sr••••^"^ — ^ ® (•("'-'• "') . 
|P|=« 

Hence the local isomorphisms Л^' [r = 0,..., q — I) determine a decomposition of 
the local isomorphism 1\ : S''(E) ->• f''(E) into the sequence 

(2.45) 
^0,q ^Uq ^2,q ^q-2,q ^q~ 1 ,9 

S'»(£)__*^ r i (5« - i (E) )__% Т^З^-Щ) - - - > . . . - * - ^ f«-i(Si(E))^*—> fXE) 

in such a way that the diagram (2.46) is commutative. 
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IT 
t 

, t t 

t q 

гкп 
lb . 

u j 

- t 

Ä 
bq 
a. 

*^ 
ib^ 

îjq 

&. 
—>»? 
-^tco 

i 

- I 

ÏCO 

^̂-̂  i^H 

t 
w 1 
Л I 
Ik ^ 

^ ; 

« .hn 

?cq 
•i^H~^ 

1 

ibn 

r ^ 1 1 w 1 
fs 1 
1 , 

I 

is 

X 1 

/< 

I 

Î00 

. t 

t 
55̂  c o l 

/ 

t q 

.^ Ï00 

100 
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The bundle projection 

(2.48) Т^ПУ) : fXS^~%E)) -> TiS^^-'-^E)) 

takes the element/G 'f'*(S^"''(£)) in (2.43) into 

(2.49) n n r i f - • E Л.,...,Р.~.-.о,р.-...,..-,Р.« s r - ' ^ - - ^ ® (ф,..-. . . . . . . ,Р.). 

Lemma 2.4. Le^ ^ > 0, 0 ^ г ^ ^ - 1. If f e Ker ТфГ^ then A'^ffe 
e j"'+i(5«~''~i(£)) Joes /гоГ depend on the chart {Ш, r^, cp) defining the local iso­
morphisms Ä'off. 

Proof. Write fXS'^'XE)) = §^"'"(£) (g) f''(i^) and suppose / = / ^ ® / 2 , where 
/ i E S^-^El /2 e r ( i^ ) . Then ТХпУ) / = 0 implies Л e Ker ЯГ'". But Л ^ 7 = 
= /^^g_.^_i/i (x)/2 and since /^.^-^-ilKerii^-'-s is a local isomorphism/^ — connected 
with the first order prolongations of the bundle 5^~''"'^(£) — restricted to the kernel 
of the corresponding projection, we see that /^^^_,._ i/^ does not depend on the chart. 
From there we conclude the same property for ^ ^ ^ / a n d this proves the lemma. 

The integers q and r being given as in the lemma, consider now the diagram 

(2.50) 5^(£)-^^?^l ...^''''^f%S'-^'{E))-^^'-^ T'''-\S'--'-\E)) 

r + l пт-'^х nv 
T''(§^-'•"'(£)) . 

It is not commutative. In fact, i f / e f^S'^'XE)), pfe%, is given as in (2.43), then 
r{nl~') has the form (2.49) and from (2.44) we have 

(2.51) ( Ж / и ^ / ) / = = # Y Jl,...P,-uO^ ,p-.-^..~^-i ® ( ф f.-r,...,P.-.^ ^ 
\p\=q 

Comparing (2.51) with (2.49) we see that they are equal if and only if /has the property 
(2.34), i.e. i f / i s semi-holonomic. In other words, the diagram (2.50) will be com­
mutative if and only if one starts in S\E) with a semi-holonomic jet. In this sense we 
can say that the diagram (2.47) is commutative "as a whole", i.e. each possible "path" 
starting in S'^(E) and ending in the same space gives the same result. 

In particular, if we start w i t h / 6 Ker /7 | , i.e. Î | / G Ker IJs, we pass each T''(S^ "''(£)) 
through Ker Т''{П1~'') and consequently we conclude from Lemma 2.4, that for such / 
the image / I f l / e f%E) is independent of the chart {^, r^, cp). An easy application of 
Lemma 2.3 yields now the 
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Proposition 2.4. The family of local isomorphisms {i^} corresponding to the 
atlas Ш induces by restriction a bundle isomorphism 

11 : Ker 77| -> Ker Щ = E® ( е г ( М ) * ) . 

Similarly the family of local isomophisms {!%} induces by restriction a bundle 
isomorphism 

II : К е г Я | -^ KQYWJ = E® ( O T ( M ) * ) . 

Tiiis may be also expressed in a more usuai form as 

Corollary. The short sequences of bundle morphisms 

O - ^ E ® (oT(M)*) 

0-> £ ® (®T(M)*) 

S\E) ^> S^~^(E)->0 

S\E) 
П ̂ . c^-l S^-^(E)->0 

are exact. 
Suppose q > 1. The definition of semi-hoionomic jets yields a decomposition of 

the injection 1% : S\E) -> S\E) into the sequence 

(2.52) S«(£)___i_^Si(S«-!(£;)) 
^'oTi) „. 

SXE) 

Moreover we conclude from this definition, Lemma 2.3 and (2.13) that 

]) the diagram 

(2.53) S« (£ ; )__ ' i _^5 i (S« - i (£ ; ) ) i - ^^> s%E) 

f 4 - l 

ЧЕ) ^'^"^(E) 

is commutative. We define ll' as the identity. 

2) an element X e S^(S^~^(E)) belongs to Im Ц' if and only if 

(2.54) S\il~~'nr') X = îr'nsX , 

where i^ : E -^ E is the identity. 

Define now the mapping É)| : 5^(5^"^(E)) -> S\S^-\E)) by 

(2.55) ( 9 | = / Г ^ Я ^ - ^ ^ Я Г ^ ) 

for each ^ > 1. We get from (2.13) and the commutativity of (2.53)Я5в| = Я | ~ ^Я^ • 
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- nsS\'nl~^) = О and thus Im 0 | a КегЯ^. Therefore one can define the mapping 
loOl : S\S^-\E)) -> КегЯг(с:Т^(5^-^(£)) ^ S^'^E) ® Т{Му, 

Lemma 2.5. Im &1 = КегЯ^ c= S\S^-\E)). 

Proof. It remains to show КегЯ^ cz Im 6)|. This means: Given a local section 
X "> u(x) in S^~^(£) such that u{a) = 0, find a local section x -^ z(x) in S^~ ^(£) such 
that 7 > = il-^'llsjlz - S\nr')jlz = ll~'' z{a) - ;^(/7Г^^). Applying S\ll~'') 
to this relation we get an equivalent formula 0 = z| ^ 2(0) ~ il{l% ^П% ^z —1% ^u). 
In a fixed chart (^ , r^, ф) this means 

Ö - ^ / J l , . . . , p g - i ( ^ ) " ( ^ p i , . . . , P q - 2 , 0 Ki.-,Pci~X 

for any (PJL, .-., Pq-i), the components running from 0 to n. Since u{a) = 0, this 
equation is satisfied in the case Pci-\ = ^ automatically and the rest is a simple 
differential equation. 

Lemma 2.6. в%Х - 0 if and only if X e Im Ï^'. 

Proof. 5^(î|~^) is an injection. Therefore 0%X = 0 is equivalent with 
S\ll~^) e%X = 0, but S\l%-^) SIX = ly'nsX - 8\11-^Щ-') X and a compari­
son with (2.54) yields the result. 

Combining these two lemmas we get the 

Proposition 2.5. The short sequence 

(2.56) 0 -> S%E) —^-> S^(S^~^(E)) -~~^^~Л S^-2(E) ® Т{му -^ 0 

/5 exact for each q > 1. (We put S^(E) = E.) 
The relation 0? i | ' = 0 can be written in the form ll'^'n^it = 8\Щ~^) î | ' , i.e., 

using the commutativity of the diagram (2.53), 

(2.57) îr''m-S\nr')iï-

The following lemma is evident and we bring it without proof. 

Lemma 2.7. Let E^ (i = 1, 2, 3, 4) be trivial vector bundles over a trivial manifold 
M, i,e, admitting ''globaV explicite charts 

(2.58) (М,г^'>,ф), (i = 1 , 2 ,3 ,4 ) . 

Let dim E^ = dim E2 and dim E3 = dim E4. Denote by 1^2 ' ^1 ~̂  ^2? ^3,4 • ^3 ~̂  
- ^ £ 4 , /^'^ :S^(Ei)-~> T^(£2), /^'^ :5^(£:з)-^ 7X^4) the natural isomorphisms 
connected with the charts (2.58). Let Ф : E^ -^ E^ and ф : E^ -> -E4 be bundle 
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morphisms which have constant coefficients with respect to the charts (2.58), and 
such that the diagram 

Er 
M,2 

£ 3 ''•' -E 

is commutative. Then also the diagram 

(2.59) S\E,) '^ ^Г{Е,) 

S\0) 

S\E,) 

TW) 

T\E,) 

is commutative. 
Let q > 1, {^,r^, (p)e%^ be fixed. Applying Lemma 2.7 to the commutative 

diagram 

i 01/ 
S^-\E) 

ir' 

we get the commutative (local) diagram 

(2.60) 

Jq-l 
\7q-i 

V 

SHS^~\E)) L^^'^^'L T\T^-\E)) 
S\i%-^) 

Jq 
гЧ4~М 

Define now 

(2,61) 

S\S^~\E)) ' — T\f'-~'{E)) , 

[ïj)^ — T (J^qi ) hiil^ [loi/) 

We see immediately from the commutativity of (2.60) that Т^(1т~^){1т)^ = Л-
But T^(i\~^)qi is a bundle injection and it is not difficult to deduce from there that 
(4').^ is a restriction onto ^ of a bundle injection fÇ : T%E) -^ Т\Т'^"-\Е)). Con­
sequently we have the decomposition 

T%É) — - ^ T\T^~\E)) 
ТНА~^) 

T%E) 
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analogously as in (2.52). Define also îj = identity. The diagram 

(2.62) T%E)~^^T\T''-\E)) 
T'(4~') 

f\E) 

T^-\E) 
IT 

f'-\E) 

is commutative again and 

(2,63) Т ^ г Г ^ Я Г ' ) X - 1%~^ПтХ oXslm i '̂ с T\T'^~\E)) , 

or equivalently, в\Х ^ iy^'n^X - Т\Щ~^) X =={) о X elm-fj. This can be 
again expressed by the formula 

(2.64) 7 ^ - 1 ' n\ = T\nv')i% . 
We need not prove explicitly these relations, since their local expressions connected 
with a chart {^, r^, cp) e %. are formally identical with the local expressions of the 
corresponding (established) relations in jet prolongations connected with the same 
chart (^ , r^, cp). 

Without running the risk of confusion we shall write in the next jj,Ttj,j\^,n'^ 
instead of Jf̂ , / 7 | , Jj?", Л^* respectively for each q ^ 1. 

IÎ E' cz E, then T^{E') can be naturally injected into T^(E) and we shall write for 
simplicity T^{E') c: T\E). According to this convention if Ф : E -^ F is a bundle 
morphism then Ker Т^{Ф) = T^(Ker Ф) = Ker Ф ® T^(R). Moreover, using local 
coordinate expressions one easily verifies 

(2.65) X G Kcrfls с S'{E) => Т\Ф) IQX = 1о5\Ф) X . 

Now if we write (2.61) in the form 

'^ТУ^'Ш) X = T [lull jlqfïgX 

and suppose X e Ker ]7| , using (2.53) we get Ï | X e Ker Я5 and consequently Ьи'1%Х = 
= /о1 | 'ХеКегЯг . Further (2.56) and (2.57) give Т'(Щ~') lot's X = loS^nf'), 
. ïl'x = Го'гУ^'ЩХ = 0. Hence Io~4X e T^KQV Щ"^) and the above local relation 
can now be written as 

(2.66) X e Ker nl => (4) X = T\ll~ ') I^^X , 

There is another simple property of the functor ТЧ If Ф : E -» F is a bundle 
morphism, we can also write 

Т\Ф)=]]:ФПг+]'т\Ф®1)П^т 
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and hence 

(2.67) П*ТЧФ) ={Ф®1)П*, 

(2.68) Т'(Ф)7Г = 7 Г ( Ф ® 1 ) . 

Here and in what follows we denote by 1 any identity in the category ^(M). 
Next we bring a lemma which will be of use in the following paragraphs. 

Lemma 2.8. Let q > 2, Then 

(2.69) n^iy ' 'j\~ ' = ( j r ^ (X) 1) П^ЦГ 2 ' 

and 

(2.70) Я*ЕГ^Г '* = ^ T ' J T ' * ® 1. 

Proof. It suffices to prove the relations but locally. Thus suppose a fixed {%, r^, cp) e 
e Ш is given and let a e%. Let 

Then 

]ГЧ= I <̂: ® Ф ) 6 T'-'(£)„, 

where we have put ^l = 0 if \p\ = q — I. From there 

(2.71) . n*iV''jV4=i I e..®tlia)®dx\ 

where ^^^ = 0 if |s| = ^ — 2. 

On the other hand 

and 

(JT' ® 1)Я*|Т''^ =t 1 Cr® Ф) ® dx»-, 
r=l \s\^q-2 

where we must put Й,. = Oif |s| = ̂  — 2. A comparison with (2.71) immediately yields 
(2.69). 

Let now 
ri= Z ^ ^ ® r K a ) e £ ® ( ' ® T(M)*),. 

\p\=q-l 

Then 

i p i â î - i 
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with Tj^ = О iî \p\ < q — 1. Further 

\u\=q-l 

and, noticing that (o{sr) = co(s) r if г ф 0, 

(2.72) n*irw*^ = i* I û•̂ (̂«)®d̂ ^ 
where we have put ?/̂ (s)r = 0 if |co(s)| < ̂  — 2. 

On the other hand 

where we put rjl^ = 0 if |w| < ̂  — 2. Further 

(ïT'®i)(jT'*®i)^ = t • I ^S,(s).•Ф)®dx^ 
»•=1 | s l - ^ - 2 

where ^^^s)̂  = 0 if \co{s)\ < q — 2. Comparing again this result with (2.72), we get 
(2.70) and this completes the proof. 

Corollary. / / q > 2, then 

(2.73) j i - * ( i r ' j r ' * ® 1) = г Г У г " ' * , 

(2.74) } \ ' ^ * ® 1 = n*i%- ' '-j\- '* , 

(2.75) ( Я Г ' * ® 1)np^r"'' ^Щ-'*, 

(2.76) Я? ïV ^ . /Г ' = ( ' Г ^ ; Г ' ® 1) Я? ( Г ' ' 

(2.77) T\jy')ïV-'' + ГЧ7Т'*)7тЯГ'* = îV jV 

(2.78) i T I J T ' - j ' i T ' = JT*{iV'JV' ® 1)Я?.-Г ' ' . 

Proof. "Multiplying" (2.70) by f/ we get from Lemma 2.3 }\*{i%~^Ц"^ ® 1) = 
^^ ^T ]T ~ JT'^T^T JT ~ ^T JT ~ JT^T liT JT ~ ^т JT and 

this is (2.73). Using (2.67) we give (2.70) the form (i?/^ ® 1) От~^* ® 1) = Я ? . 
. T^fr' ̂ )iy ^ ' 'f-f ' * = ( i T ^ ® 1) Я*1Г ' ' fr ^ * and since ( 4 " ^ (x) 1) is an injection, we 
have(2.74).Nowapplying(/7r^* ® 1) to (2.74) we get 1 = (Я«."^* ® 1 ) Я ? г Г ^ ' ; Г ^ * 
and from there ЯГ^*_= ( Я Г " ® 1) Я ? г Т ' 7 Г ' * Я Г ^ * , or Я Г ' * = 
= ( я г ' * ® 1 ) Я * ^ Т ' ' - Щ%~^* ® 1 ) Я * ( Г ^ ' 7 Г ^ Я Г ^ But the last term here 
gives according to (2.69) ( Я Г ^ * ® 1) {jV^ ® 1 ) Я ? 1 Г ' Я Г ^ = О and this proves 
(2.75). Now we have from (2.67) and (2.69) UXVf^f-f^ = Я ? Т ^ ( 1 Г ' ) iV^' 'fx^ = 
= ( i T ' ® 1 ) Я ^ Т ' ' ; Г ^ = ( ' Г ' J T ' ® 1)Я*1Г ' ' and this is (2.76). 
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Further (2.53), (2,69), (2.67) and (2.14) give îV''JV = ;гЯ.^-гГ^';Г' + 

-irfr^nV^ = Т"(7Т')»Г^' - ; т 7 Т ' * Я Г ' * and this verifies (2.77). 
Finally from (2.67), (2.14), (2.53), (2.15) and (2.77) we get subsequently 

_ jijq-2 jq-2jjq-2 ___ rj.ir-a~2 ~q~2\ -q-2' , -l-q-l -q-l^Jjq-l^ __ -l~q-2 __ j.l/-q-~2\ 

.1т\Гг-')1у'' + гЧ;Т'*)7}/7Г"] - JTïV = T\i%-')ï\-''j\-' - frïV 
and this completes the proof of (2.78). 

3. FIRST ORDER CONNECTIONS AND PSEUDO-CONNECTIONS 
ON VECTOR BUNDLES 

Let E be a vector bundle over M and % be a chosen atlas of E. As we have seen, 
there is a natural family {/̂ } of local isomorphisms 

(3.1) {m, Г,, cp)eé^L,: S'(E) -^ T'{E) . 

However, the fibre bundle structures {S\E% 8\Щ and {T\E\ Т'{Щ are not 
isomorphic in general, i.e. there is no bundle isomorphism S^{E) -> T^(E) con­
necting 8\Щ with Т\Щ since С{8\Ш)) ф С{Т\Щ unless % defines a trivial 
fibre bundle structure. In other words, in general, there is no isomorphism of the 
corresponding principal fibre bundles 0^(S\E\ 8\Щ) and ^{Т\Е),Т\Щ). 
Therefore a bundle isomorphism of the vector bundles S\É) and T^{E) may exist 
only a posteriori, defining in this way an additional structure on the vector bundle E. 
Note that it follows from what we have just said, that this isomorphism cannot take 
8\Щ into Т^(Ж) but for the trivial case. In fact, we shall see that each connection 
on E can be interpreted as some bundle isomorphism Я : 8^{É) -> T^(E). 

Definition 3.1. A pseudo-connection H (of first order) on the vector bundle E is 
a bundle isomorphism Я : S\E) -> T^{E). 

Given a pseudo-connection Я on E, the local isomorphisms (3.1) define local 
isomorphisms 

(3.2) (^, r,, (р)ее=> Г,, : PJ^E^W -^ PTHEW 

subject to 

(3.3) (^, r , , ( p ) e U = > r . ^ / , , - Я . 

In this way the pseudo-connection Я connects v/ith the atlas ЭД a family {Г^} of 
local isomorphisms. 
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Let (41, r ,̂ Ф) e %. Then for each a e % 

(3.4) T,iy\ dx^ (X) ila)) = f; dx^ ® Ф) 

and r^ can be expressed in coordinates as an element of [Я ф Т{му^^а ® ^Г ® 
® [i^ 0 T(M)*]« ® £^, i.e. as a tensor at a e ^ with components Г^̂  = Г^^(О), 
(/z, к = 1, ..., m; a, ß = О, 1, ..., п). The relation (3.4) is then to be written as 

(3.5) y', = niyl. 
Suppose now (^', i\, cp') e Й and ae% r\ ?/'. Then together with (3.5) we have 

(3.6) f,. = n;?:>'^;. 

The condition (3.3) determines the transition formulae for {Tq^. In fact, we have 

and from there we get the required relation 

(3.7) n:;: = M^^Nf/TT^. 
This can be written explicitly using (2.9) and (2.10) as 

(3.8) n;^; = glgin^, + A^ (^£- gÙ д^Г^^, 

^ к'О' — Ук'Ук ^ i ^ fcO ? 

rh'i' __ к ^h' Ai' 4J phi 
^ k'j' — Ук'Ун ^ i ^j'^ kj ' 

Conversely, given a family {Г.̂ ,} of local differentiable isomorphisms (3.2) satisfying 
the transition formulae (3.7) or (3.8), the equation (3.3) defines a unique pseudo-
connection on E. 

Note that each of the local isomorphisms (3.1) satisfies Я /̂.̂ ^ = Я5 and /̂ |̂кегЯ5 ~ 
= IQ. This may suggest the following 

Definition 3.2. A connection H (of first order) on the vector bundle £ is a bundle 
morphism Я : S\E) -> T\E) satisfying 

(3.9) ПтН = Us 

and 

(3.10) Hl^erii, = ^o<>H"V^* = ^ö'^r*• 



Proposition ЗЛ. Each connection H on E is simultaneously a pseudo-connection 
on E. 

Proof. Since the dimensions of S^{E) and T^(£) are equai it is sufficient to show 
that Я being a bundle morphism is an injection at each a E M. Thus l e t / e S^{E)^ and 
я / = 0. From (3.9) we g e t / e Ker Я5 and hence Hf = I^f. But IQ is an isomorphism 
and consequently / = 0. 

If Я is a fixed pseudo-connection on E then each other pseudo-connection H' on E 
has the form Я ' = KH, where К : T^(E) -> T^(E) is any bundle isomorphism. 
Moreover we have the 

Proposition 3.2. If H is a connection on E, then KH : S^{E) -> T^{E) is another 
connection on E if and only if К satisfies 

(3.11) ПгК=Пт 

( 3 . 1 2 ) ЩкегПт ~~ ^КегЯт ' ^'^' ^T^JT ~ ^£<8)Г(М)* • 

Proof. In fact, (3.9), i.e. Пj = П^Н'^ implies the equivalence of (3.11) and 
TIjKH = lis. Further fe КегЯ^ iff Igfe Ker Я^ and Klçyf = IQ/ is equivalent with 
KHf = I of since Hf = Jo/. 

This proposition characterizes the class of all possible connections on a vector 
bundle. 

Now we shall pass to the explicite formulae for the local isomorphisms (3.2) in the 
case of a connection. 

Proposition 3.3. Let {Fq^} correspond to a pseudo-connection H on E. Then H is 
a connection if and only if the local isomorphisms (3.2) given by (3.5) satisfy for 
each {fié, r^, (p) e SIX the relations 

(3.13) n « = bl- П ' = 0 

and 

(ЗЛ4) / 1 ; - ^ : < 5 ; . 

Proof. It is not difficult to see that in a given chart {%, r^, cp) e Ж the condition 
(3.9) has the form 

/ -<hO rk , T~ihi rk <ih rk 
koJh -T- ̂  koJi — ^kJo 

whatever b e / o , / f and this implies (3.13). On the other hand (3.10) is to be written as 

n}fi + 0 = ôlô)f^ 
which yields (3.14). 
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One could also directly verify that this special choice of the quantities F^ß is 
compatible with the transition formulae (3.7) or (3.8). Denoting in this case by F^i 
the only non-trivial components Г^^ we see that the transition formulae are reduced 
to the only equation 

(3.15) n'.j. = glg^AJ.nj + Л ~ gÙ gf . 

R e m a r k 4. Let E = T{M) be the tangent bundle of M and Ш the natuual 
(semi-complete) atlas on it. Then С{Ш) = GL{R, n) and gl^ = A\. for any two charts 
with not disjoint domains. In this case (3.15) become the usual transformation 
formulae defining a connection on M in the classical meaning of the word. The 
map f -^ {x ->(Я*Я)7^/) defined on local sections in T{M), i.e. on local vector 
fields, is nothing but the usual covariant differential of/. 

The conditions (3.11) and (3.12) can also be expressed locally. In fact, let К be 
given in a fixed chart (^ , r^, cp) of Й by means of the (local) relation 

(3.16) f, = K'iTßy' • 

The corresponding transition formulae are evident since X is a bundle isomorphism. 
In particular î ^^ are the components of a "tensor field on the whole", these compo­
nents being taken with respect to the frame in £* ® £ (x) T{MY corresponding to 
the chart {^, r^, cp). Analogously one can see that the conditions (3.11) and (3.12) 
give K\l = ôl\ Kll^ = 0; K^^ = ^k^j- ^^^ = ЧЩ this is again a well known resuU. 
Namely if {Г^} corresponds to a connection H on E and К satisfies (3.11) and (3.12) 
we get in each chart (^, r^, (p) e Sil the relation 

stating that two connections on M differ by a tensor field. 
Let again the family {Г^} of local isomorphisms (3.2) correspond to a pseudo-

connection Я, If (^/, r^, cp) is fixed, F^ii can be represented as a section over % in 
^{E @E® F{MY\ E@E® T{MY) or symbolically as a "matrix" of sections in 

(3.17) / ^ ( £ , E); £e{E, E ® T{Mf) 

V ^{E ® T{MY, £) ; ^{E ® T{Mf, E ® Т{МУ) 

The transition formulae (3.8) show that if we write accordingly symbolically 

then rjc^ and Ĉ^ respectively are nothing but a restriction to the domain ^ of a section 
on the whole in ^{E ® Т{му, E) and Se{E ® Т{му, E ® Т{МУ) respectively. 

If now Я is a connection, then these sections are the zero section and the identity 
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section respectively. Moreover in this case also ^о^ is a restriction of the identity 
section in ^{E^ E) and only ш^ being a non-evident local section characterizes the 
connection. Suppose now {^\ r^, (p') 6 Й is another chart and put, for the sake of 
simplicity, ^ = %\ Both ö5^ and cö^ are local sections over ^ in =èf(E, E ® Т{МУ) 
but they differ by an element that we are going to write down in a coordinate-free 
form. 

Let CO,2^ be the local differential form on ^ with values in ^{EQ, EQ) associated 
with Co.;,. This means that, identifying ^^(E, E ® Т{МУ) with J ^ ( T ( M ) , ^ ( £ , £)), 
we put for a fixed point x e^ and fixed vector of T{M)^ 

(3.18) yeEo=> w^{y) = г^(Б^{г~^у) . 

Denoting now g = r'^r~^ for each x e ^ , we have clearly g e ^{EQ, EQ) and dg is 
a local differential form over ^ with values in <^(Eo, EQ). Note that, as a matter of 
fact, ^{EQ, EQ) represents the Lie algebra of the "full" structure group GL{R, EQ) ^ 
^ GL{R, m). 

Under these notations (3.15) can be written as 

(3.19) coi = gco^g'^ + g dg"^ . 

Here the multiplications are simply compositions of (linear) mappings. Since 0 = 
= d(l) = g dg~^ + dg g"^, the condition (3.19) is equivalent to 

(3.20) co'^ = да}^д~^ - dg g"^ , 

These are the transformation formulae for differential forms defining a connection 
on a vector bundle as introduced in [2]. They represent a special case of the formulae 
dealt with in the general theory of connections working with principal fibre bundle s 
(see e.g. [4]). 

Now we obtain immediately the relation between cö^ and cö^. Given again a fixed 
X e% and a fixed vector of T(M)^, we get for each y e E^ from (3.19) and (3.18) 

cöUr) = (rX'co'^iKy) = (r;)-i Kr;'co.,{rXrX' 'iy) + (rT^ Кг:'а{фХ') КУ 
and hence 

(3.21) а); = ш^ + г;М(г,(г;)-^)г;. 
Note that the last term in (3.21) is a section over ^ in ^{T{M\ i f (£ , E)) = 
— c^(E, E ® T{M)^) and thus the summation is really defined. 

In what now follows we are going to show how connections H^ and Eij^ on vector 
bundles E and E over M respectively define canonical connections on vector bundles 
E @ F, E ® F and E*. We shall obtain formulae independent of local coordinate 
expressions which correspond to classical results if E = T{M) and F = T(M) or 
T(M)^ (see also [2]). 
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Let the direct sum E @ F of vector bundles E and F be represented by the diagram 

П П* 
(3.22) E ^ г E@F ^=± F . 

There are natural isomorphisms S\E @ F) = S\E) © S\F) and T\E @ F) = 
= T\E) © T\F) and we get the diagrams 

s\n) s\n^) 
S\E) < ẑ  S\E © F) ^ > S\F) 

SHJ) SHJ^) 

т\п) т\п^) 
T'{E) ±==^ T\E © F) -^ T\F) . 

T\j) T\f) 

If now Hp and Hp are pseudo-connections on E and F respectively, then 

(3.23) Hp{@) Hp = T\j) HpS\n) + T\f) HpS\m) 

is a pseudo-connection on £ © F and it is not difficult to see that it is a connection 
if Hp and Hp are connections. 

The problem is however not nearly so simple in the case of the tensor product 
E ® F. Thus let %l^ and %^ be atlases ofE and F respectively. They induce in a natural 
manner an atlas 51^®^ ofE®F and thus the local isomorphisms {!%} and {/^} of 
first order jet and tensor prolongations, connected with %^ and %^ respectively, 
induce the corresponding family {/^®^} of local isomorphisms. If j i ( / i © / г ) ^ 
e Pŝ i(£®f )C^̂ ), we can write with slight inaccuracy 

(3.24) ï^'jlif, ® /2) = Il jlfi ® fzia) + Ma) ® I^jlf, - fM)f2{a) , 

where / j and /2 are local sections in E and F respectively. Even the local formula 
(3.24) suggests the definition of connection Hp{®) Hp on E ® F that we are going 
to give below. 

Denote by 7^ = yl^p : T\E) ® F -^ T\E ® F) and 7^ = yl^p : E ® T\F) -^ 
-> T^(E ® F) the natural bundle isomorphisms. They satisfy the following evident 

Lemma 3.1. Let E^, £2 ^^^ ^1? ^2 ^^ vector bundles over M and Ф : E^ -^ £2? 
W : Fl -^ F2 bundle morphisms. Then the diagram 

(3.25) £ , ® T\Fi) 

Ф® r ^ ï ' ) 

£2 ® ^ ^ £ 2 ) 

T\Ei ® £1) <-~̂ -̂̂  T\Ei) ® F, 
/ X 

Т^(Ф ® ¥) 

vF2 

Т^{Ф) ® ¥ 

~> £ ^ £ 2 ® £2) <-
vEi i 

T\E2) ® £2 
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is commutative, i.e. 

(3.26) Т'{Ф ® W) 7f:«f. = У11Ш1Т\Ф) ® W] 

and 

(3.27) Т\Ф ® W) yll^p^ = У'Р1^Р1Ф ® T\W)-] . 

If now Я^ : S\E) -> T^(E) and Hp : S^(F) -> T^(F) are bundle morphisms, define 
first the "product" 

(3.28) [Hp; Hp] : S\E) ® S\F) -> T\E ® F) 

by 

(3.29) [Hp; Hp] = y\Hp ® Hs) + т^(Я^ ® Hp) - j^iUs ® U^) . 

It is clearly a bundle morphism. Define further the bundle projection 

G = Gpp: S\E) ® S\F) -> S\E ® F) 
by 

^ ( i i / l ® J a / 2 ) = J a ( / l ® / 2 ) . 

It is not difficult to see that a is well defined and that it is a projection. 

Lemma 3.2. Let Hp and Hp be connections on E and F respectively. Then o{X) =•• 0 
implies [Hp; Hp] X = Ofor any X e S\E) ® S\F). 

Proof. Let ae%, (^/,r^, cp) eif®"" and let {si}, {sf}, {si,} and {C} be the 
(E) (F) 

corresponding frames in S^{E), S^{F), S^{E ® F) and T^{E ® F) respectively. Let 

(3.30) X = X'jßSlia) ® sf(ö) . 
iE) (F) 

We can write 

and 

But since 

sl(a)=^jl{a), where -I-(ф" = Ô;ÔI 
(E) дх^ 

sîia)=j'M), where -^ (rj^J ^. ô'^ôl. 
(F) дх^ 

a{sl(a) ® sf(a)) = ^ [{& (M sUa) = ôlô'oKKsUa) + {О^ЛКК + 
(E) (F) дх'^ 
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we have 

(3.31) а{Х) = X"o'o5°,(a) + {Х% + XI)) sUa) 

and thus a(X) = 0 imphes 

(3.32) Xl'o = X% + Xl\ = 0 . 

On the other hand we get analogously 

[Hp; Hp] (sl{a) ® 5f(a)) = {ГЦоХ + К^Ш'с. - SlôXô'o^^} C(o) , 
(E) (F) (E) (F) 

where Г'̂ ^ and T̂ f, denote the components of Hp and Hp respectively in the chart in 
(£) (F) 

view according to (3.5). Thus 

(3.33) [Hp; Hp] X = {x%rz + x-jßrZ ~ x^'o^^s) C(«). 
(£) (F) 

According to Proposition 3.3 the components of the connections Hp and Hp satisfy 

(3.34) rio = ôl ; rlo = ôl 
(E) (F) 

(3.35) По = 0 ; r ; i = 0 
(£) (F) 

(3.36) ' rt^ = ôlôi; Г^, = Щ. 
iE) (F) 

Using these relations we can write (3.33) in the form 

(3.37) [Hp; Hp] X = {Xl'o + Xl'o - Х"оУ t^^a) + 

+ (^"o + X^j + XQQFIJ + Zoo^^j) tit{a) 
(E) (F) 

and a comparison with (3.32) yields the required implication. 
This lemma justifies the definition of the bundle morphism 

HE{®) Hp : S\E ® F) -> r\E ® F) 
according to 

or, with less accuracy 
Hp(®)Hp=[Hp;Hj;]al'p 

(c.f. the "switchback rule" in [5]). 

Proposition 3.4. / / Hp and Hp are connections on E and F respectively then 
Hp (®) Hp is a connection on E ® F. 
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Proof. Since HE(®)HP is really a bundle morphism, it suffices to verify the 
relations (3.9) and (3.10) of Porposition 3.3. Thus let, the notations being as in the 
preceding lemma, Y = a{X) e S^{E ® F)^. A comparison of (3.31) and (3,37) gives 

+ (УГ + n'nj + УоП,) tila) 
(E) (F) 

and thus the components of Я£ (®) H^ are 

r utO SiU Sit . j-^uti (\ . r'Uti Я^^Я^Я^ 
krO — (^k^r •> ^ fcrO — ^ 5 ^ krj — ^k^r^j 

( £ ® F ) (Е®Р) {E®F) 

and 

(3.38) r^ = din, + ölFlj 
iE®F) (E) (F) 

and this proves the proposition. 
It can be seen immediately from (3,38) that the product (®) is associative. Further­

more one sees from (3.38) that this definition of the "tensor product" of connections 
coincides, in the case E — F — T{M), with the classical one (cf. also the example 
below). 

Note that (3.24) can now be written also in the form 

4®" = / ^ ® ) / * -
Next we give two lemmas which will be of use in the following paragraph. 

Lemma 3,3. Let Ф : E ~~^ F be a bundle morphism and let A be a third vector 
bundle over M. Further let H^, Hp and H^ be connections on the vector bundles E, F 
and A respectively and let 

(3.39) НР8\Ф) = Т\Ф)НЕ, 

Then 
Т\Ф ® 1) {Hp ((X)) H^) = {Hp (®) H^) 8\Ф ® 1) . 

Proof. First note that 

(3.40) Б\Ф ® 1) Gp,^ = (Тр,^[3\Ф) ® 1] . 

Since (7£ ^ is a projection, it suffices to show 

(3.41) Т'(Ф ® 1) {HE (®) Яд) a^,^ = (H, (®) Я ^ 8\Ф ® 1) a^,^ . 
From Lemma 3.1 we get the relations 

Т\Ф ® 1) У^л = 7^®А[Ф ® 1] 
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and thus the left hand side in (3.41) can be transformed into 

Т\Ф ® 1) [H,; H^] = Т\Ф ® 1) {ylU^E ® Я,) + 

+ yiU^s ® Я^) - J r № ® lis) = УР^Л{Т\Ф) HE ® ns) + 

+ JmAi^ns ® H^) - Т\Ф ® i)j\{ns ® Us) . 

By virtue of (3.39) and (2.15), (2.13) this transforms into 

ilU^F ® Tîs) {s\ф) ® 1) + yiUns ® Ял) {s\Ф) ® 1) -
» j\{ns ® Us) {3\Ф) ®\) = [Я^; Ял) {8\Ф) ® 1) . 

Finally using (3.40) we see that this is equal to 

{H, (®) Ял) о,,АЗ\Ф) ® 1) = {Hr (®) Ял) 8\Ф ® \) (7̂ ,л 

and this completes the proof. 

Lemma 3.4. Let the direct sum E @ F of vector bundles E, F be represented by 
the diagram (3.22) and let Abe a third vector bundle over M. Let Я^, Hp and H^ be 
connections on E, F and A respectively. Then 

(Н,{®)Н,){®)Н^ = 

= T\i ® 1) {HE (®) Я ^ S\n ® 1) + T\}* ® 1) {Hp {®) H^) S\n* ® 1) . 

Proof. Note that (3.23) implies 

{H^{@)H,)S\})=T\})H,: 
and 

{H^{@)H,)S\n=T\j*)H,. 

Thus applying the preceding lemma to Ф = j : E -> E @ F and Ф = j ^ : F -^ E @ F 
we get simultaneously 

тЧ;®1)(яЛ®)Ял) ={[яЛе)я^](®)Ял}5Ч;-®1) 
т ч г ® 1) {H, (®) н^) = {[HE (e) Hp] (®) H^} s\j^ ® 1). 

"Multiplying" these relations by 8^{П ® 1) and 5^(Я* ® 1) respectively and adding 
the obtained equations we get immediately the required result. 

Let now £* be the dual of the vector bundle E, R = R{M) denotes as usually the 
trivial bundle of real valued functions on M. Denote by с : £ ® £* -> JR the "con­
traction" of elements, i.e. the natural bundle morphism assigning to x ® у e 
e{E ® £*)д the element <x, y} = y{x), 
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If X e T'(Ê)„ = if(£*, T\RX) and y e E*, denote by <Л', y} e T\RX the image 
of y under X. We see easily that 

(3.42) iX,yy = T\c)yl^U^®y). 

Analogously if У 6 T\E% = ^{E^, T\RX) and x e E„, write 

(3.43) <x, Y> = T\c) уЦ,,(х ®Y)e T\R) . 

The atlas Wi^ of E induces in a natural way an atlas 2̂1̂ * and consequently a family 
{/J*} of local isomorphisms of the jet and tensor prolongations of £*. If / and g are 
local sections in E and £* respectively and (^ , r^, (p) G Й ^ an arbitrary chart, one 
verifies easily the relation 

(3.44) Oljlf, g{a)y + </(a), î^jlg} = j l a 9> + <f{al д{а)У 

for each a e •%. This relation in fact suggests again the definition of the dual connection 
given below. Note that i f / (a) = 0 then (3.44) reduces to 

(3.45) </o7«/, К Ф == ia4/, ^> . 

Lemma 3.5. Let H^ - S^{E) -^ T^{E) be a bundle morphism satisfying (3.10). 
Then there exists exactly one bundle morphism H^* '. S'^(£*) -^ Г^(£*) such that 

(3.46) T'{c) [Я^; HE.] = S\c) CT^^E* • 

Proof. The condition (3.46) can be written in the form 

(3.47) Г{с) yll,.{ns ® Я^,,) = - T\c) У11Е,{НЕ ® П^) + 

+ JH^S ® ns) + S\C) <T£_E. . 

Applying this relation to jlf ® j^g e S^(£)„ ® S\E*\ we get 

(3.48) </(a), H^.jlg} = - iH,jlf, д(а)У + if {a), g{a)y + jUf, дУ • 

Since НЕ\КСХПЗ ™ 0̂5 we see from (3.45) that the right hand side of (3.48) vanishes if 
/ ( a ) = 0. But that means that (3.48) defines uniquely H^* e ^{S\E% ^{E, T\R))) 
and this proves the lemma. 

Proposition 3.5. Jf H^ is a connection then H^* defined in the preceding lemma is 
also a connection. 

Proof. In fact, applying Я J to (3.48) we get 

</{а),{ПгН„.)]1дУ= -{{nrH,)jlf,g{a)y + 

+ if {a), g{a)y + if (a), g{a)y = if {a), g{a)y , 
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I.e. 

<f{al(nrH^.-~ns)jlg} = 0 

for each f{a) e £«, g{a) e £* and thus FIjHj:* = Я5. On the other hand we have 
similarly as in (3.45) 

for each jig e Ker Я5 and hence for such jig and any /(a) we get from (3.48) 

UialH^.jlg} = (fia)jfjlgy 
and this completes the proof. 

The connection Я^* on £* associated with a connection Hß on E in the sense of 
the preceding proposition is called the dual of the connection Hß. We see from (3.46) 
that it satisfies 

(3.49) T\c)iH,i®)H„)=S'ic). 

Before passing to the explicite formulae connecting the components of Я^* with 
those of Hß in a given chart, let us introduce the following convention which is 
a modification of the Einstein summation convention. In expressions and formulae 
given below we sum not only over repeated indices appearing "above and below" 
but also over repeated indices, both appearing as subscripts or superscripts, if they 
are denoted by the same letter and one of them provided with an asterisk. The 
"stared indices" will appear in expressions connected with the "dual" £*. Therefore 
the analogue of the formula (3.5) defining the "components of Я^" in a fixed chart is 
to be written as 

(3.50) p"; = ПГРУТ . 

Note that glf^^ = gl' are the components of an element in the group G(W *̂) which is 
the contragradient to G(9l^). 

In a fixed chart {%, i\, cp) e %^ the relation (3.48) gives rise to the system of 
equations 

^ hi^ßfa Уо + ^ ßklafO " }ß Уо + Уо J ^ • 

Since Hß is a connection, we get from these equations the expected expressions for 
the components of F j according to Proposition 3.3 and, in addition, the only 
"interesting" relation 

(3.51) nt° + n ° = 0 , 

which shows again that, in the case E = T{M), the definition of the dual of a con­
nection given here corresponds to that in the classical theory. 

One can also easily introduce the notions of covariant differential and covariant 
derivatives with respect to a pseudo-connection Я on E of local sections in E. Let/be 
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a local section in E, a e M. The со variant differential of / at a with respect to Я is 
given by the element 

(3.52) n^HjifeE®T(My, 

If ('Ш, } \ , cp) 6 Й and if (dx' ® /̂ C )̂} is the frame in E^ ® T{M)^ corresponding to 
this chart, then the covariant derivatives of/ at a are the components of (3.52) with 
respect to this frame. Denoting the covariant derivatives by DJ^, we have 

(3.53) n*Hjfl = {DJ% àx^ ® ф) . 

In general if X is any tangent vector to M at a, i.e. X e T(M),^, then the element 

DJ=(X,n*Hjlf} 

is called the covariant derivative of/in the direction of X. Note that if X = (д\дх^) (a), 
then 

m 

k= 1 

In the given chart we have jlf = (5^/^)« sl{a) and 

Hjlf = r,,L,jlf = rZidßfX dx^ ® i,{a). 

Comparing this with (3.53) we get the covariant derivatives in the explicite form 

In particular, if Я is a connection we get by virtue of Proposition 3.3 the ''expected" 
relation 

(3.54) {DJ% = {ÔJ% + rlJ\a) . 

Example. In the form of an illustration we shall show that the connection on e.g. 
T{M) ® T{M) ® Т{МУ induced by a connection on T{M), in the manner described 
above, really corresponds to the classical connection on M. Just let (^, (p) be a chart 
of M and Ta local section in T{M) ® T{M) ® Т{му over ^li, i.e. a twice contravari-
ant and once covariant tensor field on M. Write 

T= T;"Ô, ® a, ® dx". 
Then 

(3.55) {D-J:% == {Ô,T:% + Г;::^{ГГ {a) , 

where Г^^Хь are the components of the connection on T{M) ® T(M) ® Т(му. If 
this connection is generated by a connection on T{M) with components F^i we 
conclude from (3.38) and (3.51) that 

r;:Zi = Ktiôirr + й;г^) + о-^оЦ-П) * 
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or, substituing into (3.55) 

(DXX = ( 5 , T ; ' )„ + ГГТГ (a) + r;,T,:^ (a) - П.Г/ {a), 

which is the well known classical formula. 

Definition 3.3. Let Ф : E -^ F be a bundle morphism. The bundle morphism 
Нф : S^{E) -> T^{F) is called a relative connection (or briefly R-connection) with 
respect to Ф if it satisfies 

(3.56) ПрНф = ФПз 

and 

(3.57) Н^\^^,„^=ТЧФ)1,. 

Lemma 3.6. If Ф : E -^ F is an injection then each R-connection with respect to Ф 
is an injection. 

Proof. L e t / e S\EX, a e M and Нф/ = 0. From (3.56) we getПрНф/ = ФПsf = 
= 0 and since Ф is an injection we have / e КегЯ^. But (3.57) yields 0 = Нф/ = 
= Т^(Ф)/о/and since Т^(Ф)/о is also an injection, we conclude t h a t / = 0, 

Corollary. If Ф is an isomorphism then Нф is also an isomorphism. 
Note that a connection on E is an R-connection with respect to the identity. 

Proposition 3.6. Let Ф : E -^ F and let Hp and Hp be connections on E and F 
respectively. Then both Т^{Ф) Hp and Hp 8^{Ф) are R-connections with respect to Ф. 

Proof. We get immediately from (3.9) and (2.13) or (2.14) НрТ\Ф)Нр=^ 
= ФПрНр = ФП^; ПрНрБ\Ф) =^П^8\Ф) = ФПs^ On the other hand let / e 
e Ker Hs e S\E). Then clearly Т\Ф) Hpf = Т\Ф) lof and applying (2.65) we have 
also Hp 8'{Ф)/ = Hp 8\Ф)10^1о/ = Нр1о'Т'(Ф)1о/ = Т\Ф)1о/ This completes 
the proof. 

Proposition 3.7. If Ф : E -^ F is a bundle isomorphism and Нф is an R-cohnection 
with respect to Ф then Т^{Ф)~^ Нф and Яф5^(Ф)~^ are connections one E and F 
respectively. 

Proof. We have again using (2.13), (2.14) and (3.56): П^Т^Фу^ Нф = 
= ф-'ПрНф = Ф-^ФП5 and ПрНф8^{ФУ' = ФПsS'iФУ' = Фф-'ns. If / e 
e КегЯ^ с S^{El g e КегЯ^ e S\F), we get from (2.65) and (3.57) Т\ФУ^ Нф/ = 
= Т\ФУ' Т\Ф)1о/, or Нф8\ФУ'д = НфЦ'1о S\ФУ'g = НфЦ'Т\ФУ' . 
. log = Т\Ф) Т\ФУ ^ log which completes the proof. ; 
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Note that the condition (3.39) in Lemma 3.3 means that H^ and Hp induce the 
same R-connection with respect to Ф. Analogously (3.49) states that Hp ((x)) Я^* and 
the identity induce the same R-connection with respect to the "contraction" c. 

Given an arbitrary bundle morphism Ф : E ~> F one could also introduce the notion 
of right and left pseudo-connections with respect to Ф. A bundle morphism Нф : 
: S^{E) ~> T^(F) would be a right (or accordingly a left) R-pseudo-connection with 
respect to Ф if Нф admited the decomposition Нф = Hp 8^{Ф) (accordingly Нф = 
= Т^(Ф) Hp) where Hp is some pseudo-connection on F (or Hp is some pseudo-
connection on É). However we shall not need this complicated terminology and say 
only that the pseudo-connections Hp and Hp on E and F respectively induce the 
same R-pseudo-connection with respect to Ф if Hp 8^{Ф) = Т^{Ф) Hp holds. 

On the other hand if Ф : E -> F is a bundle isomorphism then each bundle 
isomorphism Нф : S^{E) -> T^(F) is simultaneously a right and a left R-pseudo-
connection with respect to Ф. In this case both the corresponding Hp and Hp are 
uniquely determined by Нф, and conversely any of these pseudo-connections 
determines uniquely Нф and the second one. This can be briefly expressed by saying 
that there is a one-to-one-to-one correspondence between pseudo-connections on £, 
pseudo-connections on F and bundle isomorphisms of S^{E) onto T^(F). Moreover 
we have seen that if (Hp, Нф, Hp) is such a triple in correspondence and any one of 
the components is a connection, then the same is true about the other two. 

R e m a r k 5. In [6] a definition of a connection D relative to a bundle morphism 
Ф : E -^ F due to BOTT is given as follows. D is a first order linear diiferential 
operator assigning to local differentiable sections in E local diflerentiable sections 
in F ® T{M)^ with the property that if/ is such a local section in E, a e M and a is 
a differentiable function defined in a neighbourhood of a, then 

D{af) (a) = а(а) (Df) (a) + (Ф/) (a) ® da . 

It can be shown by direct calculations in local coordinates that this definition is 
equivalent to the definition of an R-connection Нф with respect to Ф given here, this 
correspondence being given by 

{ОЛ{а)==П^,НфП/, 

In particular if Ф = identity, then (Df) (a) is nothing but the со variant differential 
o f / a t a in our terminology (c.f. (3.52)). 
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