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NON-HOLONOMIC CONNECTIONS ON VECTOR BUNDLES I

JURAJ VIRsIK, Bratislava

(Received December 14, 1965)

Linear connections on vector bundles can be treated in a way that is formally
independent of the general theory of connections in principal fibre bundles developed
by EHRESMANN, Nomizu and others. There are, roughly said, two such possibilities
of defining a connection on a vector bundle.

One possibility is that employed by W. GREUB in [2], where the connection is
defined by means of a system of local differential forms with a priori given transforma-
tion formulae, a way similar to that used in the classical theory of linear connections.
The other possibility is that of defining the connection as a linear mapping of certain
vector bundles derived from the bundle in view. This method employs the theory of
jets introduced by Ch. Ehresman (cf. [1]), and is applied also in this paper.

The definition of a connection on a vector bundle E given here differs slightly from
that introduced by BoTT (cf. [6]). It allows to develop a formalism that is later used
in -the definition and study of holonomic, semi-holonomic, and non-holonomic
. connections of higher order on E, the semi-holonomic connections defined here
being in a simple relation to those investigated by P. LIBERMANN (c.f. [3]). The main
stress is laid however on the relation of non-holonomic connections to semi-holonomic
connections, i.e. on the “reduction” of non-holonomic connections to semi-holonomic
ones.

We start with a brief definition of a vector bundle which is slightly different from
the usual one. It does not include a priori the notion of the structure group and
a structure group appears only as a characteristic of a chosen collection of local
coordinates in E, i.e. of an atlas of E. The main reason for this is to avoid the explicit
use of the structure group, which may be complicated for calculations (e.g. in the case
of semi-holonomic prolongations) and is not necessary for the description of problems
studied below.

Next the prolongations of the vector bundle E, in the sense of Ch. Ehresmann ([1]),
are investigated. The prolongations of E are compared with certain “tensor prolonga-
tions” obtained from E and the tangent bundle T(M) by “ tensor product” and “direct
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sum” operations. There is a system of local isomorphisms between each prolongation
of E and the corresponding tensor prolongation. All the basic properties of the
prolongations are derived — in some way — from there by ‘“‘diagram chasing”
methods without explicite calculations. Coordinate expressions are, but for some
exceptions, avoided, and they are used only sometimes to illustrate the results
obtained.

A pseudo-connection on E (of first order) is simply a bundle isomorphism of the
first order prolongation of E onto T'(E) = E ® E ® T(M)*. It is a connection if it
satisfies some further conditions. This definition as well as the definition of a relative
connection with respect to some bundle morphism, as given in Definition 3.3,
coincides in fact with that given in [6]. In the form of an illustration one shows also
that it is equivalent to the definition of a connection on a vector bundle given by
means of the associated principal fibre bundle. One proves some evident generalisa-
fions of facts known in the classical theory of linear connections.

Pseudo-connections of higher order are defined as bundle isomorphisms of higher
order prolongations of E onto the corresponding tensor prolongations. There are
some relations between these isomorphisms and first order pseudo-connections on

' higher order jet prolongations of E and on the corresponding tensor prolongations.
These relations are relatively simple in the non-holonomic case. It seems to be
advantageous to study rather sequences of pseudo-connections of subsequent orders
(starting with the first order) than isolated pseudo-connections of a given order, this
fact being due to the very definition of a higher order €.g. semi-holonomic connection
given here, which differs from that given in [3] by a “superfluous™ part including de
facto pseudo-connections of lower orders.

A connection on E (of first order) together with a connection on the tangent
bundle T(M) give rise to canonical semi-holonomic and non-holonomic connections
of any order. Especially, a semi-holonomic or non-holonomic connection of any
higher order exist “almost always”. Furthermore, it is shown that the sequence of
canonical non-holonomic connections is reducible to the corresponding sequence of
canonical semi-holonomic connections, whatever be the generating connections on E
and T(M).

The basic results are contained in the theorems of the last paragraph.

1. SOME REMARKS ON VECTOR BUNDLES

In the whole of this paper only real numbers are considered. A differentiable
manifold, differentiable mapping etc., or simply manifold, mapping etc., means
always a C®-differentiable manifold, mapping etc.

Let M be a manifold, dim M = n. If % < M is a coordinate neighbourhood on M
and ¢ :% — @(%) = R* the corresponding diffeomorphism defining the local
coordinates, we call the pair (%, @) simply a chart on the manifold M, % is the domain
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of this chart. The collection of charts defining the differentiable structure on M is
called the atlas of M.

Let now E, M be differentiable manifolds and let p = p; : E - M be a differenti-
able mapping which is “onto”. Let dim E = n 4+ m. Further let E, be a fixed vector
space, canonically isomorphic with R™. Denote also E, = p~!(x) for each x € M.

Definition 1.1. Let % < M be open and let r, : E, —» E, be a one-to-one mapping
for each x € % with the property, that

Pip N U)—> U x E,,
given by
F(y) = [py, rpy],

is a diffeomorphism. Then the pair (%, r,) is called a chart of the triple (E, p, M),
%« being the domain of (%, r,).

Clearly, if (%, r,) is a chart of (E, p, M), then for each xe % r,: E, - E, is
a diffeomorphism. '

Definition 1.2. A collection 2 of charts (%,, r,) ; is called an atlas of the triple
(E, p, M) if

1) {%,}.cr cover M
2) for all ¢, " € I such that %, n %,. % 0, the one-to-one mapping

PR iU U X Eg > U, U, x E,

is a diffeomorphism, and for each x e %, N %,.

rt‘x(rtx)_l : EO - EO
is an isomorphism.

Two atlases o and A’ of (E, p, M) are equivalent if A U A’ is again an atlas of
(E, p, M). The atlas o is called a full atlas of (E, p, M), iff it has the following
property:

If (¥, 0,) is any chart of (E, p, M) such that for any (%, r,) e, 4 ¥ + 0,
there exists a differentiable mapping gay : % N ¥~ — GL(R, E,) = GL(R, m) satisfy-
ing 0,7 " = gay(x) for all xe % N ¥, then (¥, ¢,) € A.

It is evident that any atlas of (E, p, M) can be prolonged to a full atlas. Moreover,
there is a one-to-one correspondence between all full atlases of (E, p, M) and the
equivalence classes of atlases of (E, p, M). In fact, each equivalence class contains
exactly one full atlas. '

Definition 1.3. The structure defined on (E, p, M) by an equivalence class of atlases
is called a vector bundle structure. Thus a vector bundle E over M is a triple (E, p, M)
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provided with a vector bundle structure. The corresponding full atlas of (E, p, M) is
called the full atlas of the vector bundle E and any atlas of the equivalence class
defining E, i.e. any subatlas of the full atlas of E, is called an atlas of E.

Now it can be shown (see e.g. [7]), that a vector bundle structure on (E, p, M)
defines an m-dimensional vector space structure on each fibre E, such that if (%, r,)
is any chart of the full atlas, then r, : E, — E, is an isomorphism. As usual, E, is
called the fibre type of the vector bundle E.

Given a manifold M, all the vector bundles over M form a category &(M).
A morphism H : E — F in this category is a differentiable mapping of the manifold E
to F such that p, = pyH and for any x € M the corresponding H,: E, — F, is
a homomorphism of the induced vector space structures. We shall call such H
simply a bundle morphism. A bundle isomorphism, projection, injection, are defined
in the usual way. Denote by R = R(M) the trivial vector bundle corresponding to
differentiable real valued functions on M.

Let E be a vector bundle over M, % — M any open subset. A differentiable
mapping f : % — E, with the property p.f = identity, is called a (local) section
over % in E. Denoting by R(%) the ring of all differentiable real valued functions on %,
it is clear that the set of all local sections over % is an m-dimensional R(%)-module
if and only if % is the underlying domain of a chart (%, r,) belonging to the full
atlas of E. There is a natural basis of this module given by the local sections i : x —
- ry Y(i(0)) (k = 1, ..., m), where {i;(0)} is the canonical frame in E,. This basis {i,}
will be called the frame of the chart (,r,). It induces a frame {i(x)} in E, for
eachxe .

Let now E be a fixed vector bundle over M and % an atlas of E (not necessarily
the full atlas). This atlas induces a set of isomorphisms

(1.1) rril i Eg > Ey

or, more precisely, if (%,r,)eW, (U',r)eW, U U + 0, then x - rir; ' is
a differentiable mapping of % n %' into GL(R, E,) = GL(R, m). The smallest
closed subgroup G() = GL(R, E,) containing all the isomorphisms (1.1) is called
the structure group of the vector bundle E spanned by the atlas . It is well known
that G(?I) can be given the structure of a Lie group of left transformations on E, and
thus the atlas 2 defines on E a fibre bundle structure in the usual meaning of the
word.

Two atlases 2, A’ of E are called G-equivalent if G(A) = G(W’). Let G be any
closed subgroup of GL(R, E,). We shall say that an atlas U of E is G-complete if it
has the following property:

If (¥, o) is any chart of the full atlas of E such that for any (%, r,) e W, % n ¥ +
+ 0 there exists a differentiable map g,y : % 0¥ — G satisfying 0,77 " = gay(x)
for all xe % n ¥, then (¥, ¢,) € .

Each atlas of E can be completed in a unique way to a G-complete atlas A, where
G = G(W). 9 is called the completion of A. A fibre bundle structure on the vector
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bundle E, or briefly a G-structure, determines uniquely a complete atlas of E. An
atlas is called complete, if there exists a closed subgroup G < GL(R, E,) such that
this atlas is G-complete. Note that the full atlas of E is the only atlas that is GL(R, E,)-
complete. The vector bundle E is trivial if there exists a 1-complete atlas of E, where
1 = GL(R, E,) is the trivial subgroup.

An atlas A of E is called semi-complete if to each (7, ¢,) € A and each xo e 7"
there exists a chart (%, r,) € %, x, € % such that ¢, = ry.

Remark 1. Let A be the “natural” atlas of the tangent bundle T(M) defined by
local coordinates on M. Then 2 is clearly semi-complete, its completion being the
full atlas of T(M). Let further 2U be a complete atlas of T(M) defining a G-structure
on M (i.e. on T(M), in our terminology). Then this G-structure is by definition inte-
grable iff there exists an atlas 2” < A such that A" = A,

Let now H : E — F be a bundle isomorphism and let the fibre types E, and F, be
identified. If (%, rE) is any chart of the full atlas of E, then clearly (%, rEH; ") is
a chart of the full atlas of F. In this way H defines a one-to-one mapping between
atlases of E and F respectively.

Lemma 1.1. If H : E — F is a bundle isomorphism, Ay, W, are atlases of E and F
respectively such that H(y) = Ay, then H(A) = W and G(AL) = G(Ay).

Proof. We first show G(Uy) = G(Ap). Let (%, ri)eWy, (U, rF)eq;, xe
eU N U'. G(Ag) is the smallest closed subgroup of GL(R, E,) containing all such
rErE)~1. But on the other hand (%, riH;")e Ay, (%', rF)e A, and thus
rifH T H(rE) ™ € G(Ay). This means that G(2j) contains all the “generators”
rE(rf) 1 of G(Ay) and thus G(Ag) = G(A). Reverting these considerations (note that
H : A - A is one-to-one) we get the converse relation and hence G(A) = G(A).

Let now (¥, %) = (7, ¢ H; ") € H(Ay), i.e. (¥, of) € Ap. This means, that for
“any (%, r5) e g, U N ¥ + 0, we have the differentiable map

(1.2) XeUNY - oirE) e G(AL).
Let (%, 1Y) e A and % N ¥ + 0. We wish to show that
(13) x - Q1)1

is a differentiable map # n ¥~ — G(Ay) = G(A). But since (%, rk) e Wy = H(Up),
we conclude that (%, riH,) e g, and the expression in (1.3) gets the form (1.2).
Thus H(Ag) € A. The converse is similar andithis completes the proof.

Let 9 be any atlas of the vector bundle E. The set of all frames at the points of M
generated by all the charts of 2, forms a principal fibre bundle Z(E, ) associated
with the fibre bundle structure on E given by U, its right transformations’ group
being G(). This acting of G(A) upon Z(E, A) can be expressed explicitly as
follows:
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Let g € G(N), {ix)} € Z(E, W), and let (%, r,), (%', r;) be charts of A such
that xe % " U', g = rir;", r(ifx)) = i(0) (k = 1,...,m). Then g{iy(x)} =
— () )

Let again H : E — F be a bundle isomorphism, H(2y) = ;. Then H generates
a one-to-one mapping Z(E, Ay) » P(F, Ay) assigning to the frame {i(x)} e
€ P(E, Ay), the frame {H,(i,(x))}. It would not be difficult to show that this mapping
is a “fibre preserving” diffecomorphism and that it commutes with the acting of the
group G(y) = G(A).

Lemma 1.2. Let E, F be vector bundles and H : E — F a bundle morphism.
Suppose that there exists a homomorphism H, : E, — F such that to each ae M
there exist charts (U, rt) and (U, rt) (a € %) of the full atlases of E and F respective-
ly, satisfying

(1.4) xeWU = Hyrt = rfH_ .

Then Ker H ¢ E and Im H < F are vector bundles and the canonical injections
Ker H —» E,Im H — F are bundle morphisms.

Proof. It is not difficult to see that the differentiable structure on E induces
a differentiable structure on Ker H. Now the vector bundle structure on Ker H is
defined by the atlas consisting of all charts (%, rZ|x., u,), where (%, r%) satisfies (1.4).
We have namely from (1.4)

7y |kerm, s Ker H, —> Ker Hy, .

A similar argument leads to the vector bundle structure on Im H.

Let now 2 be again a fixed atlas of E. Without loss of generality one can always
suppose that if 2 contains a chart (%, r,), then it contains also all the “restrictions”
of this chart. Now let (%, r,) € U be such that % is simultaneously a coordinate
neighbourhood on M. Denote by A’ < U the atlas of all such charts. Clearly %’ = 9,
G(A') = G(A) and A’ is semi-complete if and only if A is semi-complete. An explicite
chart (U, ry, ) of A is defined by a chart (%, r,) e W and a chart (%, ¢) on M,
Denote by 9 the set of all explicite charts of 21.

2. JET AND TENSOR PROLONGATIONS OF VECTOR BUNDLES

Let E be a vector bundle as above, i.e. E € §(M). The (holonomic) jet prolongation
of g-th order (g = 1) of E, denoted by SYE), is the set of all jets of g-th order of
differentiable local sections in E. It is well known, that S%E) can be given a vector
bundle structure with the fibre type J{(R", E,), where J§(R", E,) is the vector space
of all jets of g-th order of local mappings from R" into E, with source 0 € R" (cf. [1]
and below).
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We shall be mainly interested, however, in non-holonomic and semi-holonomic
prolongations of the vector bundle E, and the purpose of this paragraph is to derive
all the basic properties of these prolongations without using their structure groups,
only from the properties of the first order prolongation S*(E).

Let (%, r,, @) be an explicite chart of the full atlas of E. It gives rise to an explicite
chart SY%, r,, ) = (U, vS, @) of (S'(E), p, M) such that (%, r}) belongs by defini-
tion to the full atlas of the vector bundle S*(E). It is defined by

1S SUE), ~ TR Eo) . ac¥

as .

@1 ro(f) = jo(ife~"1)

or, respectively,

(2.2) (r) ™ (fo) = Ja(™ ot ") -

Here we have used the following notations: f = j! f € S'(E),, where f is a local section
in E over a neighbourhood of a, and similarly f, = jofo € Jo(R", Ey), where f, is
a differentiable map of a neighbourhood of 0 € R" into E,,. The symbol ¢ denotes the
translation in R” taking 0 into the source of the preceding component, i.e. into ¢(a)
in (2.1). Analogously ™! takes the target of the succeeding component (i.e. the ¢(a)
in (2.2)) into 0 € R™.

If (%', ry, ¢") is another explicite chart of the full atlas of E and a € % n %', one
easily derives from (2.1) and (2.2) the expression

(2.3) ) ()™ (fo) = Jo('P ™ ot Tl e(e") " 1)

Now let U be a fixed atlas of E (possibly, but not necessarily the full atlas of E).
-There exists to each explicite chart of 2 an explicite chart of the full atlas of S'(E).
In this way 2 defines an (explicite) atlas S*(2) of S*(E).

Proposition 2.1. If 9 is semi-complete then S'(N) is also semi-complete.

Proof. Let a € M be fixed. Clearly all the mappings of the form (2.3) belong to the
group of all automorphisms of the fibre type J§(R", E,). On the other hand, if § =jg
is a one-jet of a map R” — G(2) and ¢ = jo® is a one-jet of an invertible transforma-
" tion of a neighbourhood of 0 in R" with source and target 0, then there can be found
charts (%, ry, @), (%', 7% ¢') € N, a € U ~ U’ such that the corresponding transition
formula at a given in (2.3) has the form

(2.4) fo = Jo((afo) ®)

where g acts upon f, “pointwise”. This follows from the semi-completeness of 2.
The relation (2.4) defines clearly an automorphism of J§(R", E,) and the set of all
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such automorphisms form a group S*(G, M) which is a group of linear effective right
transformations of Jg(R", E,). Thus its contragradient S'(G, M)* is a subgroup of
the group of all automorphisms of J'(R", E,). It is also not difficult to see that
S'(G, M)* is closed and thus S'(G, M)* = G(S"()). From there we conclude easily
that S"() is semi-complete.

The fibre type Jz)(R", E,) of E is canonically isomorphic with
) By ®F, ® R = £, © (R ® R™),

which is clearly also the fibre type of the bundle T'(E) = E ® E ® T(M)* =
= E ® T'(R). Here T(M) denotes as usually the tangent bundle of M, T(M)* its
dual. The atlas 91 generated from the atlas 2 of E defines in an evident way also an
explicite atlas T*(2) of T'(E). and if A is semi-complete, then the same is true about
TH(A).

Denote by {i(0)}x=; ... the canonical basis of E, and by {¢'(0)};=, ., the
canonical basis of R™; ¢°(0) let be the image of 1 under the natural injection
R —» R @ R™. Thus the canonical basis of (2.5) consists of elements of the form
£0)® i(0) (x=0,1,..,n; k=1,...,m). Given a chart (%, r,¢)e A, the
basis {¢"(0) ® i,(0)} defines a frame {si of the chart S'(%, r,, @), and a frame
{12} = {dx* ® i\} of the chart T'(%, r,, ¢). Here again dx° denotes the image of 1
under the natural injection R(M)— R(M) ® T(M)*. Consequently {si(x)} or
{ti(x)} = {dx* ® iy(x)} are frames in S'(E), or T'(E), respectively, for each
xe.

Using these notations we can now calculate explicitly the matrix M of the transition
automorphlsm (2-3). Let G() consist of matrices (g} ). This means, that if (%, r,, ¢).
@', r,, ¢)e 9 and f is a local section in E over % n %', then

fx) = f1) in(x) = f4(x) iex), )

where f¥(x) = g§ (x) f%(x) and (g}):% n % — G(A). Thus (g}) corresponds
to rir; "

If now a N % n %' is fixed, we have
2.6) = fisila) = fE5t(a)

where f§ = f*(a), f* = [(9/0x") f*], (i > 0) and similarly for f§., f*/. Denoting by A'.
the Jacobian (0x'[0x"),, we obtain from (2.6)

A

’ ’ x’ P C - . ’
Q1) =@, fE = A (5-1. gi:) £+ ALt (@) £
x a

1) The usual convention of summation over repeated upper and lower indices is applied
throughout the paper.
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In other words, if M = (M},?) is defined by?) fX. = MESfE, then (2.7) yields

(2.8) Mis» = gi(a); Mig. =03 M) = 4/, (5; qk> 5 M= gi(a) Al

We shall need in the next also the explicite formula for the inverse matrix M™! =

= (M%)

o 0 - y
(29) M =gha); MYy =01 MY = 4 (&—-gz,); MY, = gh(a) 47,
J’ a
where gf gl = 5f..

On the other hand denoting (%, rl, ¢) = T'(%, r,, @), we have

ra(vati(@)) = v#(0) ® i,(0) .

This gives for any point a in the intersection of the domains of two charts the transit-
ion formula

v = ALgi vk,

where A3, = 1 and A}, = = A% = 0for i, i’ + 0. In order to have a comparison with
(2.8), represent r,’(r2)"* by a matrix N = (N %). Then
(2.10) Niy = gi(a) ; =03

N =0; Nt = gi(a) AL

The atlas 9 defines a class of local differentiable isomorphisms {I,} of S'(E)
onto TY(E). If (%, r,, @) €N, then Iy : psi(e(%) = prie (%) is the isomorphism
given by the correspondence of the frames {si} and {t;}. It is evident that it commutes
with the operation of restriction of charts. This class {I,}, however, cannot be
obtained by “restrictions” of a bundle isomorphism I : S'(E) - T'(E) unless G() =
= 1, which implies that E is trivial. In particular, the natural atlas in R(M) has this
property and thus S'(R) is canonically isomorphic with T'(R). We put simply
SY(R) = T'(R).

There are natural bundle projections ITg: S'(E) » E and ITy: T'(E) — E, the
first one being nothing but the target map. These projections clearly satisfy the
conditions of Lemma 1.2, and thus KerlITg = S'(E) and KerIl; = T'(E) are

vector bundles. One establishes easily from (2.8) and (2.10) that {I,} gives rise to
a bundle isomorphism

(2.11) Iy :KerITg — Ker Iy
observing that in a given chart of  the element f = fsi(x) € S'(E), (y = yii(x) e

2y For the sake of simplicity we sometimes omit in the whole paper the argument x, a, etc.
in expressions ‘‘over a point x, a, etc. of M if this cannot lead to confusion.
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e T'(E),) belongs to KerITg (to KerIly) if fo = 0 (y§ = 0). Further denote by
jr:E - TYE) = E ® E ® T(M)* the natural injection.
Let F € &(M) be another vector bundle and @ : E — F be a bundle morphism.
Define
T®) = d ® Trig) : TYE) - T'(F),
and S'(®) : S'(E) —» S'(F) by
(2.12) SYP) jof = Ja(Pf)

It is not difficult to see that S' and T! thus defined are covariant functors from the
category &(M) into itself.

Remark 2. For the sake of simplicity we shall not indicate the vector bundle E
in the symbols IT, Iy, j1, etc., so that we shall use the same symbols for these
projections or injections connected with any bundle of &(M).

Now it is not difficult to verify the following properties of the functors S* and T":

(2.13) ITs SY(®) = &I
(2.14) T, TY(®) = &I,
(2.15) T(®)jr =Jjr®.

The non-holonomic jet prolongation S%E) of E and the non-holonomic tensor
prolongation T%E) of E or order ¢ > 1 are defined recurrently as S%(E) = S*(5*"'(E))
and TE) = T'(T*"'(E)). A non-holonomic jet of order g is thus an element of S%E).
Our task will be to derive the basic properties of the jet prolongations of E by compar-
ing them with the tensor prolongations which we are now going to introduce.

Let ¢ = 1 and define recurrently the holonomic tensor prolongation

(2.16) TYE) = T" /() ® E ® (0 T(M)¥) = Y E ® (& T(M)¥),

k=0

the semi-holonomic tensor prolongation

eI) PO =TT@eES & TM)) - Y ES (& T(M)).
and the non-holonomic tensor prolongation —

@18) TYE) =T (E)® T"(E) @ T(M)* = E® (& (R ® T(M)*))

putting T°(E) = T°(E) = T°(E) = E. The atlas 2 of E generates canonically atlases
T9(A), T4A), TYA) of the vector bundles TYE), TE), TE) respectively.

We shall use three kinds of multiindices in the explicite formulae below:

1) Y. consists of all indices p = (py, ..., p;), where each p; runs from 1 to n and
Ipl=k
p=0if k =0;
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2) O Z consists of all ordered indices p= (pl, ceay pk)’ D running from 1 to n. In
lp1=k
other words, p e z belongs to O Z iffi<j=p; < Py
Ip| =k Ipl=k

3) @ Y consists of all indices p = (py, ..., p,), Where each p, runs from 0 to n.
Ipl=¢
The same symbols are thus applied to indicate the way of summation as well as the
set of the indices.
Denoteby 4 : ), — O} the rule of ordering the components. Note that if pe 0 Y’

and the integer i (i = 1,..., n), occurs in p y-times, then Ipl=k
k!
(2.19) card A7 !(p) =
wleopmy,!

Further » :®) - Y denotes the rule of dropping all the zero components in a multi-
index (but w(p) = 0 if p consists of zeros only). Note again that if 0 : @ Y, —

and pe ) ., then Ipl=a 0xlp|sq
Ipl=k

(2.20) card o™ 1(p) = <i> = .

Now we can pass to coordinate expressions in the bundles (2.16)—(2.18). A chart
(%, ry, @) € A gives rise to the frames

(2.21) (ot ={i,®(0"), k=1,...,m; peO 21 ,
0=|pl=q
(2.22) {0} ={i, ®(®*)}, k=1,..,m; pe IZI ,
0=|pl=q
(2.23) @Ml ={i®@@®@®),) k=1,..,m; peolpl‘éq

of the charts TY%, r., @), T, r., p) and TY%, r,, ¢) respectively. Here we have
used the abbreviations
pe Oy = Off = dx" O ... O dx™,
pe Y =@ =dx" @ ... ®dx™,
pece) @’ =dx" ®...® dxPs
and Of° = @1° = 1. B _ -
There are natural bundle injections 1% : TY(E) - TYE); it TYE) - T*(E) defined
locally as follows: If (%, r,, @) € 9 is a fixed chart, then
E=0Y &OoneT(E),, xe¥=
Ipl=q
1

24 CpE=y - & @tleTYE).
(2 ) lré ngq card /'L"(/l(p)) é;.(,,) k
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and
n=Y nt@theT(E),, xe¥=
Ipl=4q

(2.25) itn=e Z N ® 12 € TYE), .
Ipl=q
Note that 1 € TY(E), belongs to Im 1% if A(p) = A(p’) implies n§ = n%. for all k =
=1,...,m;ppe) ,ad (=@ ) C:‘;Q th e TYE),, x € % belongs to Im i% if
Ipléq Ipl=4q
o(p) = o(p’) implies (& = (. forall k =1,...,m; p,p'c@® ) .
Ipl=4q

The direct sum decompositions in (2.16), (2.17) and (2.18) give rise to the diagrams

3 g ‘

(2.26) T~ \(E) === T(E) =—_— E® (O T(M)*),
]T ]";‘
s b 4

(2.27) T \(E) — TY(E) = E® (® T(M)*),
/T JT

and

74 = 1y T4 =11%

(2.28) T4 Y(E) = s TYE) =—— T*" Y(E) ® T(M)*

JT JT

which, together with evident relations between the corresponding projections and
injections, totally characterize the direct sum structures of T%E), T{(E) and T(E).

Note that in particular Ker IT% is canonically isomorphic with E @ (é T(M)*).
Given a bundle morphism @ : E — F, the formulae (2.16)—(2.18) suggest in
a natural manner the morphisms

(229)  TY®): TE) > TYF), TY®):TYE)— TF), T«®): T(E) - TUF),

and it is not difficult to see that 7% T4 and T are again covariant functors from the
category &(M) into itself.

The following lemmas are either evident or can be aesily verified by direct calcula-
tions with local coordinate expressions.

Lemma 2.1. The diagram (D%):

TY(E) T4~ \(E)

g-1
hil
= 1y g
i‘ITl lx“f‘
gt
T

T~ (E)

is commutative for any q = 1.
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Lemma 2.2. Let & : E — F be a bundle morphism, q = 1. Then the “three-
dimensional” diagram, obtained by connecting (D%) with (D%) through bundle
morphisms of the form (2.29), is commutative.

The non-holonomic jet prolongation SU(E) is a vector bundle with the fibre type

E, ® (é) (R @ R"*)) and the atlas o of E defines by recurrence an atlas S%(2)
of SY(E).
Let (%, ry, ¢) be a chart of 9 and let {@sf},k = 1,...,m; pee . be the frame of
Ipl=q
the corresponding chart SY%, r, ¢). The atlas U defines a family {I%} of local

isomorphisms
I : Pg‘:}E)(%) - P;ql(s)(%)
given by the correspondence of the frames {@s}} and {®17}.
The target mapping 7% : SE) - §97'(E) is a bundle projection and takes each

element f e SYE), with local expression
(2.30) f=e fiesia)

Ipl=4
into the element with local expression

ﬁ?? J=e Z ﬂ;,o. si(a) -
Ipl=¢—1

Hence we have a commutative ‘“‘local” diagram

“ 15
(B ————— TE)
(2.31) ) g 7 .
it
SHE) - T\(E)

The dashed arrow means that the morphism is only local, depending on the choice of
the chart.

Now let f be any local section in E over a neighbourhood, say #(a), of a € M. The
section x — jLf (x € ¥°(a)) in S*(E) over ¥(a) is called the flot of f. The flot of this
section is again a section in S%(E), and repeating this procedure we get a local section
x — j27' fin §¢7(E) which finally gives rise to an element jif of SY(E),. An arbitrary
element of §%(E) which can be obtained from a local section in E in this way is called
a holonomic jet of g-th order. If {i,} is the frame of a chart (%, r,, ¢) € 9% and
f(x) = fXx) iy(x), then the corresponding jif(a € %), being by definition an element
of S%E), can be expressed as

(2.32) jif=e % o,f*@ si(a),
Ipl=¢
o 0 0 0 .
here 0, = —— — ... and —— = identity .
v PooxPr oxP T oxPa x°
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However, the set of all holonomic jets is nothing but the holonomic jet prolonga-
tion SYE) of E, and we shall show below explicitly that the atlas 2 together with the
family of local isomorphisms {I%}, defines an atlas S%2) of SYE). But before that
define semi-holonomic jets.

Definition 2.1. (cf. [ 1]). Each element of S'(E) is a semi-holonomic jet. An element
fe 8YE), — written in the form f = jig, where x — g(x) is a local section in
S47Y(E) — is a semi-holonomic jet if g(x) is a semi-holonomic jet of order ¢ — 1 for
all x in a neighbourhood of a and

(2.33) Jja(M1§'g) = g(a).

Remark 3. The non-holonomic jets or prolongations are introduced relatively
simply by ““iteration” of the first order prolongations, and therefore some of their
properties are evident. This is the main reason for starting with non-holonomic jets
and introducing not only semi-holonomic but also holonomic jets a priori as subsets
of the set of non-holonomic jets.

Proposition 2.2. A) If f € SYE), is semi-holonomic and (U, r., p) € N, a € U, then
the local expression (2.30) satisfies
(2.34) w(p) = w(p)=fy=Jy for k=1,...,m and p,pce®y .

ipl=4

B) If feSYE), in (2.30) satisfis (2.34) for some chart (U, ry, )eN, ac¥
then f is semi-holonomic.

Proof. A) We shall proceed by induction. Suppose that A) is true for all semi-
holonomic jets of orders less than q. If f = jlg, where g(x)e S !(E) is semi-
holonomic for each x in a neighbourhood of a, then comparing (2.30) with

(2.35) o) =0 T g0 )
we get !

(2.36) | fio = 9i(@) .

(2.37) for = < aa, g,;)

and (2.33) yields
(2.38) gyla) = ( gvo)

If o(p) = o(p’) = 0, then (2.34) is trivial. Thus suppose w(p) = w(p’) + 0(|p| = q).
If 0 is on the end of both p and p’, one easily concludes by recurrence from (2.36)
that f¥ = f.. Let p = (B0), p’ = (B’r), r + 0. Then

(2.39) fr=gia); fy = <~ g,,)
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Since g(x) is semi-holonomic and w(p) = w(p’), we have gﬁr = g'}»lo, g'} = g;‘w,
these relations being valid in a neighbourhood of a. But then (2.39) yields

w (0 kN, m_ & [0 &
Jpr = 9o )s Jo = gﬂ"r(a) =\79p0
ox" p ox" a

and hence % = f%. Finally let p = (fr), p’ = (f’s), r, s + 0. But this is not possible
unless r = s which implies w(f) = w(f’) and the rest is now evident.

B) Suppose again that B) is true for all jets of orders less than g and let e S%(E),
satisfy the condition in a given chart. One can find functions g’g(x) defined in a neigh-
bourhood of a such that gj(x) = gj(x) if w(f) = w(p’) and such that (2.36) and
(2.37) hold. From the recurrence assumption we conclude that these functions define
a local semi-holonomic section g in §”“1(E) such that f = jlg. It remains to show
(2.33) or (2.38). But this is evident since [(3/0x) g% ], = fos = "0 = g+(a). This
completes the proof. ‘

Corollary. Each I% induces an isomorphism 1%, of the set of all semi-holonomic
Jjets with source contained in U onto pj;:(E)(ﬁ’?l). '

Proof. In fact we have seen that { = I%f belongs to Im i} iff (2.34) holds.
It is not difficult to see that any holonomic jet is necessarily a semi-holonomic one.
Moreover we have the

Proposition 2.3. A) If fe SE), is holonomic and (%, r,, ¢) € A, aeU, then the
local expression (2.30) satisfies
(2.40)  Jw(p) = Aw(p)=J5=fs, for k=1,...m and p,pce® ) .
Ipl=q
B) If feSYE), in (2.30) satisfies (2.40) for some chart (U, r,, )€, ae,
- then f is holonomic.

Proof. A) follows immediately from (2.32) and B) is a consequence of a well
known fact in classical analysis.

Corollary. Each 1%, induces an isomorphism 1% of the set of all holonomic jets
with source contained in % onto p;.,l(E)(f/?/).

Proof. In fact, { = I%f belongs to Im (i}1%) iff (2.40) holds.

Denote by SYE) = S%E) the set of all holonomic jets. and by SYE) = §%E) the
set of all semi-holonomic jets. Note that SY(E) = S%E). We have just seen that the
atlas U induces an atlas S%) and S%) of SUE) and SY(E) respectively. In fact if
(#, r,, @) € 9, then the frame of the chart SU%, r,, ¢) or S, r,, @) is given by
{osk} or {®sf}, where

osp =)~ (o), k=1,...m; peoO Y,

TR
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or
®sp =)~ (@), k=1,....,m; pe)

Ipl=q
respectively. It is not difficult to verify that they really define vector bundle structures
on SYE) and S9(E) respectively. Denote by 14 : SYE) - SYE) and i% : SYE) - S%(E)
the natural bundle injections and by IT¢ : SY(E) — S~ '(E), 1% : SYE) — S*™Y(E) the
projections induced by /7% Note that IT4 and T74 satisfy the conditions of Lemma 1.2
and consequently Ker IT4 and Ker 174 are also vector bundles.
The following lemma can be again easily verified using local coordinate expressions

Lemma 2.3. Let (%, ry, ¢)€ . Then the “local three-dimensional” diagram
obtained by connecting the diagram

q

SYE) — s

q q—1
;| K
g

SYE) 5 57k

-q q—1
Isl ‘tlg
hi

SU(E) _W_l‘[if, S 1(E)

with(D%) through suitablelocal isomorphisms induced by I% and I%, " is commutative.
Let ¢ >r =0 and (%, r,, )€ . The chart S'(%, r,, ¢) induces a local
isomorphism

(2.41) Iy, : S"*Y(E) = S'(§'(E)) » T'(S"(E)).
Let us define the local isomorphism
(2.42) Az T(8(E) » T (8 Y(E))

as A4? = T"(I4 4-,-1)- Anelement fe T"(S*"(E)),, x € %, can be expressed in the form

(2.43) T=0 Y T e s @ (erere i)
Ipl=q

and (2.42) takes it into

(.44) AT = % T @ s @ (@),
Ipi=q

Hence the local isomorphisms A%* (r = 0, ..., ¢ — 1) determine a decomposition of
the local isomorphism T4, : §%E) — T%(E) into the sequence

(2.45)
0,9 Ala A2.4 A9—2.4 A9-1.9

SUE) -2 THS () 2> TS 2(E)) — 2> ... ——> T Y(SY(E)) —— TIE)

in such a way that the diagram (2.46) is commutative.
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@g e (@) s iSL = (@aci®yoa = oy (@)oo h

M K2
ﬁla.vav\ ﬁlv.u—\ » ' Alw.ﬁl._w\ »ﬂ ﬁlw.lev\ ~Iw.ow\ X,

~

N
L I 4 ‘ RN
G T~ AN

e TN SO e () S (CI L A )R B
w.ﬁlmv\ v,~+x~.\ baV m.—+..v\ &.ﬂv\ on
(Lt2)
(@l mmmmp= " va_-raE e (@acpS)ycal e e (@) S
H ulw.NI;v\ -I?.L\ 1-b* AI,_w\ alw.ﬁlg_\ ﬂlw.ov\ 4 //
,V . NS
2 : | il Lo o /Nﬂ
(@) (@) ) (@)i-s8) (@) -»8) ,/A )
Aol - e (@) g ambS) sl < A)icsS)ul - s A)y 8L =z A)sS
v;lxwv\ @.~+-,\:\ ' H+ m@«\ @.al\w—\ Twwv\ ! ! w.&MT
(9r'7)
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The bundle projection
(2.48) T(fry ) - T(5*"(E)) —» T(5* "~ Y(E))
takes the element fe T"(S47"(E)) in (2.43) into

(249) T"‘(ﬁ )f ® z f::1 R pq. S,[‘u,“.,Pq~r~—l ® (.tpq—rn,...,p,,) .
Ipl=4
Lemma 24. Let ¢ >0, 0=<r <gq — 1. If feKer T'(T1L"), then Ayife
e T+ (S "~ (E)) does not depend on the chart (%, r,, ¢) defining the local iso-
morphisms Az

Proof. Write T"(57"(E)) = 5 "(E) ® T"(R) and suppose f = f,; ® f,, where
f1€87(E), f, € T"(R). Then T"(T1%™") 7 = 0 implies f, e Ker [1§™". But Ay"f =
=1Iyqg-r-1f1 ® f,and since Iy 4,1 |keriia-rg iSalocalisomorphism I, — connected
with the first order prolongations of the bundle 77"~ *(E) — restricted to the kernel
of the corresponding projection, we see that I 4, f; does not depend on the chart.
From there we conclude the same property for A%? fand this proves the lemma.

The integers g and r being given as in the lemma, consider now the diagram

AO Ar 1.4
(2.50) S(E) . .. - Tr(§* '(E))m--- Tr+1(§r~Y(E))
AN
TSN
N
N

(S~ 1(E)) .

It is not commutative. In fact, if fe T"(S""(E)), pf e %, is given as in (2.43), then
T'(I1%7") has the form (2.49) and from (2.44) we have

(2.51) (ﬁ;HA,'W“’)f —@ z f‘l;l .... pq—1,0. gPLePa=r=1 ) (. tqur,--qu—i) —

Ipl=q

= 7k I Pg—r+1smeesP
_.me ..... 17,,,1[1q,+10°S o ®(‘tqr ")'

Comparing (2.51) with (2.49) we see that they are equal if and only if f has the property
(2.34), i.e. if f is semi-holonomic. In other words, the diagram (2.50) will be com-
mutative if and only if one starts in S%(E) with a semi-holonomic jet. In this sense we
can say that the diagram (2.47) is commutative “as a whole”, i.e. each possible “path”
starting in S%E) and ending in the same space gives the same resulit.

In particular, if we start with f e Ker 174, i.e. i4f € Ker IT¢, we passeach T"(5%~"(E))
through Ker T"(I14™") and consequently we conclude from Lemma 2.4, that for such f
the image 1%i4f € TYE) is independent of the chart (%, ry, ¢). An easy application of
Lemma 2.3 yields now the
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Proposition 2.4. The family of local isomorphisms {IZ’} corresponding to the
atlas N induces by restriction a bundle isomorphism

Iy :KerII§ —» Ker 1% = E® (QZ)T(M)*) .
Similarly the family of local isomophisms {I%} induces by restriction a bundle
isomorphism

I% : Ker IT% - Ker IT%: = E ® (OT(M)¥).

This may be also expressed in a more usual form as

Corollary. The short sequences of bundle morphisms

*
0)111

0 E® (bTMy) 2 T sup) 15, si1p) S 0

1

0 E® @GTony) I sy T sem) o0

are exact.
Suppose g > 1. The definition of semi-holonomic jets yields a decomposition of
the injection i : SYE) — S%E) into the sequence

stag!

(2.52) sp) 2 515 (e S S9(E).

Moreover we conclude from this definition, Lemma 2.3 and (2.13) that

1) the diagram

G

-q’
(2.53) SU(E) 2 S'(STI(E) - S(E)
. |
| K
a g |
s o -1
Tqg—1

(B) ——— 5'(E)
is commutative. We define i3 as the identity.
2) an element X € S'(577!(E)) belongs to Im ¢’ if and only if
"(2.54) SUET YY) X = i 'IsX

where iy : £ - E is the identity.
Define now the mapping @% : S'(57~*(E)) - S!(5?~*(E)) by

(2.55) oL =14 "Iy — SY(ITLY)

for each ¢ > 1. We get from (2.13) and the commutativity of (2.53)ITs0¢ = T4~ 'ITs —

126



— ISY(I14™") = 0 and thus Im @% = Ker IT. Therefore one can define the mapping
1,04 : SY(S%"Y(E)) - Ker I;(< T'(3X(E)) = 5¢~%(E) ® T(M)*.

Lemma 2.5. Im 0% = Ker II5 = S'(5¢7%(E)).

Proof. It remains to show KerITg < Im ©%. This means: Given a local section
x = u(x) in $97%(E) such that u(a) = 0, find a local section x — z(x) in 52 '(E) such
that jou = i Igjgz — SYIIEY) jaz = 1§ z(a) — jo(IT§'z). Applying S'(i™?)
to this relation we get an equivalent formula 0 = 4" z(a) — jL(i% 2% 'z — il 2u).
In a fixed chart (%, r,, ) this means

_ Lk k ok
0= Zptsens pq—-l(a) - dxPa-1 Zp;.‘..,pq_z,o upl,...,quz)a
for any (py, ..., p,—), the components running from 0 to n. Since u(a) = 0, this

equation is satisfied in the case p,_; = 0 automatically and the rest is a simple
differential equation.
Lemma 2.6. 04X = 0 if and only if X e Im i¥.

Proof. S'(i1"?) is an injection. Therefore O%X = 0 is equivalent with
SY i) @%X = 0, but S'(i%?) OLX = &7 'MeX — S'(i47 214" ") X and a compari-
son with (2.54) yields the result.

Combining these two lemmas we get the

Proposition 2.5. The short sequence

II§1,6%

(2.56) 0 > SYE) —— S'(S*"Y(E)) — > §*"%(E) @ T(M)* - 0

is exact for each g > 1. (We put S°(E) = E.)
The relation ©%i% = 0 can be written in the form i ! II5iZ = S! (I'[" N ie.,
using the commutativity of the diagram (2.53),

(2.57) i27'ns = s\t i .
The following lemma is evident and we bring it without proof.

Lemma 2.7. Let E; (i = 1, 2, 3, 4) be trivial vector bundles over a trivial manifold
M, i.e. admitting “global” explicite charts

(2.58) (M, 1, 9), (i=1,234).

Let dim E; = dim E, and dim E; = dim E,. Denote by I, , : E; - E;, I ,: E; -
- E,, I"*:SY(E,) » TYE,), I***:SY(E;) » TY(E,) the natural isomorphisms
connected with the charts (2.58). Let @ : E{ - E; and { : E, - E, be bundle
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morphisms which have constant coefficients with respect to the charts (2.58), and
such that the diagram

E, E,
| !
«pl l @
I3 4
E, E,
is commutative. Then also the diagram
1,2
(2.59) S'(E) - T'(E,)
sl(qs)l l T'(¥)
3.4
S'(Es) ——T'(E,)

is commutative.
Let g > 1, (%, ry, ) €9 be fixed. Applying Lemma 2.7 to the commutative
diagram

-
S*YE) - A T* (E)
) e
v 9! l
§Q*1(E), R, "T” I(E)
we get the commutative (local) diagram
’ T Oy
(2.60) SYS*YE)) --—- - TY(TY(E))
|
NG ‘)J G
. I, 5
SYSTHE) e TYT(E)) .
Define now
(2.61) L (i) = THIG ) L (15) 7"

We see immediately from the commutativity of (2.60) that T'(i% ') (if)y = 4.
But T*(i4" ")y is a bundle injection and it is not difficult to deduce from there that
(i%)q is a restriction onto % of a bundle injection i : TY(E) — T'(T* '(E)). Con-
sequently we have the decomposition

To(E) s T 1) "D o)
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analogously as in (2.52). Define also iy = identity. The diagram

7a’ o Tl 4—1
(2.62) TYE) —— TY(T*"\(E)) e T(E)
\\ I ' 114
o~ !
TN o
T*"Y(E) T"Y(E)

is commutative again and
(2.63) T4 ) X = 57 ' X < Xelm i < TY(T(E)),

or equivalently, 04X = i% 'II, X — TY(I1% ') X =0« X eIm i%. This can be
again expressed by the formula

(2.64) UL = TV Y)Y .

We need not prove explicitly these relations, since their local expressions connected
with a chart (%, r,, @) € 91 are formally identical with the local expressions of the
corresponding (established) relations in jet prolongations connected with the same
chart (%, r,, ¢).

Without running the risk of confusion we shall write in the next jx, IT,, j3* ITF
instead of 4, I14, 74¥, T1%* respectively for each g = 1.

If E' < E, then T'(E’) can be naturally injected into T'(E) and we shall write for
simplicity T*(E’) = T'(E). According to this convention if & : E — F is a bundle
morphism then Ker T'(®) = T'(Ker &) = Ker ® ® T'(R). Moreover, using local
coordinate expressions one easily verifies

(2.65) X eKer [Ty = SY(E) = T (@) I,X = I,S() X .
Now if we write (2.61) in the form
9(I4) X = T ") Lait X

and suppose X € Ker I1%, using (2.53) we get i% X € Ker ITg and consequently I,,i X =
= I,i% X € Ker IT;. Further (2.56) and (2.57) give T'(11¢™") Ioi4 X = I,S*(11™")-
JiUX = 1,0V IEX = 0. Hence 1,i4 X € T'(Ker 114~ ") and the above local relation
can now be written as

(2.66) XeKerITé = (i%) X = T'(I§ ) L4 X .

There is another simple property of the functor T'. If ¢ : E — F is a bundle
morphism, we can also write

T(®) = j;@I; + jr*(@ ® 1) T}
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and hence
(2.67) mT(e) = (® ® )Ty,
(2.68) T'(®)ji* = (@ ® 1),

Here and in what follows we denote by 1 any identity in the category &(M).
Next we bring a lemma which will be of use in the following paragraphs.

Lemma 2.8. Let g > 2. Then

(269) it = (5 @ I
and
(2.70) M =07 @ 1.

Proof. It suffices to prove the relations but locally. Thus suppose a fixed (%, r,, ¢) €
€ 91 is given and let a € %. Let

E= Y E®tha)eTE),.

Ipl=q-2
Then
F= Y &G otia)eT(E),,
Iplsq—1
where we have put & = 0 if |p| = g — 1. From there
(2.711) / ottt =y | 12 L ® tia) ® dx",
r=1 |s|£q—-2
where &, = 0if |s| = ¢ — 2.
On the other hand
mg e =y ¥ Q@ tia) ® dx",
-3
and
Frenmti=% ¥ &eneed,
Isl=q-2

where we must put & =oif [s| = g — 2. A comparison with (2.71) immediately yields

(2.69).
Let now
-1
1= Y 1t® ) eE® (® T(M)),.
Ipl=q—-1
Then

=Y ny®ta),

Iplsq-1
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with 7% = 0 if |p| < ¢ — 1. Further

’q ! _q 1*'7 =@ Z r'(o(u). tk(a)

lul=q—1

and, noticing that w(sr) = w(s) r if r + 0,

(272) H;k"i%‘ 1j‘%’ 1*’1 = Z. Z ”fu(s)r. ti(a) ® dxr 5

r=1 |s|=q-2

where we have put 7%, = 0 if |o(s)| < g — 2.
On the other hand

E™enNn=3 ¥ mne®i)ed,
P51 uiSe-2
where we put #%, = 0if |u| < g — 2. Further

(-q z ® 1) (Jq 2 ® 1)?’] = 2 . z r’w(s)r. tk(a) ® dx )

r=1 |s|=q-2

where ), = 0 if |(s)| < ¢ — 2. Comparing again this result with (2.72), we get
(2.70) and this completes the proof.

Corollary. If g > 2, then

(2.73) JELT T @ 1) = iR
(2.74) @1 = TR

273) Iy @ NIy =y,

(276) mET = (2 @ )T
2.77) T3+ T'GY 2*)1;ﬁ“;2* =t
(2.78) BT — AT = A @ DI

Proof. “Multiplying” (2.70) by j;* we get from Lemma 2.3 j;*(i4 % j5 ?® 1) =
= i = i =i - J'lri"'r—zﬁqﬂ]?r_l* =17 5 J"r '"and
thls is (2.73). Using (2.67) we give (2 70) the form (i%" ® D5 **®1) =10%.
LU )Y T = (1572 @ 1) MY j47 ™ and since (%2 ® 1) is an injection, we
have(2.74). Now applying (1% ** ® l)to (2.74) we get | = (1% ** @ 1) M54 Y ja1*
and from there JI% ™ = (%2 ® 1) mpd Vi g™, or I4 ™ =
=My o HIyiy " — (M5 ® l)Hit"r Ve 1I]" ! But the last term here
gives according to (2.69) (I1% ** ® 1) (j4* ® l)Hii"T 147! = 0 and this proves
(2.75). Now we have from (2.67) and (2.69) T34 5~ =T (5 3) sV jat =
= (472 @ DI V55 = (1972 j52 ® 1) IT5i47 % and this is (2.76).
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Further (2. 53) (2,69), (2.67) and (2.14) give i§ Vi = jplaE g8 +
+ jrayigt Y= jray it + JT*H;TI(J'I 2) i =jr+ T'(jT 2) i -
— jri% A 2 = T’(J" Y1972 — jrj% P % ** and this verifies (2.77).

Finally from (2.67), (7 14), (2.53), (2.15) and (2.77) we get subsequently

*(lq 2 <q 2 ® ])HT — j;*H;Tl(iq—z—q—z) iq—Z’ — Tl(-q—Z—q—Z) iq~2’ _
— j1i§ 2 TAIGE = TN i 4 g R — gt =T (1Y)

[Tl(]q 2) -q—2 + Tl(] 2*)Jan 2*] ]qu 2 _ Tl(lq 2) Iq 1’ z;‘ 1 ]Tlg“ 2
and this completes the proof of (2.78).

3. FIRST ORDER CONNECTIONS AND PSEUDO-CONNECTIONS
ON VECTOR BUNDLES

Let E be a vector bundle over M and 2 be a chosen atlas of E. As we have seen,
there is a natural family {I,} of local isomorphisms

(3.1) (W, r,, 0)e N =1,:S(E)— T'(E).

However, the fibre bundle structures (S'(E), S'(2)) and (T'(E), T'()) are not
isomorphic in general, i.e. there is no bundle isomorphism S'(E) - T'(E) con-
necting S'(A) with T(A) since G(S'(A)) = G(T*(A)) unless A defines a trivial
fibre bundle structure. In other words, in general, there is no isomorphism of the
corresponding principal fibre bundles 2(S'(E), S'(AN)) and 2(T'(E), T'(N)).
Therefore a bundle isomorphism of the vector bundles S'(E) and T"(E) may exist
only a posteriori, defining in this way an additional structure on the vector bundle E.
Note that it follows from what we have just said, that this isomorphism cannot take
S'(A) into T*(A) but for the trivial case. In fact, we shall see that each connection
on E can be interpreted as some bundle isomorphism H : S'(E) —» T'(E).

Definition 3.1. A pseudo-connection H (of first order) on the vector bundle E is
a bundle isomorphism H : S'(E) - T!(E).

Given a pseudo-connection H on E, the local isomorphisms (3.1) define local
isomorphisms

(3'2) . (”Zl, Txs 4’) eV = Ty P;ll(E)(%) - P;ll(E)(%)
subject to
(3.3) (U, 1y ) €N =Tyl = H.

In this way the pseudo-connection H connects with the atlas 2 a family {I" q,} of
local isomorphisms.
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Let (%, r., @) € 9. Then for each a e %
(3'4) F,,,(yﬁ dx* ® ik(a)) - Ah d\ @ ln(a)

and I, can be expressed in coordinates as an element of [R @ T (M)*],’f ® EX¥ ®
® [R ® T(M)*], ® E,, ic. as a tensor at a € % with components 'ty = I't(a),
(h,k=1,...,m;a f =0,1,..., n). The relation (3.4) is then to be written as

(3:5) 5= Tisva -
Suppose now (%', v, ') € and a € % n %'. Then together with (3.5) we have
(36) ﬁﬂ:zr;:;}a .

The condition (3.3) determines the transition formulae for {I';}. In fact, we have
A sk -1 N . ph'a g gkia’ h
Jof = fasi(a) € Psl(s)(% NU')= g My f fﬂNhﬁ

and from there we get the required relation

(37) Il = MENSEY

This can be written explicitly using (2.9) and (2.10) as

(38) Tior = giegn Tio + AT (av ) 9 Tio»

0’ h r’ a 4 i
I = ghgy ALT + A (5\—'— g’,ﬁ) gn ALY,
Ty = gigy A Tho »
Ty} = gigy AV AT
Conversely, given a family {I';,} of local differentiable isomorphisms (3.2) satisfying
the transition formulae (3.7) or (3.8), the equation (3.3) defines a unique pseudo-
connection on E.

Note that each of the local isomorphisms (3.1) satisfies ITI,, = ITg and Iy
= [,. This may suggest the following

Kerlls =

Definition 3.2. A connection H (of first order) on the vector bundle E is a bundle
morphism H : S'(E) - T'(E) satisfying

(3.9) IIH = I
and
(3.10) Hlgerne = Io< H ' =151 ji*.
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Proposition 3.1. Each connection H on E is simultaneously a pseudo-connection
on E.

Proof. Since the dimensions of S'(E) and T'(E) are equal it is sufficient to show
that H being a bundle morphism is an injection at each a € M. Thus let f € S'(E), and
Hf = 0. From (3.9) we get f € Ker ITg and hence Hf = I,f. But I, is an isomorphism
and consequently f = 0.

If H is a fixed pseudo-connection on E then each other pseudo-connection H' on E
has the form H’ = KH, where K : T'(E) - T'(E) is any bundle isomorphism.
Moreover we have the

Proposition 3.2. If H is a connection on E, then KH : S'(E) — T'(E) is another
connection on E if and only if K satisfies

(3.11) T,K =1,
and
(312) Kll(erll'r = lKerIIT s i.e. H?Kl}* = 1E@T(M)"‘ .

Proof. In fact, (3.9), ie. [T = [IgH™' implies the equivalence of (3.11) and
IT;KH = IIs. Further fe Ker IT; iff I,fe Ker IT; and KI,f = I,f is equivalent with
KHf = I,f since Hf = I,f.

This proposition characterizes the class of all possible connections on a vector
bundle.

Now we shall pass to the explicite formulae for the local isomorphisms (3.2) in the
case of a connection.

Proposition 3.3. Let {I'y} correspond to a pseudo-connection H on E. Then H is
a connection if and only if the local isomorphisms (3.2) gwen by (3.5) satisfy for
each (U, r., ¢) € A the relations

(3.13) e =sh; Trih=0
and
(3.14) rii =880,

Proof. It is not difficult to see that in a given chart (%, ry, ¢) € 9 the condition
(3.9) has the form

Fiofi + Tiofi = 9ifs
whatever be fo, f and this implies (3.13). On the other hand (3.10) is to be written as

I—vlu k — 525}1‘1‘
which yields (3.14),
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One could also directly verify that this special choice of the quantities I’ ,':;,’ is
compatible with the transition formulae (3.7) or (3.8). Denoting in this case by I'};
the only non-trivial components I'*? we see that the transition formulae are reduced
to the only equation

(319 = gkt apr + (Gt ol

Remark 4. Let E = T(M) be the tangent bundle of M and U the natuual
(semi-complete) atlas onit. Then G(2) = GL(R, n) and g}. = A}, for any two charts
with not disjoint domains. In this case (3.15) become the usual transformation
formulae defining a connection on M in the classical meaning of the word. The
map f — (x —» (ITtH) j.f) defined on local sections in T(M), i.e. on local vector
fields, is nothing but the usual covariant differential of f.

The conditions (3.11) and (3.12) can also be expressed locally. In fact, let K be
given in a fixed chart (%, r,, @) of 9 by means of the (local) relation

(3.16) 95 = Kigs -

The corresponding transition formulae are evident since K is a bundle isomorphism.
In particular K}? are the components of a ““tensor field on the whole”, these compo-
nents being taken with respect to the frame in E* ® E ® T(M)* corresponding to
the chart (%, r,, ¢). Analogously one can see that the conditions (3.11) and (3.12)
give Kj0 = di; Kjby = 0; K}j = 6165 If E = T(M), this is again a well known resuit.
Namely if {I',} corresponds to a connection H on E and K satisfies (3.11) and (3.12)
we get in each chart (%, r,, ¢) € 91 the relation

(KIY§ = 1l + K

stating that two connections on M differ by a tensor field.

Let again the family {I';} of local isomorphisms (3.2) correspond to a pseudo-
connection H. If (%, r, @) is fixed, I'y, can be represented as a section over % in
L(E®EQ® TM)* E®E® T(M)*) or symbolically as a “matrix” of sections in

(3.17) Z(E, E); Z(E, E® T(M)*)
<$(E ® T(M)*, E); Z(E ® T(M)*, E ® T(M)*)> .

The transition formulae (3.8) show that if we write accordingly symbolically

r, = <é],,; @,,)
Has C?l >

then 7, and {,, respectively are nothing but a restriction to the domain % of a section
on the whole in Z(E @ T(M)*, E) and Z(E ® T(M)*, E ® T(M)*) respectively.
If now H is a connection, then these sections are the zero section and the identity
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section respectively. Moreover in this case also &4 is a restriction of the identity
section in Z(E, E) and only @, being a non-evident local section characterizes the
connection. Suppose now (%', ry, ¢') € 9l is another chart and put, for the sake of
simplicity, % = %’. Both @, and @ are local sections over # in Z(E, E @ T(M)*)
but they differ by an element that we are going to write down in a coordinate-free
form.

Let w, be the local differential form on # with values in #(E,, E,) associated
with @,. This means that, identifying #(E, E @ T(M)*) with #(T(M), Z(E. E)),
we put for a fixed point x € # and fixed vector of T(M),

(3.18) V€ Eq = wy(y) = ro,(r;'y).

Denoting now g = r.r; ' for each x € %, we have clearly g € Z(E,, E,) and dg is
a local differential form over # with values in Z(E,, E,). Note that, as a matter of
fact, Z(E,, E,) represents the Lie algebra of the “full” structure group GL(R, E,) =
~ GL(R, m).

Under these notations (3.15) can be written as
(3.19) Wy = gwgag ™' 4+ gdgTt.
Here the multiplications are simply compositions of (linear) mappings. Since 0 =
=d(1) = gdg~"' + dg g~', the condition (3.19) is equivalent to

1 1

(3.20) Wy = gu,g ' —dgg”

These are the transformation formulae for differential forms defining a connection
on a vector bundle as introduced in [2]. They represent a special case of the formulae
dealt with in the general theory of connections working with principal fibre bundles

(see e.g. [4]).
© Now we obtain immediately the relation between @, and @7. Given again a fixed
x € % and a fixed vector of T(M),, we get for each y € E, from (3.19) and (3.18)

@a(y) = (r) ™ @y(ry) = ()7 rrlog(r(r) T ) + () T e Hd(rlr) ™Y

and hence
(3.21) Dy = Oy + 1 d(rr) ™) ri.

Note that the last term in (3.21) is a section over # in Z(T(M), 4(E, E)) =
= %(E, E ® T(M)*) and thus the summation is really defined.

In what now follows we are going to show how connections Hy and Hy on vector
bundles E and F over M respectively define canonical connections on vector bundles
E® F, E® F and E*. We shall obtain formulae independent of local coordinate
expressions which correspond to classical results if E = T(M) and F = T(M) or
T(M)* (see also [2]).
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Let the direct sum E @ F of vector bundles E and F be represented by the diagram

7 IT*
(3.22) E<=——E®F——=F.
J i*

There are natural isomorphisms S'(E @ F) = S'(E) ® S'(F) and T(E® F) =
= TY(E) ® T'(F) and we get the diagrams

sty star*)

S (E)<-—~SI(E@F) b= *>S (F)
st s1G®)
T () TI(IT%)

T(E)=——=TYE®F) = TY(F).
T() T'(%)

If now Hy and Hj are pseudo-connections on E and F respectively, then
(3.23) Hy(®) Hp = T(j) HeS'(IT) + T'(j*) HS'(IT%)

is a pseudo-connection on E @ F and it is not difficult to see that it is a connection
if H; and Hy are connections.

The problem is however not nearly so simple in the case of the tensor product
E ® F. Thuslet AF and AF be atlases of E and F respectively. They induce in a natural
manner an atlas A*®" of E ® F and thus the local isomorphisms {I%} and {I,} of
first order jet and tensor prolongations, connected with AZ and A respectively,
induce the corresponding family {I;®"} of local isomorphisms. If ji(f; ® f,) €
€ Psitreor) (%), we can write with slight inaccuracy

(3.24) 155 l(f1 ®f,) = I Jlf1 ® fi(a) + fi(a) ®Iau]; > — fi(a) f5(a),

where f; and f, are local sections in E and F respectively. Even the local formula
(3.24) suggests the definition of connection Hy(®) Hy on E ® F that we are going
to give below.

Denote by £ = yier: T(E)® F » THE ® F) and )" = y}g; : E ® T'(F) -
— T'(E ® F) the natural bundle isomorphisms. They satisfy the following evident

Lemma 3.1. Let E{, E, and F, F, be vector bundles over M and & : E; — E,,
¥ . F, - F, bundle morphisms. Then the diagram

1 Ey

(3.25) E, ® T'(F)) TYE, ® F,) <

T'(E,) ® F,
|
x

o ® THY) T (@® P TI(®) ® yf‘

F» E>

v
E, ® T'(F,) TY(E, ® F,) < —— T'(E,) ® F,
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is commutative, i.e.

(3.26) TH(® ® ¥) Eier, = TEer[T'(9) ® ¥]
and
(3:27) T'(® ® ¥) VEier, = Vrior @ ® T(P)] .

If now Hg : S'(E) » T'(E) and Hy : S'(F) —» T'(F) are bundle morphisms, define
first the “product”

(3.28) [Hg; Hy] : S'(E) ® S'(F) » TY(E ® F)

by

(3:29) [Hg He] = Y(Hg ® ) + Y (ITs ® Hp) — Ji(ITs ® ) .
It is clearly a bundle morphism. Define further the bundle projection

6 = 0py: SYE) ® S'(F) - S'(E ® F)
by
o(jaf1 ®juf2) = ja(f1 ® f2) .

It is not difficult to see that ¢ is well defined and that it is a projection.

Lemma 3.2. Let Hy and Hy be connections on E and F respectively. Then o(X) = 0
implies [Hy; He| X = 0 for any X € S'(E) ® S'(F).
Proof. Let a e, (%, ry, @) € A®F and let {si}, {s?}, {s?,} and {t%} be the
(B (F)

corresponding frames in S!(E), S'(F), S'(E ® F) and T'(E ® F) respectively. Let

(3.30) X = X¥si(a) ® sb(a) .
(E) (F)

We can write
a, : a a a\u agqu
sk(a) = ];(ék) ’ where (ék) = (Sy5k
(E) ox?
and
Ha) = jinl), where - (nl) = ol
(F) ox’
But since
a, 6 a\u a u a u
o(si(a) ® si(a)) = — [(&D)" ()] sia) = 85665i07su(a) + (850005, +
(E) (F) ox?

+ 3501519)) sifa) "
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we have
(3.31) o(X) = XGosul(a) + (Xio + X57) sula)
and thus ¢(X) = 0 implies
(3.32) 00 = Xio + X5; = 0.
On the other hand we get analogously

[Heg; H] (sk(a) ® s1(a)) = {30,060 + 61061 v, — 610,869605} tunla) ,
(F) (E) (F)

where I'® and I'"? denote the components of Hy and H respectively in the chart in
(E) (F)
view according to (3.5). Thus

(3.33) [Hy Hp] X = x‘gr ol v — X06095) tula) -
(F)

According to Proposition 3.3 the components of the connections Hy and H satisfy

(3.34) rig=26i; Iig=23;
(E) (F)
(3-35) kO =0; :6 =
(E) (F)
(3.36) ‘ = 04055 Thh= 6855,
(E) (F)

Using these relations we can write (3.33) in the form

(3:37) [Hg: He] X = (XG0 + Xbo — Xb5) tula) +
(X + XG5+ Xool + XGol'5) (@)
(E)

and a comparison with (3.32) yields the required implication.

This lemma justifies the definition of the bundle morphism

H{®)H;:SYE® F) > T(E® F)

according to
(HE (®) HF) O F = [HE; HF]

or, with less accuracy
Hp(®) Hp = [HE; HF] UE,}?

(c.f. the “switchback rule” in [5]).

Proposition 3.4. If Hy and Hy are connections on E and F respectively then
H;(®) Hy is a connection on E ® F.
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Proof. Since Hy(®) Hy is really a bundle morphism, it suffices to verify the
relations (3.9) and (3.10) of Porposition 3.3. Thus let, the notations being as in the
preceding lemma, Y = o(X) e SY(E ® F),. A comparison of (3.31) and (3.37) gives

(He (®) Hp) (Y53 (a)) = Y5'tu(a) +

+ (Y] + Yo'Tiy + Y5'T)) tifa)
) G

and thus the components of Hy (®) Hy are

utO t. ti . tio__ tgi
FkrO = 6;:5" > rZr(l) - 0 > F:r_ly - 525r5;
(E®F) (E®F) (E®F)
and
(3.38) ry? =8Iy + 8iIy;
(EQF)  (E) (F)

and this proves the proposition.

It can be seen immediately from (3.38) that the product (®) is associative. Further-
more one sees from (3.38) that this definition of the “tensor product™ of connections

coincides, in the case E = F = T(M), with the classical one (c.f. also the example
below).

Note that (3.24) can now be written also in the form
5P = 15 (@) 1%

Next we give two lemmas which will be of use in the following paragraph.

Lemma 3.3. Let @ : E — F be a bundle morphism and let A be a third vector

bundle over M. Further let Hy, H and H 4 be connections on the vector bundles E, F
and A respectively and let

(3.39) H, S(®) = T(®) H, .
Then
TP @ 1) (Hp (®) Hy) = (Hp (®)Hy) S' (2 ® 1).
Proof. First note that
(3.40) S @ ® 1) 05,4 = 0p ,[SH(P) @ 1].

Since o 4 is a projection, it suffices to show

(3.41) TP ® 1) (Hg (®) Hy) 05,4 = (Hp (®) Hy) S'(e®1) OE,4 -
From Lemma 3.1 we get the relations

TP ® 1) yiga = Treal T(®) ® 1],
TP ® 1) yies = Yﬁ@A[‘p ® 1]
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and thus the left hand side in (3.41) can be transformed into
T (®® 1) [Hp Hy] = TH(® ® 1) {yies(Hs @ ITg) +
+ Veealls ® Hy) — j1(ITs ® IT5) = ypou(T'(®) Hy ® ITs) +
+ VreA(®s ® Hy) — T'(@ ® 1) jr(Ils ® IT5) -
By virtue of (3.39) and (2.15), (2.13) this transforms into
Yroa(Hr ® IT5) (S'(2) @ 1) + y5e(ls ® H) (S'(@) @ 1) —
i © 1) (5'(@) @ 1) = [Hy: H) (S'@) @ 1).

Finally using (3.40) we see that this is equal to

(Hr (®)Hy) 05 4(S'(@) ® 1) = (Hp (®) Hy) S (P ® 1) 0 4

and this completes the proof.

Lemma 3.4. Let the direct sum E @ F of vector bundles E, F be represented by
the diagram (3.22) and let A be a third vector bundle over M. Let Hy, Hy and H 4 be
connections on E, F and A respectively. Then

(HE (@) HF) (®) H, =
=T'(j®1)(H(®) H) S (T ® 1) + T'(j* @ 1) (Hp (®) Hy) S'(IT* @ 1).
Proof. Note that (3.23) implies

(HE (@) HF) Sl(j) = Tl(]') Hg
and

(HE ((‘B) Hy) Sl(j*) = Tl(j*) Hp.

Thus applying the preceding lemmato® =j:E>E® Fand® =j*:F - E®F
we get simultaneously

T'(j® 1) (He (®)Hy) = {[Hp(®) He] (@) H} S'(j ® 1)
Tl(f* ® 1) (HF (®) HA) = {[HE (@) HF] (®) HA} Sl(j* ® 1) .

“Multiplying” these relations by S'(IT ® 1) and S*(IT* ® 1) respectively and adding
the obtained equations we get immediately the required result.

Let now E* be the dual of the vector bundle E, R = R(M) denotes as usually the
trivial bundle of real valued functions on M. Denote by ¢ : E ® E¥ — R the “con-

traction” of elements, i.e. the natural bundle morphism assigning to x ® y e
€(E ® E*), the element <x, y> = y(x).
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If X e TY(E), = Y(E}, T'(R),) and y € E}, denote by <X, y> € T'(R), the image
of y under X. We see easily that

(3.42) (X, p> = T'(c) vEor(X ® ).
Analogously if Ye T'(E*), = Z(E,, T'(R),) and x € E,, write
(3.43) (0 ¥y = THO) 1Eaplx ® V) e T(R).

The atlas A of E induces in a natural way an atlas U and consequently a family
{I%"} of local isomorphisms of the jet and tensor prolongations of E*. If f and g are
local sections in E and E* respectively and (%, r., ¢) € 9F an arbitrary chart, one
verifies easily the relation

(3.44) Ugjafs 9(a)y + {f(a), 15 jag> = jalfs 9> + {f(a), g(a)>

for each a € %. This relation in fact suggests again the definition of the dual connection
given below. Note that if f(a) = 0 then (3.44) reduces to

(3.45) KIgjaf, 9(a)y = jalf. g> .

Lemma 3.5. Let Hy: S'(E) — T'(E) be a bundle morphism satisfying (3.10).
Then there exists exactly one bundle morphism Hg, : S'(E*) — T'(E*) such that

(346) TU0) [Hy: Hp] = SY6) o e
Proof. The condition (3.46) can be written in the form
(3.47) T'(¢) VEgedITs ® Hg) = —T'(c) Veor«(Hg ® IT5) +
+ jre(ITs @ ITg) + S'(c) o g -
Applying this relation to j,f ® j.g € S'(E), ® S'(E*), we get
(348)  <f(a), Hpejag) = — <Hgjaf, 9(a)) + <f(a), g(a)) + jalf. 9> -

Since HEIK,”,,S = Ig, we see from (3.45) that the right hand side of (3.48) vanishes if
f(a) = 0. But that means that (3.48) defines uniquely H . € #(S'(E*), Z(E, T'(R)))
and this proves the lemma.

Proposition 3.5. If Hy is a connection then Hy. defined in the preceding lemma is
also a connection.
Proof. In fact, applying IT; to (3.48) we get
{f(a), (HTHE*)j;g> = — (T Hp)jo.f, 9(a)y +
+ <f(a), g(a)> + {f(a), 9(a)y = {f(a). 9(a)>,



i.e.
<f(a)a (HTHE* - Hs)];g> =0

for each f(a) € E,, g(a)€ E} and thus IT;H . = IT;. On the other hand we have
similarly as in (3.45)
{f(a), 15 jag> = jalfs 97

for each jig e Ker ITg and hence for such jig and any f(a) we get from (3.48)
(f(@), Hewjag)> = <{f(a), 15 jag>

and this completes the proof.

The connection Hy. on E* associated with a connection Hy on E in the sense of
the preceding proposition is called the dual of the connection Hg. We see from (3.46)
that it satisfies

(3.49) T'(c) (Hg (®) Hyv) = S'(c) -

Before passing to the explicite formulae connecting the components of Hy. with
those of Hy in a given chart, let us introduce the following convention which is
a modification of the Einstein summation convention. In expressions and formulae
given below we sum not only over repeated indices appearing “above and below”
but also over repeated indices, both appearing as subscripts or superscripts, if they
are denoted by the same letter and one of them provided with an asterisk. The
“stared indices” will appear in expressions connected with the “dual” E*. Therefore
the analogue of the formula (3.5) defining the “components of H,;” in a fixed chart is
to be written as

(3.50) P = Ligpys” .

Note that g}y = g} are the components of an element in the group G(2(*") which is
the contragradient to G(2F).
In a fixed chart (%, r,, @) € AL the relation (3.48) gives rise to the system of

equations
ha  k_ h% k¥ k k% k

F;:I;)k*yg + I'giyayo = Vg Yo+ Yo Vg -
Since H is a connection, we get from these equations the expected expressions for
the components of I'y according to Proposition 3.3 and, in addition, the only
“interesting” relation

(3.51) I+ =0,
which shows again that, in the case E = T(M), the definition of the dual of a con-
nection given here corresponds to that in the classical theory.

One can also easily introduce the notions of covariant differential and covariant
derivatives with respect to a pseudo-connection H on E of local sections in E. Let f be
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a local section in E, a € M. The covariant differential of f at a with respect to H is
given by the element

(3.52) MHjif e E® T(M)*.

If (%, r,, ) € A and if {dx’ ® i,a)} is the frame in E, ® T(M)} corresponding to
this chart, then the covariant derivatives of f at a are the components of (3.52) with
respect to this frame. Denoting the covariant derivatives by D;f*, we have

(3.53) IMiHjf) = (D:f%), dx' ® i(a).
In general if X is any tangent vector to M at a, i.e. X € T(M),, then the element
Dyf = (X, IT{Hj.f )

is called the covariant derivative of f in the direction of X. Note that if X Z (0/ox") (a),
then

Daf = ¥ (D @)
In the given chart we have j,f = (0,/*), si(a) and
Hjof = Talujof = Ti0pf")s dx* ® i(a) .
Comparing this with (3.53) we get the covariant derivatives in the explicite form
(Dif)a = T3{(0p")a = Til0;fM)a + Tiif'(a) -

In particular, if H is a connection we get by virtue of Proposition 3.3 the “‘expected”
relation

(3:54) (Dif*)a = (0:f")a + Thif"(a) .
I Example. In the form of an illustration we shall show that the connection on e.g.
T(M) ® T(M) ® T(M)* induced by a connection on T(M), in the manner described
above, really corresponds to the classical connection on M. Just let (%, ¢) be a chart

of M and Ta local section in T(M) ® T(M) ® T(M)* over %, i.e. a twice contravari-
ant and once covariant tensor field on M. Write

T=T,0,® 0, ® dx".
Then

(3.55) (DiT)y = (0T0)a + Thgeni T} (a)

where Iy, are the components of the connection on T(M) ® T(M) ® T(M)*. If
this connection is generated by a connection on T(M) with components I'¥; we
conclude from (3.38) and (3.51) that

I = Ous(O3 5 + 6315 + 8403(—1T5,)

q" pi P qi
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or, substituing into (3.55)

(D, T), = (0,1, ), + r,T> (a) + I, T (a) - ryT1,° (@),

p
which is the well known classical formula.
Definition 3.3. Let ¢ : E - F be a bundle morphism. The bundle morphism

Hgy : SY(E) » T'(F) is called a relative connection (or briefly R-connection) with
respect to @ if it satisfies '

(3.56) I Hy = @I
and
(3-57) Ho|kerns = Tl(‘p) Iy .

Lemma 3.6. If @ : E — F is an injection then each R-connection with respect to ®
is an injection.

Proof. Let fe SYE),, ae M and H,f = 0. From (3.56) we get T Hof = @Ilsf =
= 0 and since @ is an injection we have fe Ker ITs. But (3.57) yields 0 = Hyf =
= T(®) I,f and since T*(®) I, is also an injection, we conclude that f = 0.

Corollary. If @ is an isomorphism then Hg is also an isomorphism.

Note that a connection on E is an R-connection with respect to the identity.

Proposition 3.6. Let & : E > F and let Hy and Hy be connections on E and F
respectively. Then both T'(®) Hg and Hy S*(®) are R-connections with respect to ®.

Proof. We get immediately from (3.9) and (2.13) or (2.14) IT, T'(¢) Hy =
= QI Hy = ®llg; M;Hy SY(P) = g S(P) = @IT;. On the other hand let fe
€ Ker IIs € S'(E). Then clearly T*(®) Hpf = T*(®)I,f and applying (2.65) we have
also Hy S (®)f = Hy SY(®) I 'Iof = Hp Iy ' T (@) I,f = T(®)I,f. This completes
the proof.

Proposition 3.7.If @ : E — F is a bundle isomorphism and Hg, is an R-connection
with respect to @ then T'(®)™* Hy and Hy S'(®)™! are connections one E and F
respectively.

Proof. We have again using (2.13), (2.14) and (3.56): IT; T'(®)" ' Hy =
= ¢ I H, = & '®Il5 and IT;Hy SH(P)™! = Gl SY(P) ! = d0 T, If fe
e KerITg = S'(E), g e Ker ITg € S'(F), we get from (2.65) and (3.57) TY(®) ! Hof =
= TY(®)" ' TY(®)Iof, or HeS'(®)™' g = Holo 'Io SY(®)™' ¢ = Holy ' TH(®)™" .
dog = TY(®) T*(®)™ ! I,g which completes the proof.
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Note that the condition (3.39) in Lemma 3.3 means that H; and Hj induce the
same R-connection with respect to ®. Analogously (3.49) states that Hy (®) Hy. and
the identity induce the same ‘R-connection with respect to the “contraction” c.

Given an arbitrary bundle morphism @ : E — F one could also introduce the notion
of right and left pseudo-connections with respect to @. A bundle morphism H, :
: SY(E) » T'(F) would be a right (or accordingly a left) R-pseudo-connection with
respect to @ if H, admited the decomposition Hy = Hy S'(®) (accordingly Hy =
= T(®) Hy) where H is some pseudo-connection on F (or Hy is some pseudo-
connection on E). However we shall not need this complicated terminology and say
only that the pseudo-connections H; and Hy on E and F respectively induce the
same R-pseudo-connection with respect to @ if Hy S'(®) = T'(®) Hy holds.

On the other hand if & : E - F is a bundle isomorphism then each bundle
isomorphism Hy, : S'(E) —» T'(F) is simultaneously a right and a left R-pseudo-
connection with respect to @. In this case both the corresponding Hy and H are
uniquely determined by Hg,, and conversely any of these pseudo-connections
determines uniquely Hg and the second one. This can be briefly expressed by saying
that there is a one-to-one-to-one correspondence between pseudo-connections on E,
pseudo-connections on F and bundle isomorphisms of S'(E) onto T*(F). Moreover
we have seen that if (Hg, Hy, Hy) is such a triple in correspondence and any one of
the components is a connection, then the same is true about the other two.

Remark 5. In [6] a definition of a connection D relative to a bundle morphism
@ :E - F due to BOTT is given as follows. D is a first order linear differential
operator assigning to local differentiable sections in E local diflerentiable sections
in F @ T(M)* with the property that if f is such a local section in E, a € M and a is
a differentiable function defined in a neighbourhood of a, then

D(ef) (a) = o(a) (Df) (a) + (@) (a) ® .

It can be shown by direct calculations in local coordinates that this definition is
equivalent to the definition of an R-connection H,, with respect to @ given here, this
correspondence being given by

(Df) (a) = ITHyjlf -

In particular if ¢ = identity, then (Df) (a) is nothing but the covariant differential
of f at a in our terminology (c.f. (3.52)).
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