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INTRODUCTION AND NOTATION

It is usually assumed in physics that the changes of state of physical systems proceed
at a finite velocity and hence that the functions describing the state of the system have
finite derivative with respect to time. This is true particularly about the motion of
material particles whose velocity and acceleration as well are always finite; therefore,
the particle position vector has always finite first and second derivative with respect
to time. If physical processes of a causal character are involved, such as the motion
of material points in classical mechanics, the state of the system is described by ordinary
functions the derivatives of which are defined in a usual manner. On the other hand
random processes are described by random functions; accordingly if we wish to
examine, in the study of random physical processes, the changes of state in arbitrarily
short time intervals, we must require that the appropriate random functions should
have a derivative, too. As it is well known the derivative of a random function can be
defined with the aid of some criterion of convergence of random variables. As there
exist several such criteria, the question arises which one is acceptable for the physical
random processes. It is frequently assumed in physics that the function describing the
state of a system has finite derivative with respect to time in each realization of the
process (e.g. a material particle has a finite velocity in any motion). This is the reason
why we can, when defining the derivative of a random function describing a physical
process, use any of the standard criteria of convergence. So far as the physical
aspects are concerned, the clearest mode of convergence is that of convergence almost
surely. But from the theoretical point of view, the most convenient is the convergence
in quadratic mean; this is why we use it, and that exclusively, in this paper.

The assumption that the random functions dealt with in this paper have derivative
in quadratic mean of the first or possibly higher orders is of cardinal significance
when evolving the differential equations in the discussion that follows.The remaining
assumptions to be stated in the’context are the usual assumptions customatily used in
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physics on the continuity or existence of continuous derivatives of the respective
functions. The equations which we shall derive could evidently be arrived at also
through the use of another criterion of the existence of the derivative of random
functions, were we to supplement suitably other assumptions. This problem will not,
however, be deait with in this paper. The connections between different modes of
convergence of random variables are discussed in detail in e.g. [2].

To complete our exposition, let us mention the fact that random functions non-
differentiable with respect to time, e.g. functions with independent increments, are
frequently used in the examination of some physical processes, such as the Brownian
motion. Such stochastic models, even though very convenient in that they facilitate the
mathematical analysis, are always but an approximation of a real physical process,
as they can be justified physically only if the changes of the state of a physical system
are examined on a sufficiently coarse time scale, i.e. in time intervals far longer than
a very short but finite interval. For shorter time intervals they cannot be considered
even approximately valid [11]. Should we consider such a stochastic model of e.g.
the Brownian motion valid also for the changes of position or velocity of a particle
in arbitrarily short time intervals, we would have to admit that the velocity or accelera-
tion of the particle can assume infinitely large values [8].

This paper is in continuance of papers [3], [7] and [10] by DEDEBANT, MOYAL and
WEHRLE, which for the first time deal with the differential equations of stochastic
processes which have first and second derivative in quadratic mean and with their
applications in physics in particular in hydrodynamics and in kinetic theory. It
presents a systematic derivation of these equations and of other differential equations
and systems of differential equations of higher orders. It first discusses processes
which have only first derivative in quadratic mean (§ 1), further processes which have
first and second derivative (§2), and finally processes with derivatives generaly to
the r-th order inclusive (§ 3). The differential equations derived in § 3 have a general
validity; equations of processes which have first and second derivative are their
special cases. However, we derive in detail these equations, too, because they, especial-
ly, are suitable for physical applications [9]. In its concluding part, the paper deals
with analogous differential equations satisfied by transition probability densities.
Under a certain assumption, these equations take on a simple form and in that case
they became to some extent analogies of Kolmogorov equations for Markov processes
continuous in time.

The author wishes to thank Professor L. TRUKSA, P. MANDL and M. JIRINA for
useful discussions on these topics and for many valuable suggestions.

Notation. Let X(¢) and Y(¢) be random functions. We shall denote the con-
ditional expectation of Y(f) relative to X(f) at instant ¢t by E[Y(¢)| X(1)] and
E[Y(t) | X(#)]x(r)= s i.€. the conditional expectation of Y(t) for X(f) = x at instant t,
by E[Y(1) | X(#) = x]. If X(¢) is a vector random function with components, X,(t), ...,
.. X (1), we write X(t) = x for X,(f) = x4, ..., X,(t) = x, where x = (x,..., X,).
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For short we shall often use other symbols for some conditional expectations, e.g.
Bi(t | x, £) for E[X (1) | X(1) = x], vo,(t | x, 1) for E[X (£) X (1) | X(1) = x], a(t| x, 1)
for E[X(t)| X(t) = x] etc., where X () and X(1) denote the first derivatives of
random functions X () and X ,(t) respectively, and X (t) denotes the second derivative
of X (t). The abbreviation q.m. will be used for “quadratic mean™.

In the whole paper, we consider a function a continuous one only if it is simultane-
ously finite.

1. DIFFERENTIAL EQUATION OF STOCHASTIC PROCESSES
WHICH HAVE FIRST DERIVATIVE IN QUADRATIC MEAN

Let X(¢) = [X (%), ..., X,(t)] be a vector random function of continuous parameter
(time) t € T = (— o0, + o), whose components X (1), ..., X,(f) are real second order
random functions (see e.g. [1], [2]) having first derivatives in q.m. X,(1), ..., X,(f)
on T, i.e. they fulfil the following condition:

Xt + Ar) —
At

() E[X()]? < +0, lim E[

0

X1 Xi(,)jlzz 0 (i=12..,n)

whatever be te T.

We shall denote the distribution function of X(¢) at one instant t by F(x, 1), x =
= (X, ..., X,) € R, = (=00, +00)", its distribution function at two instants ¢ and ¢’
by Fy(x, t; x', 1) and the conditional expectation E[X (1) | X(r) = x] by 5t | x, 1).

We shall assume that the distribution function F(x, f) has a density, i.e. that there
exists a Lebesgue measurable and integrable function f, for which

(2) F(Xqy.ees Xy 1) =f f fE, L&) dEy, ..., dE,
forall (xq,...,x,)eR,, teT.

Theorem 1. Let besides condition (1) the following assumptions be fulfilled:

(a,) There exists the density f(x,t) corresponding to F(x,t), whose derivative
of[ot is continuous on R, x T.

(a,) Derivatives (8/dx;) [0t|x, ) f(x, )] (i = 1,2,...,n) are continuous in
(x4, ..., x,) on R, for every te T.

Then equation

o P01 5 2 fote 15 0] = 0

ot i=1

holds for all xe R,, te T.")

1) The continuity equation (3) for stochastic processes dificrentiable once in q.m. was first
given in communication [3].
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Proof. We shall use a method similar to that used by KoLM0oGOROV [4] to derive the
second equation for Markov processes continuous in time.?) Introduce an auxiliary
function ¢(x) = ¢(x4, ..., x,) which has the following properties:

(P,) Function ¢(x) is non-negative and differs from zero only in the bounded
interval M = (x;a; < x; < by,...,a, < x, < b,), i.e.

(4) (P(x)>0 lf a1.<x1<b19'--aan<xn<bn’
e(x)=0 if x;<a; or x;,2b;, (i=1,2,...,n).

(P,) Function ¢(x) as well as its partial derivatives ¢’ = d¢[ox; and ¢}; =
= 0*¢[ox; 0x; (i,j = 1,2, ..., n) are continuous on R,.

Since, by its definition, the density function f(x, t) is Lebesgue measurable in R,
and for every te T there holds 0 < [ f(x, 1) dx < 1, dx = dx, dx, ... dx,, and
since function ¢(x) is continuous and bounded on M < R,, integral [, ¢(x) f(x, 7) dx
exists and is finite. Thus, making use of assumption (a;) and of properties (P,)
and (P,) of function ¢(x), we obtain

5) j o9 %’2 dx = }% J Mq)(x) F(x, 1) dx =

= lim - {E[o(X(t + A)] — E[o(X(0)]} = lim - E[o(X(t + An) ~ o(X(0)] =

1 1 o) (!
= lim Y [o(x") — @(x)] dF,(x, t; X', t + At) = lim ZtJ‘RZ [Z o'(x) (x) — x;) +

At>0 Ran A0

+33 Y 06 (= x) () = )] AP, 6%, 0+ A9,

where dx = dx; dx,...dx,, Ry, = R, X R,, & = (§,...,&,) =[x, + O(x] — xy), ..
X, + O(x, — x,)],0 < 0 < 1.
Smce l(p (é)] C< +w(i,j=1,2,...,n) and, as follows from condition (1),
E[(X{(t + A1) — X (t))[At]* - E[X(1)]* < +o0, At > 0 (i = 1,2, ..., n), we have
by an immediate application of Schwarz’s inequality

*

I

© ] O ) (e ar s+ a0
At
i Rapn
<C ol E X (t + Af) — X,.(t)'Xj(t + Af) — X (1) <
A At At

2) We should like to emphasize, that stochastic processes differentiable in q.m. as considered
in this paper are not assumed to be Markovian. On the other hand, processes for which the afore-
mentioned Kolmogorov equation holds (see also [5] and [6]) are Markovian and, moreover,
though continuous in time, have not generally derivatives in q.m.
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< _g_ At EL? [Xi(z + Al) — X,(QT g [Xj(t + Af) — X}(x)]ﬂ

-0, At—0.

At At

Furthermore, since |p/(x)] < K < +o0 (i = 1,2
condition (1) yield

) [E {cpz(xo» [Her20-10 xolf <

, ... 1), Schwarz’s inequality and

At

<K. E1/2 [Xl(t + At) - Xl(t)
B At

2
—Xi(t)] -0, At-0,

and hence

®  E [¢Z(X(t)) Alrr 20 X"(‘)] — E[p/(X(0) X (0], Bt 0.

Finally, using eq. (8), assumptions (a,) and (a,) and properties (P;) and (P,) of
function ¢(x), we obtain

At-0 At

9 lim ij O'(x) (x) = x;) dFy(x, t; X', t + Af) =
Ran

= E[¢/(X(1) X(1)] = E{¢/(X(1)) E[X (1) | X(n]} =

- J‘ KGR | %, 1) f(x 1) dx = J "

ax

‘[bn(p,i(x) ot | x, 1) f(x, t)dx; ... dx, =

. —j o) - [5t| x, 1) x, )] v

(the final result in this equation was obtained by the application of Fubini’s theorem,

and of assumption (a,) and properties (P;), (P,) used when integrating by parts).
Substituting the results of equations (6) and (9) in equation (5) we obtain

(10) f ()6f(x Ddx j ‘P(")i 5%. [Bt | x, 1) f(x, )] dx.

As ¢(x) is an arbitrary function except for properties (P,), (P,) stated above,
derivatives Of(x, f)/ot and (8)ox;) [5(t | x, 1) f(x, )] (i=1,2,...,n) are con-
tinuous on R, for all ¢ € T (cf. assumptions (a,) and (a,)) and as for each x € R, we
can choose a bounded interval M < R, such that x € M, equation (10) implies
equation (3) forall xe R,, te T.
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2. DIFFERENTIAL EQUATIONS OF STOCHASTIC PROCESSES WHICH
HAVE FIRST AND SECOND DERIVATIVE IN QUADRATIC MEAN

Let the components of the vector random function X(¢) described in § 1 have also
second derivatives in q.m. Xl(t), ..., X,(t) on T, i.e. let the following condition be
fulfilled in addition to condition (1):

Xt + At) — X (¢
(11) lim E[ {t+ A) 0
t

At—>0

2
- X,(t)] =0 (i=1,2,...,n) whateverbeteT.

Denote by Y(f) a vector random function [Y,(f), ..., Y5,(t)] with components
Yi(0) = Xi(1), ..o Y1) = X,(8), Youe(t) = Xy(0), .., Yaut) = X,(t) and assume,
that there exists a density of the probability distribution of Y(f), i.e. a density of the
joint probability distribution of X,(t), ..., X,(t), X(?), ..., X,(), at one instant ¢,
which we denote by f(y,1), v = (1, -+ Yan) € Ry

It follows from Theorem 1 that if assumptions (a;) and (a,) in which we replace
FOx 1), x = (Xq, -0s X,,), Ot I x, t) = E[X (1) | X(t) =x]and i =1,2,..., n, respect-
ively, by f(y, 1), ¥ = (V1> - ¥2a)s E[¥}(1) | Y(t) = y] and j = 1,2, ..., 2n, respect-
ively, are fulfilled in addition to conditions (1), (11), the density f(y, t) satisfies the fol-
lowing equation:

2n

(1) PO 4 3 2 ELHO] Y0 = ¥170 03 = 0.

This equation can further take a simpler form. Proceeding analogously as in
equation (9) and Pu'fting Vi =X o5 Vn = Xy V1 = U5 oo o5 Von = Uns (xl’ b xn) =
=x€eR,, (vy,...,v,) = veR,, we namely obtain for 1 < j < n

(13) E[o)(Y(1) Y(1)] Zf ) Vien (s 1) dy =

M2y ay!

9 , 1 0 X, 0,1
= *f (P(Y)Yj+n o )d)’= —j‘ o(x, v) vj—f—g-——)dxdv,
Mzn ay My, 6x,-

J
where ¢(y) is a function with properties analogous to properties (P,;) and (P,) of
function ¢(x), M,, = R, x R, is a bounded interval in which function ¢(y) differs
from zero and dy = dy, dy, ... dy,,. Further procedure, similarly as when deriving
(3), leads to (12) in the form of

n

(14) M+ iviM+z i[&,»(tlx,v, 0 f(x,0,1)] =0,
ot i=1 0x; ov;

i=1

i=

where by a(t | x, v, 1) is denoted the expectation E[X (1) | X(t) = x, X(0) = v].
Hence, we may state the following
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Theorem 1*. Let besides conditions (1) and (11) the following assumptions be
Sulfilled:

(aT) There exists the density f(x,v,1) = f(xy, ..., X,y Uy, ..., U,y 1) of the joint
probability distribution of X (1), ..., X,(t), X,(1), ..., X,(t) whose derivative of|ot
is continuous on R, x R, x Tand derivatives af/éx,-(i = 1,2, ..., n) are continuous
in (X1, .er Xpy Ugy --0r U,) OB R, X R, for every teT.

(a%) Derivatives (9]dv;) [aft | x, v, £) f(x. v, )] (i = 1.2, ....n) are continuous in
(X15-ues Xps Vgs ...y U,) 0N R, X R, for every teT.

Then equation (14) holds for all xe R,, veR,, te T.

From equation (14) we can derive in a straightforward manner other differential
equations satisfied, like equation (3), by density f(x, f). The general procedure is
carried out in papers [7] and [8]. Equation (14) is first multiplied by a chosen
function of variables x4, ..., X,, Uy, ..., ,, t, then integrated with respect to vy, ..., v,
over the whole range R,. Under convenient assumptions, one can then carry out
integration by parts and exchange the sequence of integration and differentiation in
some of the integrals. Following simple rearrangements, we obtain a differential
equation in which the density f(x, t) and, in addition to it, only relevant conditional
expectations for given X(f) appear.

Even though the procedure is simple, we must assume, when applying it, that
equation (14), satisfied by density f(x, v, f) rather than by density f(x, t), holds and
that density f(x, v, t) fulfils a number of additional conditions.

However, it is possible to derive equations of the type mentioned, satisfied by f(x, 1),
without making use of f(x, v, t), namely by a method similar to that used when deriv-
ing (3). We shall derive in this manner several equations which are of significance
particularly in physical applications [9]. Assumptions which we shall use in doing so
are simple and, so far as the physical aspects are concerned, ordinary.

We shall use abbreviations 5t | x, 1), vo,(t | x, f)and @t | x, 1) for E[X (1) | X(1) =
= x], E[X () X,(t) | X(z) = x] and E[X (1) | X(¢) = x], respectively.

First, we shall prove the following

Theorem 2. Let besides conditions (1) and (11) the following assumptions be
Sulfilled:

(A,) There exists the density f(x, t) = f(xy, ..., x,, 1) for every te T.

(A,) Derivatives (8]0t) [5t | x, ) f(x, )] (i = 1,2,....,n) are continuous on
R, x T.

(A;) Derivatives (0[0x;) [v,(t | x, 1) f(x, )] (i,j =1,2,...,n) are continuous
in (X4, ..., x,) on R, for every te T.

(A,) Functions ayt | x, ) f(x,1) (i =1,2,...,n) are continuous in (x,,..., x,)
on R, for every te T.
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Then the system of equations

(15) % [t l x, 1) f(x, 1)] +ji1 -»fl [v(t ] x, 1) f(x, )] — aft ] x, 1) f(x,) =0

=1 0x;

holds for all xe R, and t € T.

Proof. We shall introduce again the auxiliary function ¢(x) with properties
indicated in § 1. Making use of condition (1), of assumptions (A,) and (A,) and of
the fact that ¢(x) is continuous and bounded on M < R,, we obtain

(16) f o) 2 [t | 3,05 )] v = f 0() 5(t | x, 1) f(x, 1) dx =

= lim —-E[qo(X(t + AD) X (t + A1) — o(X(1) X(1)] =

At=0

= lim - E([o(X(t + A9) — p(X(O)] X0) +

+ lim — E{qo(X(t + A [X(t + Ay = X ()]} (i=12,..,n).

At—0

We shall first compute the second term in the resultant expression in (16). According
to conditions (1) and (11) and assumption (A,), we have

(17) fim Xlt E{o(X(1 + AD) [Xit + Af) — X.(0]} =
-l s {<p(x<z>) 2o+ - Xm} .

Ctlim £ { lt ; 0l(Q) [X (1 + Aty — X,(6)] [X(t + At) — X,(t)]} _

— E[o(X(1) £(1)] = j o(x) aft | x, ) f(x, 1) dx |
where O = {X,(t) + [X,(t + A1) — X ()], ..., X,(1) + I[X,(t + At) — X, (1)]},

0 <9 <1, since E{p(X(2))[X(t + A1) — X(1)]/At} - E[o(X(2)) X(1)], At— 0,
as follows from (11) in view of the fact that ¢(x) is bounded in R, %), and since

E {Alt e)(Q) [X;(t + A — X, (0] [X(t + A1) — Xi(,)]}

J — XA . ) — X ()P
é K{At 3 E1/2 [Xj(t + A;) Xl(t):l . EI/Z [Xl(t + AAt) Xl(t):l I - 0 , At N 0 R
t t

3) This relation can be proved similarly as relation (8).

s
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as follows by Schwarz’s inequality from (1), (11) and from the fact, that ](pj’.(Q)[ <
<K< +o.

In the computation that follows, we shall introduce an auxiliary random function
U(t) = [Uy(2), ..., U,(t)] defined by relations

(18) Uft) = X (1) for |X(1)| <4,
U()=0 for X1 >A (i=1,2,..,n),

where A is a chosen number, 0 < A < + o0.
Now, we rearrange the first term in the resultant expression in (16) as follows:

(19) lim - E{[p(X(t + A1) — o(X(0)] X0} =
= lim = E{[o(X(t + A1) ~ o(X()] U0} +
+lim = E{[p(X( + 40) = o(X(O)] [X,() ~ V) =

— lim AitE{ ,-an O {(X(0) [X,(t + A1) — X, (0] U0} +

At—=0

+ lim _Alt E{ é ki 1o5(S) [X(t + At) — X ()] [Xu(t + A1) — X,()] U)} +

At—0

+lim = E[ S, 0(0) [t + &) = X,0] [X0) = 0]}

where S = {X,(1) + O[X,(t + A1) — X,(1)]. ..., X,(t) + O[X,(t + A1) — X, ()]},
0<0 <1, 0={X,t)+ 9[X,(t + A1) — X;()], ..., X,(t) + Xt + A1) —
- X,0]}0< 9 <1

Since |@j(X(1)| £ K < +o0, [pj(S)] £ C < +o0, |[U(1)] £ A< +00 (i,j, k =
=1,2,...,n)forall t e T, it follows from Schwarz’s inequality and from (1) first that

1 7 ) ’ .
v E{pi(X(0) [X,(t + A) — X,()] U(1)} —» E{loj(X() X,() U0}, At-0,
which can be proved similarly as (8), further that '

o, FUROI L+ 40 = XAI NG+ 40 = K01 V) <

< 34AC (At .E'? [Xj(t + AAI) - Xi(t):r. g2 [Xk(t + AAt) - Xk(t):ﬁ -0, At-0,
t t
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eventually

;AitE{q;;.(Q) [X,(r + A1) — X,(0] [X{1) — U]} =

< K.E'? ,:Xj(t + AAI) . Xj(t)]z- E'?[X (1) — U] -
t

- K. E"X,(O).EY[X () — U()]*, At—0.
According to condition (1) E[X (#)]* < +o (i = 1,2, ..., n). Therefore
K. EV X0 . EY?[X() - UDH]* >0, A—> +o0,

and hence
E[oX (1) X (1) U{n)] - E[o}(X(0)) X, () X(1)], A— +c0,

since |E{p (X (1) X (1) [X (1) — U]} = KE'?[X,(0)]* E"?[X (1) — U(n)]*.
Thus by letting A — + co and then by substituting the results just arrived at in (19),

we obtain

(0) lim = E{[p(X( + A0) = o(X(O)] X0} = E{ T (X(0) X,(0) X0} =

Z o (x) Dot | x, 1) f(x, 1)} dx =

MJ"

_ fM(p(x) {21 0%} [t | x ) f(x. z)]} dx

according to condition (1), assumptions (A,), (A3) and properties (Pl) and (P,).
Finally, substituting (17) and (20) in (16), we obtain

1) f (p(x)g—t (5t | % )£ (x. 1)] dx =

_ Lq,(x) {él 5% [o,(t | x, 1) f(x, t)]} dx + f Mqo(x) aft|x 0f(x,1)dx

Making use of assumptions (A,), (A;) and (A,) and of the fact, that ¢(x) is an
arbitrary function except for properties (P;) and (P,) and that for each x € R, we can
choose a bounded interval M < R, such that x € M, we can prove immediately, that
(21) implies (15) for all xe R,, te T.
Thus the proof of Theorem 2 is completed. .
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A further system of differential equations of the same type as (15) can be derived
analogously:

(22) % [vaoy(t I x, 1) f(x, )] + k§1 ;;— (vt I x, 1) f(x, 1)] —

— awy(t| x O f(x, 1) — apt|x, ) f(x, ) =0 (i,j =1,2,...,n)

where v,(t | x, 1), vt | x, 1) and ap,(t | x, 1) denote E[X (1) X (1) | X(1) = x],
E[X (1) X (1) X,(1) | X(t) = x] and E[X(t) X;(0) | X(1) = x] (i,j,k =1,2,...,n)
respectively.

Equations (15) and (22) are closely related inasmuch as all conditional moments
appearing in (22) are one order higher with respect to X (r) than the conditional
moments appearing in the corresponding terms of (15). It is thus obvious that the
assumptions under which equations (22) hold differ from the assumptions (A;)—(A,)
only in that the conditional moments they concern are also one order higher with
respect to X (¢) than the conditional moments in the corresponding assumptions
(Ay1)—(A,). As to conditions (1) and (11), it is sufficient to complement them with the
following subsidiary condition:

(23) E[Xi(t)]“ < +o00 (i=1,2,...,n) whatever be teT.

To demonstrate it, we shall prove the following

Theorem 3. Let besides conditions (1), (11) and (23) the following assumptions be
Sfulfilled:
(A}) There exists the density f(x,t) = f(xy, ..., X,, t) for every teT.

(A%) Derivatives (9]ot) [ow(t| x, 1) f(x, ] (i,j = 1,2, ..., n) are continuous on
R, x T.

(A%) Derivatives (8/0x,) [vov(t | x, 1) f(x, )] (i, j, k = 1,2, ..., n) are continuous
in (xy, ..., x,) on R, for every te T.

(A%L) Functions a .t | x, ) f(x, 1) (i,j = 1,2, ..., n) are continuous in (xy, ..., X,
on R, for every teT.

Then the system of equations (22) holds for all xe R, and t € T.

Proof. Again we shall use the auxiliary function ¢(x) introduced in § 1. According
to condition (1) and assumptions (A}) and (A}) we have

(24) j <P(x)£ [owi(t | x, ) f(x, )] dx = -;;L(P(x) vyt | %, 1) f(x, 1) dx =

= lim 1 {E[o(X(t + AD) Xt + AD) X(t + A1)] — E[o(X (1) X (1) X (0]} .

A0 At
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Now, we shall introduce the function U(t) defined by relations (18). According to
conditions (1), (11) and properties (P,), (P,) of ¢(x), we may write

(25)  E[o(X(t + AD) Xt + A1) X,(t + AN)] — E[o(X(1) X{2) X,()] =
= E{[o(X(t + A1) — o(X(1)] U{1) Uy(1)} +
+ E{[o(X(t + AD) — o(X(1)] [X{0) X,() — Ur) U(O]} +
+ E{o(X(t + A) [X{(t + A) Xt + At) — X () X,(0)]} =

= B3 0i(x(0) [Xlt + A1) = X0] U0 U0} +
+ E{kgn:l 12”:1 %ﬁol:l(s) [Xk(t + At),"' Xk(t)] [Xl(t + At) - Xl(t)] Ui(t) Uj(t)} +
+ E(Y 0@ [Xu(t + &) = X0] [X() — U] X,0) +

+ E{ki 0U(0) [X4(t + AD) — X(0] [X,(0) — U] U} +

+ E{p(X(t + AD)) [X(t + A1) — X (0] X,(0)} +
+ E{p(X(t + AD) [X(t + A) = X,(0] X (0} +
+ Blo(X( -+ A [X (1 + A) — X(0] [, + A) ~ X,0)]}
where S = {X,(1) + O[X,(t + A1) — X,(1)], ..., X,(1) + O[X,(t + A1) — X, (0)]},
0<0 <1, Q={X,(t) +9[X,(t + At) — X,(O], ..., X,(t) + S[X,(t + At) —
- X0} 0< 9 < 1.
Substitute the resultant expression (25) in (24).
Since [pi(X(1)| £ K < + 0. |pi(X(1)| < C < +00,|U(1)| £ A< +o0 (i, k, 1=
=1,2,...,n)forall 7 € T, it follows from (1) that

(26) - E{i(X(O) (Xt + A) = X,(0] U0 U0) -
= E{pi(X(0) X() U) U()} , At 0,
which can be proved similarly as (8), and that

1) ji EQi(S) [Xt + A1) — X0 [X0 + A1) — X,0] U0 U o) =

-0, At>0.

< 1CA2 EAI E12 Xi(t + A1) — X,(1) 2' E12 Xt + A1) — X(1) ]
= | At tA

From (23) it follows by Schwarz’s inequality that

(28) E{[X (1) — U] [X,(0]*} = E"?[X (1) — U()]*. E'"?[X(1)]* - 0,
A->+0 (i,j=1,2,...,n).
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Therefore, according to (1),
|
(29) Aﬁi“olzl’t E{@i(Q) [Xi(t + A1) — X, (D] [Xi(1) — Un)}] X,(1)} =

S RO g - v P -

= K. E"X{X (O} . EVH{[X(t) - U [X,0])*} >0, 4> +o,

At—0

K. limE”Z{

At—0

lim tf, E{o}(Q) [Xt + A1) — X,(0)] [X,0) — U] U0} =

< KLEVX0) BV - U U] 0. A oo,
From (29) it follows that v
|[E{oi(X(1) Xu(0) [X(1) X,(1) — U) U;(0]}] =
< K.E|X, (1) [X(1) — U] X,(0)] + K - E|X,(0) [X(1) — U ()] U(1)] > 0,
A— +oo.
Hence, by letting A — + oo, we obtain

(30) E{@i(X(1)) Xu(1) U(1) U1} —~ E{oi(X(0) X(1) X,(1) X,(1)} =

= J 0i(x) vt l x, 1) f(x, 1) dx = — J o(x) —é—g— [vivjui(t ‘ x, 1) f(x, 1)] dx

according to condition (23), assumptions (A}), (A}) and properties (P;) and (P,).
Since |@(X(¢ + Af))| £ B < + o0, Schwarz’s inequality and condition (11) yield

OO | Bl + A DR + 80 = XOTIXG + 80— X0 =

I ( _ X0 ¢ X
< B|At.E'? [X’(t + A1) X'(t)] CEl? [X’(t + Ay X’(t)] -0, At-0.
i

At At

According to definition (18), conditions (1), (11) and properties (P,) and (P,) we
may write
- EQ(X(+ 80) [X(0 + A1) = X(0] (0} =
~ L EeXO) [X( + &) - X@] 0} +
+ B Y al@) DNl + A = (0] [X( + A) = X(O] U0} +

+CELY @) DX+ A1) = XOT DX + A0 = X(0] [X0) — U0}
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Then, Schwarz’s inequality and (1), (11), (28) yield

’Alt E(oi(0) [X,(t + A1) — X,(0] [X(1 + Ar) — X(0)] U0} <

< KA|At. EV? [X"(’ * ’XZ = X"(’)T. E'2 [X"(‘ ha AAtz = Xi(’)]z -0, At-0,
IAit E(0i(Q) [Xdt + &) — X0] X4 [X,0 — U0} =

<x. EI/Z{X"(’ LA X"(”}Z.EW{[&(Q]Z [X(0) = U0} =0, A~ +oo.

Hence also

E_‘ E{oi(Q) [X\(t + A1) — X, (1)] X{t + A1) [X,(1) — Uj(t)]}| -0, A- 4.
Finally, as follows from (1) and (11),
ZI;E&P(X(O) [Xi(t + A — X(0] X,(0)} > E{o(X(0) X (1) X0}, At—0,

which can be proved similarly as (8).
Altogether, we have

(32) lim ‘,_Al; E{p(X(t + AD) [X(t + At) — X(1)] X,(0)} =
— E{o(X() X (1) X,0} = j o(x) @yt | x 1) f(x, 1) dx.,

according to conditions (1), (11) and assumption (A}).
Substituting first (25) and then (26),(27),(29),(30),(31) and (32) in (24), we obtain

(33) J (p(x)g (505t | %, )£ ] dx = — f (%) { }"jl %[uivjvk(t |x. 1)/, t)]} dx +

k=

+ f o(x) [apy(t] x, 1) + apft | x, 0] f(x, 1) dx .

Making use of assumptions (Aj}), (A3) and (A%) and of the fact, that ¢(x) is an
arbitrary function except for properties (P;) and (P,), we can prove immediately,
that (33) implies (22) for all xe R,, te T.

Thus the proof of Theorem 3 is completed.

Close connections between systems of differential equations (3), (15) and (22) can
be revealed by comparing one with another. First of all, each successive system con-
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tains conditional moments which are one order higher with respect to X ()
(i = 1,2, ..., n) than the conditional moments appearing in the corresponding terms
of the preceding system as already mentioned when comparing systems (15) and (22).
Another connection is as follows: in the first equation, i.e. in (3), partial derivatives
of products ,(t | x, £) f(x, 2), ..., 5,(t | x, £) f(x, £) with respect to variables x,, ..., x,
appear and in the subsequent system of equations (15) partial derivatives of the
same products with respect to t appear. Partial derivatives with respect to xi, ..., x,
found in (15) are those of products vw,(t | x, 1) f(x, t) which contain conditional
moments one order higher than moments (¢ | x, 1). In the next system (22) partial
derivatives of products ij(t | x, t) f(x, t) with respect to ¢ appear etc. Of course, we
can also derive other systems of differential equations of this type which, together
with the systems mentioned, form a family in which each two succeeding systems
relate in the manner stated above. There thus follows in this family, after system (22),
a system containing derivatives (0/0t) [ﬂ(l | x, t) f(x, t)], further a system con-
taining derivatives (0/0t) [vv;0.0,(t [ x, ) f(x,0)] (G,j.k,1=1,2,...,n) etc. It is
possible to derive these systems by a method similar to that used when deriving (3),
(15) and (22) and that under the conditions (1) and (11) suitably complemented by
some subsidiary condition similar to (23) and under the assumptions which are
appropriately modified assumptions (A;)—(A,), or possibly (A})—(A%).

The systems of partial differential equations of this type can generally be written
in the form

(34 %{E[(Xx(t))"‘m (X, (0) [X()) = x] f(x, )} +

{E[G (). ()~ (X 0)

£y X() = 1 (s, 0}

KA
j=10x;
= T KELX D) L) (R0 (K00 X0 = ¥ ) = 0
(kyy ooy ky,=0,1,2,...),

where we put (X,(1))" = 1, whenk; =0(i = 1,2,..., n).

When ky = k, = ... = k, = 0, (34) turns into (3); when k; = | and k; = 0 for
Jj = i, (34) turns into (15) etc.

To derive equations (34), we can start from the integral [y ¢(x) (6/01) .
AE[X (@) .. (X(0) | X(#) = x] f(x, 1)} dx and proceed analogously as when
deriving (15) or (22). However, this derivation is much more extensive than that of
(15) or (22). Therefore, we shall not give it.

As a corollary of Theorems 1 and 2 we obtain

Theorem 4. Let conditions (1), (11), assumptions (a,), (a,) of Theorem 1 and

assumptions (A,), (As) and (A,) of Theorem 2 be fulfilled. Further, let the following
assumptions be fulfilled:
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(As) Derivatives (0%|ox, o1) [5{t | x, 1) f(x, )] (i = 1,2,..., n) are continuous in
(xp8) on Ry X Tfor all (xq, ... X;_ 1, Xiz1s - Xp) ER,_ 1. -

(Ag) There exist derivatives (0°[0x; dx;) [v0(t l x, 1) f(x, )] and (0]ox;).
ae | x 0)f(x, )] (i,j=1,2,...,n) forall xeR, teT.

Then equation

(35) CEICU oy oo Lot % 000 +

ot lljl(,x

+ z ——[a(tlx,t)f(.\',t)]:O

.16x

holds for all xeR,, teT.

n

Proof. From equation (3) (cf. Theorem 1) and assumptions (a,), (A,) and (A;) it
follows that

azf(x t) F,
o ,‘21 P { [t [ x, ) f(x, t)]}—o

for all x € R,, t € T. Substituting for (8/at) [vt | x, 1) f(x, t)] from (15) (cf. Theo-
rem 2) and making use of assumption (A4) we obtain (35).

3. DIFFERENTIAL EQUATIONS OF STOCHASTIC PROCESSES WHICH
HAVE DERIVATIVES IN QUADRATIC MEAN UP TO THE r-th ORDER

Let the components of the vector random function X(f) described in § 1 have
derivatives in g.m. up to the r-th order inclusive on T, i.e. let the following condition
be fulfilled:

XP(t + A — XO@1) X‘-'“‘)(t)]zz ’
At o

(i=1,2..,n1=0,1,2,...,r — 1) whatever be teT.

(36) q&my<+w,hmE[

At—0

(here XV(f) denotes the derivative of the I-th order of random function X (t)).
Denote by Z(t) a vector random function [Z(1), ..., Zy(f)], N = rn, with
components Z;(f) = X(t), ..., Z,(t) = X,(1), Z,+1(t) = Xi(1), ..., Z,,(t) = X,(1),
Zowei(t) = Xy(0), ..y Za(t) = X0, s Zpoyyuen (1)) = XUTO(0), .., Zy(1) =
= X&), ie.
Z(t) = X1 for j=1,2,..,n
Zt)y=2Z;_(t) for j=n+1,n+2.,N

Assume that there exists a density of the probability distribution.of Z(7), i.e.
a density of the joint probability distribution of functions X (%), ..., X,(¢) and their
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derivatives in q.m. up to the order r — 1 inclusive, at one instant ¢, which we
denote by fz,1), z = (z;,..., Zx) € Ry = (=00, +0)", N = rn.
As a generalization of Theorem 1*, we have the following

Theorem 1**. Let besides condition (36) the following assumptions be fulfilled:

(a¥™) There exists the density fz,t) = f(zy, ..., zx. 1) of the joint probability
distribution of Z (1), ..., Z,(t) whose derivative 0f,[0t is continuous on Ry x T and
derivatives df,[0z;(j = 1,2, ..., N — n) are continuous in(z,, ..., zy) on Ry for every
teT. ‘

(a3*) Derivatives (8/dz;) {E[Z{t)| Z(t) = z] f(z, 1)} (j = N — n + 1,.., N) are
continuous in (zy, ..., zy) on Ry for every te T.

Then equation

(37) (‘)f(h, f) + Z" 2 nt (’fr(Z t) Z 7:(”;’ {E[ZJ(F) l Z(I) _ Z]fr(z, I)} -0

ZJ j:N—n+1(IZJ

holds for all ze Ry, te T.

The proof of Theorem 1#* is analogous to that of Theorem 1*.

Equation (37) turns into (14), or into (3), when N = 2n, or when N = n.

It is possible to derive other differential equations from equation (37) in a similar
manner as from equation (14) (cf. § 2). Equation (37) is first multiplied by a chosen
real function g of variables z,, ..., zy, t and then integrated with respect to Z,, 41, - .,
.. zy (1 £ m < r — 1) over the range Ry_,,,. Under well-known assumptions, one
can then carry out integration by parts and exchange the sequence of integration and
differentiation in some of the integrals. Following simple rearrangements, we obtain

a B mn AN 6g
(38) - [(g)m fm] + z .‘ [(gz )m fm] l:<——) + Z ( Z ) ]fm = 0 ’
ot j=10z; ot), i=1\0z; .
where f,, = f,{(z1, -+ Zum t) denotes the density of the joint probability distribution

of Z(t), ..., Zu(t) and (g),.» (ng)m, (ag/at)m, ((ag/(?zj) Z;),, denote the conditional
expectations of the corresponding functions for Z,(t) = z, ..., Z,,(t) = Zu at
instant ¢ (for short, we do not write arguments of the functions in (38)). There is

P

»fm = fr dZm"+1 eee dZN 5
o RN-mn
r
(g)mfm = gf,-dZ,,,,,+l --.dzN’
J RN-mn
r
(9Z s (1<
(gzj)mfm = gz'jﬂf, dZ",n+1 d“,\- (l =] = mn)

JRN-mn
etc. )
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It can easily be proved, that if m = 2, we may substitute (g—ZJ),,. = (§)m zj+n and
((09[0z;) Z;)w = (09]02;) Zj+n for j £ (m — 1) n in (38).

It is possible to derive equation (38) by a method similar to that used when deriving
(15) and (22), too, namely by computing the integral [,, ¥(9/0t) [(§)mfm] dzy ... dz,,
(m=1,2,...,r — 1) where ¥ = y(zy, ..., z,,) is a function with properties
analogous to those of function ¢(x, ..., x,) introduced in §1 and M,,, = R,,, is
a bounded interval in which  differs from zero. This method is particularly well
suited, when function g has such a form that it follows immediately from condition
(36), or possibly from (36) and some simple subsidiary condition similar to (23), that
function G(t) = g(Z(¢), ..., Zx(¢), t) is differentiable in q.m. By this method we can
prove in a straightforward manner the following

Theorem 5. Let H(t) be a real second order random function having first deriva-
tive in g.m. H(t) on T. Let besides condition (36) the following assumptions be
fulfilled (write (H),, (H),, and (HZ;),, for E[H(t) | Zi(1) =245 ooy Zo(1) = Zpn),
E[H(?) | Z,(t) = 215 .o Z1) = Zua)] and E[H(t) Z;(t) | Z,(t) = zy, ..., Zplt) =
= z,.], respectively):

(/1) There exists the density f,, = f(z1, ..., Zyn 1) of the joint probability
distribution of Zy(t), ..., Z,(t), 1 £ m < r,r being the positive integer appear-
ing in (36), for every te T.

(,) Derivative (0[01) [(H), f,] is continuous in (zq, ..., Zy t) 00 R, x T.

(s£5) Derivatives (0/0z;) [(HZ ) ful G = 1,2, ..., mn) are continuous in (zy, ...,
v Zun) OB R, for every te T.

(,) Function (H),,f,, is continuous in (z, ..., Z) on R,, for every te T.
Then equation

mn ~

A (L2 AR C WA

holds for all (zy, ..., Zy) € Ryns 1€ T.

If m=2, we can substitute (3/0z;) [(HZ)mfn] = 2;+x(0)02;) [(H)mfm] for
i< (m—1)nin(39).

The proof of Theorem S is analogous to that of Theorem 2. To prove it, it is
sufficient to replace function X,(z) and its conditional expectation #(t | x, £) by H(t)
and (H),, respectively, and also [ X,(2), ..., X,(1)], (x1s ---» X,), £(%, £), @(x) and j, k =
=1,2,..,0bY [Zy(®), - es ZouD]s (1. -+ Zom)s TuZ1s <5 Zoums £)s Y(Z 15 o5 Zpy) @and
j,k=1,2,..., mn respectively, in the procedure used when deriving (15) (cf.
equations (16)—(21)).

Remark 1. If H(t) = g(Z,(t), ..., Zy(t), 1) and, at the same time, H = dg/ot +
N
+ Y. (09/0Z;) Z;, H being the derivative in q.m. of H, (39) turns into (38).
j=1
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Remark 2. Since [Z,(t), ..., Z,()] = [X1(0), - X,(0] = X(0), (215 < es Zy) =
= (%15 ov0r Xu)s Sul(Z15 -5 Zys £) = f(x, ) for m = 1,(39) turns into (15), whenm = 1,
H(1) = X (1) or into (22), when m = 1, H(f) = X/(t) X,(1).

Furthermore, putting m = 1, H(t) = X (¢) in (39), we obtain

(40) %[E,{t | x, )£ (x )] + 21 b% (@t | % e, 1] = Byt | x, ) f(x, 1) = 0.

where a(t | x,1) = E[X (1) | X(t) = x], aw,(t|x, 1) = E[X(2) X,(1) | X(t) = x], in
accordance with the notation introduced in § 2, and by(t | x, t) = E[X (1) | X() = x].
As a corollary of Theorems 1, 2, 3 and 5 we obtain

Theorem 6. Let condition (36) be fulfilled for r = 3. Let condition (23), assumptions
(a,), (a,) of Theorem 1, assumptions (A,), (A3), (As) of Theorem 2, assumptions
(A%), (AY), (AL) of Theorem 3 and assumption (As) of Theorem 4 be fulfilled.
Assumptions (& 5), () and () of Theorem 5 let be fulfilled for m = 1, H(t) =
=X) (i = 1,2,..., n). In addition to it, let the following assumptions be fulfilled:

(A;) Derivatives (0°|ox; ot) [v,(t | x, 1) f(x, )] (i,j = 1,2, ..., n) are continuous
in(x;,t)on Ry x Tforall (xy, ..., X;_1,Xj41,.-» X,) €ER,_;.

(Ag) Derivatives (0%[0x; o1) {(9]or) [t | x, 1) f(x, )]} (i = 1,2,...,n) are con-
tinuous in (x;, 1) on Ry x T for all (Xq, ...y X;_ 1y Xjq 15 - X;) € Ry_q-

(Aq) There exist derivatives (0%|0x, 0x;) [v0;0,(t | x, 1) f(x, 1)], (6%|0x, Ox; 0x;) .
ot | % 07 )], @[ox) [t | x, ) f(x, 1] and (@[x) [Be] x, 0 £, 1]
(i,j,k=1,2,...,n) forallxeR,, teT.

(Ayo) Derivatives (82[ox; ox;) [aw,(t | x, 1) f(x, )] (i,j=1,2,...,n) are con-
tinuous in (x;, X;) on Ry for all (Xq, ..., X;_ 1, X;4qs o0y Xjo1, Xjugs ooos X,) € Ry gy
teT.

Then equation

@y eSS T |0 0] -

o3 i

i=1 j=10x; 0x
J

[ | % 0G0 + %, -2 [B(0 | %0/ 0] = 0

holds forallxeR,, te T.

Proof. From equation (15) (cf. Theorem 2), assumptions (A;), (A;), (A;) and
assumption (&7,) for m = 1, H(t) = X (1) (i = 1,2, ..., n) it follows that

@) 0% s 0l = = 3 e w0 e o) +
+ ait[a,.(t |%,0fC D] (i =1,2...,n)
forallxeR,, teT.
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Making use of equation (3) (cf. Theorem 1), assumptions (2), (A2), (As), (Ag) and
of the fact, that derivatives (0°/0?) [oit [ x, 1) f(x, 1)] exist for all xeR,, teT
according to assumptions (A-), («,) and equation (42), we obtain (cf. the proof of
Theorem 4)

a3 .t n 0 22
(43) L@ + Yy = {ﬁ_z [ot | x, 0 f(x, 1)]} =0

ot i=1 0x; |0t
forallxeR,, teT.

Substituting first for (0/01) [vwi(t | x, 1) f(x, )] from (22) and for (9/or).
[t | x, ©) f(x. 1] from (40) into (42) and then for (6?/0%) [5(t | x, 1) f(x, f)] from
(42) into (43) and making use of assumptions (A), (A;,) we obtain (41).

Remark 3. It is possible to derive equation (41), too, by differentiating (35) with
respect to t and by substituting for the corresponding terms from (22) and (40).

Equations (3), (35) and (41) form a family in which each successive equation con-
tains a partial derivative of the density f(x, t) with respect to t, which is one order
higher than that found in the preceding equation. The other terms appearing in these
equations are, altogether, partial derivatives with respect to variables x, ..., x,,
namely partial derivatives of products of f(x, t) with conditional product moments
of derivatives of random functions X{(?), ..., X,(?), the highest order of derivatives
of X,(?), ..., X,(t) in these moments in each equation being equal to the order of the
partial derivative of f(x, t) with respect to t. Of course, we can also derive other partial
differential equations of this type which, together with the equations mentioned, form
a family of partial differential equations, in which each two succeeding equations
relate in the manner stated above. There thus follows in this family, after equation
(41), an equation containing derivative d*f(x, £)/0t*, further an equation containing
0°f(x, t)/or> etc. It is possible to derive these equations by a procedure similar to
that used when deriving (35) and (41), namely by differentiating the preceding
equation with respect to ¢ and by substituting for the corresponding terms from
relevant equations of the type (34) or (39).

4. DIFFERENTIAL EQUATIONS SATISFIED
BY TRANSITION PROBABILITY DENSITIES

In differential equations stated in §§ 1 —3, there appear exclusively densities of
non-conditional probability distributions. However, analogous equations, satisfied
by the corresponding densities of conditional probability distributions (transition
probability densities), can be derived by similar methods for stochastic processes
dealt with in this paper. Each of those equations differs from its counterpart stated
in §§ 1—3 only by that there appears in it the corresponding transition probability
density instead of non-conditional probability density and that all the moments it
contains are conditional moments relative to the same conditions as those in its
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counterpart supplemented by the conditions to which the transition probability
density relates.
Thus e.g. the counterpart of equation (3) is the following differential equation:

0 "0
(44) —o(x, t | X0, to) + Y, —— [B:(t | X0 tos X, 1) @(x, ] X0, 19)] = 0.
ot i=1-0x;

Here, o(x, t | Xg, 1o) denotes the density of the conditional probability distribution of
random function X(f) = [X,(¢), ..., X,(¢)], described in § 1, for X(t,) = x,, to € T,
teT — {te}, Xo = (Xo1s---» Xou) ER,y X = (X1, ...,x,)€R, and ot l Xos Lo; X, 1)
denotes E[X (1) | X(1) = xo, X(1) = x].

It is obvious that equation (44) can be derived by the same method as equation (3)
under assumptions analogous to those of Theorem 1. In this manner, we can prove
e.g. the following theorem which is entirely analogous to Theorem 1:

Theorem 7. Let xq = (Xgq, ---» Xou) € Ry» 1o € T. Let the condition

(45) E{[X(1)]? : X(to) = xo} < 40,
. Xt + A - X)) o T _ _ . "
lim £ {[ A _ X,(t)il i X(t5) = xo} —0 (i=1.2..m)

be fulfilled for every t € T. Further, let the following assumptions be fulfilled:

(a}) There exists the density o(x,t l Xo, to) of the conditional probability
distribution of X(t) = [X,(2), ..., X,(t)] for X(t;) = xo, whose derivative dg[ot is
continuous in (X, ..., X, 1) on R, x (T — {to}).

(a3) Derivatives (0]0x;) [B(1 | xo, to; X, 1) o(x, t | Xo. 10)] (i = 1,2, ..., n) are con-
tinuous in (xq, ..., x,) on R, for every te T — {t,}.

Then equation (44) holds for all xe R,, te T — {t,}.

To prove Theorem 7, we start from the integral [, ¢(x) (6/01) o(x, | X0, to) dx,
where ¢(x) is the auxiliary function introduced in § 1, and proceed similarly as when
proving Theorem 1 (cf. equations 5—10).

Analogously, we can prove, as a modification of Theorem 7 in which condition (1)
instead of (45) is used, the following

Theorem 7*. Let t, € T. Let besides condition (1) the following assumptions be
Sfulfilled:

(@]) There exists the density f.(xo, to; X, t) of the probability distribution of
X(1) = [X4(0), .- X,(t)] at two instants t,, t for every t € T — {t,}, whose derivative
of [0t is continuous in (Xgqs ---» Xom X1s -+ Xnn 1) 00 R, X R, x (T — {to}).

(ay) Derivatives (9]0x;) [5,(t | Xo» to5 X, 1) fa(X0» to3 X, )] (i = 1,2, ..., n) are con-
tinuous in (Xoy -+ Xop Xq» ---» Xa) 01 Ry X R, for every te T — {t,}.
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Then equation (44) holds for all xe R,, te T — {to} and for each x, for which
o(x, t I Xos to) is defined.

Proof. We start from the integral [y . s @o(Xo) @(x) (0[01) f2(x0s to3 X, 1) dXo dx
where @(x,) is an auxiliary function with properties analogous to those of function
¢o(x), My = R, is a bounded interval in which @¢(x,) differs from zero, dx, =
= dxyq dx¢, ... dx,, and dx = dx, dx, ... dx,. Proceeding analogously as when
deriving equation (3) we find easily, that

0 0
(46) afz(x()a to; X, 1) + '21 5_): [3:( | Xo> L03 X, 1) f2(Xo, o3 X, )] = 0

holds for all xo€R,, xeR,, te T — {to}.
Considering the fact that o(x, t l Xo, to) is defined by the relation

Sa(xo0, to3 X, 1)
J-R,.fz(xo, to; X, 1) dx

for each x, for which [ f,(xo, to; x, f) dx does not vanish, we obtain (44) for each x,
for which o(x, ¢ I X, 1o) is defined by dividing (46) by [, f2(xo, to; x, ) dx.

Thus the proof of Theorem 7* is completed.

As a corollary of Theorems 1 and 7* we obtain

(47) o(x, t | Xo, ty) =

Theorem 8. Let t, € T. Let condition (1), assumptions (ay), (a3) of Theorem T*,
and assumptions (a,), (a;) of Theorem 1, in which f(x, t) = [ fa(xo, to, X, 1) dxo,
be fulfilled. Further, let the following assumption be fulfilled:

(a3) There exist derivatives 0f,[0x; for every x,€R,, x€R,, te T — {t,} and
derivatives 0f[0x; for every xeR,, te T(i = 1,2, ..., n).

Then equation

0 " 0 :
(48) — o(xo, to l X, 1)+ Y ot I X, 1) = 0(X¢s to I x, 1) +
ot i=1 ox;

i

1 &9 ] ]
Z - {Q(xm tO ' X, t)f(xa t) [vi(t | X0, tO; X, t) - U,-(t I X, t)]} = 0 ’
f(x, 1) i=1 0x;
where o(xo, to | x, t) denotes the density of the conditional probability distribution
of X(to) = [Xi(to), .-, Xu(to)] for X(¢) = x, holds for all x, € R,, te T — {t,} and
for each x for which (X0, to | X, t) is defined.

+

Proof. Putting [, Sa(x0, to; x, ) dxq = f(x, t), we have

f2(x07 tO; X, t)

fx, 1)
for each x for which f(x, t) # 0, according to definition (47).

(49) o(xo, o l X, 1) =
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From (49) and assumptions (a,), (a}) it follows that

0 1 0
(50) ”a—t (%o, to l X, ) — m . 5;

J2 (xg, to; %, 1)

fa(Xo0, to3 X, 1) + 7206 10)

.g;f(x,t)=0

for f(x, 1) % 0.

Substituting first for df,/ot from (46) (cf. the proof of Theorem 7*) and for df ot
from (3) (cf. Theorem 1) and then for f, from (49) into (50) and making use of
assumption (a3) we obtain (48) for all x, € R,, te T — {t,} and for each x € R, for
which f(x, f) # 0, i.e. for each x for which o(xo, to | X, 1) is defined by (49).

Thus the proof of Theorem 8 is completed.

Remark 4. To derive equation (48), we can use also equation (44) instead of (46).

Remark 5. Assume, that X(¢ + At) is conditionaly independent of X(t,) given X(t)
fort, < t <t 4+ At or possibly for t + At < t < t,. Then, if condition (1), assump-
tion (a]) and assumption (a3) in which we replace v (¢ ‘ X0, tos X, 1) by Ut | X, t) are
fulfilled, we can find by the procedure used when proving Theorem 7*, that (44) turns
into

0 S0
(51) —o(x, t| X, o) + Y. — [t I x, 1) o(x, | xo, 1)] = 0
ot i=1 0x;
and hence, if also assumptions (a,), (a,) and (a3) are fulfilled, (48) turns into
0 A 0
(52) — 0(xo, to | X, 1) + 3 0t | x, 1) —— e(xo, 1o | %, 1) = 0,
ot i=1 0x;

which can be proved quite analogously as Theorem 8. Equations (51) and (52) are
to some extent analogies of the forward equation and the backward equation,
respectively, for continuous Markov processes derived by Kolmogorov [4], [12].
Similarly as equation (44) is an analogy of equation (3), the remaining equations
stated in §§ 1—3 have their analogies, too, satisfied by the corresponding transition
probability densities. We shall present these equations here no further; as already
mentioned, we obtain them immediately from the equations stated in §§ 1—3 if we
supplement in each of them both the probability density and all the conditional
moments by an appropriate condition. These equations can be, similarly as (44) and
(48), simplified if the assumption stated in Remark 5 or possibly an analogous assump-
tion is fulfilled. The problems just mentioned will be dealt with in detail in our next

paper.
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Pesrome

ANOOEPEHIIMAJIBHBIE YPABHEHN A
AN CTOXACTUYECKUX IMPOLIECCOB,
OBJIAJIAIOIINX TIPOM3BOJJHOM B CPEJJHEM KBAJIPATUUYECKOM

KAPEJT KOWIT:JI (Karel Kostal), IMpara

B pabote cuctemMaTnuecku BuIBOISATCS AUBdepeHaTbHble YpaBHEHUS TSl BEK-
TOPHBIX CTOXaCTHYECKUX IIPOLIECCOB, 00IaaOIMX IPOU3BOIHON B Cpe/IHEM KBaapa-
TryeckoM. CHavara U3y4aroTcst Ipoluecchl ob6Jiaaarolye NepBoit 1 BTOpoil Ipou3Bo/i-
HO#. I HUX BBIBOIATCS NoApoOHO muddepeHnaibHble ypaBHEHUS, HAXOAsIIME
TPUIIOXKEeHHsT 0COOeHHO B u3uke. 3aTeM BuIBOAATCS nuddepeHnnaibHbie YpaBHEHUS
JUTSL IPOTIECCOB, MMEIOIUX NPOMU3BOAHBIE B 00OLIeM 10 mopsiakxa r. B 3axrrounTesrs-
HO¥ yacTU paboThI UCCIELYOTCS aHATOTHYHbIE YPABHEHUS, KOTOPBIM YIOBJICTBOPSIOT
COOTBETCTBYIOLLME TUIOTHOCTH BEPOSITHOCTEH Mepexoaa.
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