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CARTAN’S METHOD OF SPECIALIZATION OF FRAMES¥*)

Avrors Svec, Praha
(Received September 30, 1965)

PREFACE

The general theory of spaces with connection is now well known. The theory of
pseudogroups has been also thoroughly studied. These two theories are based on
the papers of E. CARTAN. Nevertheless, a great part of Cartan’s results has not been
revised, namely the theory of submanifolds of spaces with connection. Cartan
introduced as the main tool of his studies his method of the specialization of the
frames leading to the complete solution of the equivalence problem in the following
sense: Be given a Lie group G, its Lie subgroup H, the homogeneous space G/H,
a manifold M with dim M < dim G/H and two embeddings V, W: M — G[H; we
have to decide whether there is an element g € G such that V = gW. This problem
may be formulated more generally replacing the space G/H by a principal fibre
bundle with a connection. In the classical differential geometry, the equivalence
problem is often solved by means of the specialization of the frames (Frenet formulas
for a curve etc.), but the general description of this procedure is given only in E.
Cartan’s papers in a rather unsatisfactory manner. Many Cartan’s results are devoted
to the theory of deformations which has been substantially completed by his succes-
sors. Nevertheless, the general definition of the deformation remains unclear. In
many papers on local differential geometry, the frames are specialized (roughly
speaking) as follows. Geometrically, i.e. intuitively, we estimate the equations of the
considered submanifold, and we differentiate them quite precisely. But then: instead
of w’s, we write some e’s, and, according to some customs, some functions are said
to be equal to one or to zero. In existence questions, we calculate the rangs of some
matrices, and we declare that the investigated manifolds depend on A functions of B
variables. It is necessary to say that the dependence of a solution on these functions
has been made precise by KURANISHI; nevertheless, the theory of systems of exterior
equations on the principal fibre bundles of frames is not quite clear. The worst thing,

*) This work was partly supported by the National Science Foundation through research
projects at Brandeis University, Waltham (Mass., U.S.A.).

552



however, is to say that some function may be made equal to some constant by
a suitable change of the frames assuming certain global properties of solutions of
differentiable equations given only locally.

In this paper, I am very far of solving of all mentioned problems. I merely present
a theory of spaces with Cartan’s connection, define generally the developments of
the curves and the notion of the deformation, and, in the last chapter, I try to give
a more clear description of the specialization of the frames. The first chapter is devoted
to an example, namely the theory of surfaces in 3-dimensional affine spaces treated
in a more general way.

1. SURFACES IN AFFINE SPACES

1.1. Let us consider the n-dimensional affine space A". The frame
(1.1) F=(M,e,...,e,)

of this space is an ordered set consisting of a point M and n linearly independent
vectors e;; the set of all frames may be made into an (n + n?)-dimensional manifold #.
Let us denote by ' : # — A" the map given by

(1.2) (M, ey, ....e,) =M.

Further, consider the group GA(n, R) = GL(n + 1, R), its elements being the
matrices of the form

/1 0 0 ...0

1 1 1 1
(1.3) A=<i 2>= TG Gl GeGL(n R), afeR.
@ ay al ... a

The group GA(n, R) is called the real affine group. The group GA(n, R) acts freely
on & on the right according to the rule

(1.4) F' =FA,
F A being the usual product of the matrices F and A.

In the group GA(n, R), we have two important subgroups. One of them, GAy(n, R),
consists of the elements of the from

(1.5) <1 0), ae GL(n, R); »

0a

it is isomorphic to the group GL(n, R). The second one consists of the matrices

(1.6) (1 0 > , e, € GL(n, R) being the identity .
o e :
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This so-called group of translations T(n, R) is isomorphic to the additive group R".
The letter R in GL(n, R) etc. will be often omitted.

Consider the sequence
(1.7) e - T(n) > GA(n) 5 GAg(n) > ¢,

where e is the identity of the group GA(n), « is the injection and

\ 10 10
(-6
o a 0a
The sequence (1.7) is exact. y : GAy(n) > GA(n) being the natural injection, By is the
identical automorphism of the group GAy(n), and the sequence (1.7) admits the split-
ting. The group GA(n) is the semidirect product of the groups T(n) and GAy(n) in

the following sense: To each element AeGA(n), there is a uniquely determined
couple of elements t € T(n), Ay € GAy(n) such that

(1.9) A=1tA,.

1.2. Be given an affine space A”. Let D be a domain of the space R”, m < n.
A manifold of the space A" is an imbedding V: D — A". We could consider an
m-dimensional manifold instead of D, but our definition is quite sufficient because
we are interested in the local theory only. Be given another manifold W: D — A"
Our problem is to determine whether the manifolds ¥V and W are equivalent, i.e. to
determine if there is an affine collineation o/ : A" — A" such that the diagram

VA
7

(1.10) p{ |
WX 4"

is commutative. First of all, we need to know how to determine the manifolds V
and W. In the differential geometry, we .use the following procedure (we restrict
ourselves to the manifold V).

Let us consider the principal fibre bundle P = A" x & with the structure group
GA(n) acting by the rule

(1.11) (M,F).A=(M,FA); Med", FeF, AeGA(n).

Let us denote by n: P —» A" the projection. We are going to construct the usual
map ¢ : P - G such that

(1.12) o(pA) = ¢(p). A foreach peP, AeGA(n).
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Let F, € & be a fixed frame of the space A", and consider the point p = (M, F)e P.
Then there is one and only one element ¢t € T(n) such that

(1.13) 7(Fof) = M .

Further, there is one and only one element 4 € GA(n) such that

(1.14) F = FyiA.
We set
(1.15) ¢(M,F) = 4,

the condition (1.12) being satisfied. The map ¢ depends on the frame F,. Let us choose
another frame F, such that

(1.16) Fo = F\t,B,; t,€T(n), B,eGAyn).

We have n'(Ft,) = n'(F,) and n'(Fyt,t) = n'(Fot) = M. We may write
(1.17) F = F;t;tA" and ¢'(M,F)=A".

From (1.14), (1.16) and (1.17), we obtain

(1.18) A" =1t""BtA.

Let us return to our fixed frame F,. Consider the reduction Q < P to the group
G Ay(n) constructed as follows:

(1.19) (M,F)eQ ifandonlyif n'(F)=M.

Let g = (M, F) e Q. Then there is one and only one element 4 € GA(n) such that
(1.20) F = FyA.

We have the uniquely determined decomposition

(1.21) A=1Ay; teT(n), AoeGAyn);

of course, ¢(q) = Ao. The elements of the matrix A are global coordinates on Q,
elements of the matrix ¢ are global coordinates on the base space A" and the elements
of the matrix A, are global coordinates in the fibre of the bundle Q(A", GAy(n))
over the point 7'(Fyt). We have also global coordinates on P, see (1.14). The elements
of the matrix ¢ € T(n) are the coordinates of the point n'(Fyf), the elements of the

matrix 4 € GA(n) being the coordinates of the frame F in the fibre over the point
' (Fot).
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The Lie algebra ga(n) of the group GA(n) is isomorphic to the additive group of
the matrices of the form

00 ...0
(122) S ryoee T
oyl

where [, s] = rs — sr. The subalgebras t(n) and gay(n) consist of the matrices of the
form

00...0 00 ...0

(1.23) rl 0 :0 and 0 r{ r,f resp.;
"0 .. 0 0r

of course,

(1.24) ga(n) = gao(n) @ t(n).

In the equation (1.14), let us decompose the element A4 into the product of the elements
of T(n) and GAo(n), i.e. let us write

(1.25) F = FottyA;; t,t;€T(n), A,€GAyn).

The frame F over the point n'(F,t) belongs to Q if and only if #; = e. Let us consider
the Lie algebra

(1.26) , [ = gao(n) @ t(n) @ t(n).
On P, let us construct the I-forms
(127) o, =A7'd4,, w,=A7"7" " dtt A, oy = A7 dt A,
w, being gay(n)-valued, w, and w; being t(n)-valued. The form
(1.28) , 0* =0, + 0, + 0;
is an [-valued 1-form on P. It is easy to prove
Theorem 1.1. The form w* is a connection on P satisfying the structure equation
(1.29) do* = —0* A o*.

The restriction of w* to Q is the I-form with values in gay(n) @ t(n) = ga(n), it is
a so-called Cartan’s connection. We have

(1.31) do=—-wAo.
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In the global coordinates on Q determined by the equation (1.20), we have
(1.32) w=A""d4,
and we may write dF = F, dA, i.e.

(1.33) dF = Fa.

Now, we are able to describe how to determine a manifold V: D — A", this
procedure being usual in the classical differential geometry. Let us choose a lift

(1.34) v:D—Q

of the map V, i.e. a map (1.34) such that the diagram

¢
(1.35) D |m
v A4
commutes. Let w|, be the restriction of the form w to v(D). The form
(1.36) o, = Vymyo),
is a ga(n)-valued I-form on D satisfying the equation
(1.37) do, = -0, A ©,.

We may write w, as

o o0 ...0
1 1 1
o' o, ... o,
(1.38) o, =|." . R
n n n
0" o ... o;

@»," and w,? being real-valued I-forms on D; because of the regularity of the map
V: D — A" there are m linearly independent forms among the forms w,', ..., 0", i.e.

(1.39) there are integers i; < i, < ... <1i,; k=1,...,n;

such that ®,"* A ®,> A ... A ©,™ £ 0.
The following existence theorem (stated here without proof) is fundamental.

Theorem 1.2. Be given a domain D = R™ and a gl(n)-valued |-form t on D
satisfying the relations of the type (1.37) and (1.39). Further, be given points
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u€e D and q € Q. Then there is a neighbourhood D' = D of the point u and a map
v:D" — Q such that

(1.40) w, =1, vu)=gq.

The conditions (1.40) determine the map v uniquely.

Let us replace the lift (1.34) by another lift v': D — Q, and let us determine its
form w,.. Consider the map A : D — GA(n) such that the lift v is given by the relation

(1.41) F(u) = Fo A(u) for ueD;
see (1.20). We have
(1.42) w, = A" "(u) dA(u) .

Further, be given the map B : D — GAy(n) in such a way that the lift v' is given by
the equation

(1.43) F'(u) = Fy A(u) B(z) for ueD.
Obviously,
(1.44) w,, = B™'(u) w, B(u) + B~ '(u) dB(u) .

This result is not surprising, w being the form of a connection.

Let us state the following

Definition. Be given two manifolds V, W: D — A". These manifolds are called
equivalent if there are lifts v, u : D — Q of these maps V and W resp. such that we
have

(1.45) w,=w, on D.

It is easy to prove the following two theorems.

Theorem 1.3. Be given two manifolds V,W:D — A" and arbitrary lifts
v, 1. D — Q of the maps V and W resp. The manifolds V, W are equivalent if and
only if there is a map B : D — GAy(n) such that

w, = B"'(u)w, B(u) + B~ '(u)dB(u), ueD.

Theorem 1.4. Be given two manifolds V, W: D — A". Let P, = V(D) x & be the
restriction of the bundle P to the part V(D) of the base space A"; let Py, Q,, Qy
have analoguous significations. Let wy (wy,) be the restriction of the form w*
(1.28) to Py (Py). The manifolds V and W are equivalent if and only if there is

. 558



a bundle isomorphism f : P, — Py, with the following properties: (1) If the map
f': A" > A" is induced by the map f, the diagram

r

Py——>Py

(1.46) ni . ln

A"*" > A"
N /'
VN W

D

commutes. (2) f(Qy) = Q. (3) We have
(1.47) froyy = wy .
The notion of equivalence is geometrically obvious:

Theorem 1.5. The manifolds V, W: D — A" are equivalent if and only if there is
an affine collineation of : A" — A" such that the diagram

ol
A" A"
(1.48) X 7
NYa 4
D

is commutative.
1.3. In this section, let us speak more generally.

Definition. The space S = S(P, M, G, Q, H, o) is a principal fibre bundle P(M, G)
with a given connection w and a given reduction Q to the group H < G.

Definition. Be given two spaces
(1.49) €=8(P,M,G Q0 Hw), & =¢(P,M,GQ,H w);

let M and M’ be diffeomorphic. The diffeomorphism f: M — M’ is called an equi-
valence if there is alift F : P — P’ of f such that (1) F is a fibre preserving isomorphism,
(2) F(Q) = 0, (3) Fyo' = w.

The main problem is to determine, for two given spaces S and &', all equivalences.
Let us restrict ourselves to a less complicated problem: to determine if a given
diffeomorphism is an equivalence. In the praxis (praxis = classical differential geo-
metry), we have usually the following situation: Be given the spaces (1.49) and
a diffeomorphism f: M — M’. Further, be given the sections ¢: M — Q and
o M - Q. Let w|,, be the restriction of the form w to o(M); let w]a. have the
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analogous meaning. Knowing the g-valued I-forms w, = o*wl,,, W, = a'*wlﬂ, on M
and M’ resp., we have to determine whether f is an equivalence.

It is quite clear that this problem may be reformulated analytically as follows:
The diffeomorphism f: M — M’ is an equivalence if and only if there is a map
h : M — H such that

(1.50) few, =ad(h™ Yo, + h~"dh.

We have to solve the existence question for the map h.

The difficulties in solving this problem arise from the huge amount of possible maps
h: M — H. It would be very useful to restrict somewhat the possible candidates h.
But this is exactly what is the subject of the Cartan’s method of the specialization
of the frames. This method may be described (very roughly speaking) as follows:
Be given the spaces (1.49) and a diffeomorphism f: M — M’. Succesively, we
construct the reductions 0 > Q; > ... © 04, Q' > Q] o ... © Q7 of the bundles P
and P’ resp. to the groups H > H; o ... o H, possessing the following property:
fis an equivalence if and only if there is a lift F; : Q; — Q] of the map f such that (1)
F; is a fibre preserving isomorphism between the bundles Q,(M, H;) and Q(M’, H,),
(2) if wg, (wg-,) is the restriction of the form w (") to the manifold Q; (Q}), we have
Fiywy., = wgy,. In the optimal case, H, = e and @, Q7 are simply the sections of
the bundles P and P’ resp. In this case, we have just one bundle isomorphism
F;:0.— Q7 and Fy g, = waz if and only if f: M — M’ is an equivalence. To
find out an effective solution of our problem, we have to solve the following one:
Be given a section ¢ : M — Q of the bundle P(M, G); we have to determine a map
hy : M — H such that the section o(u) h,(u); u € M; is situated in Q,. Later on, we
shall see that we are able (speaking once more very roughly) to reduce this problem
to a problem of the following type: Be given a Lie group G and its Lie subgroup H;
g and § be the corresponding Lie algebras. In g, be given two linear subspaces K, L
such that dim K = dim Land K, L > . We have to determine at least one solution
of the equation ad (h) K = L, h € H, and all solutions of the equation ad (h) K = K,
heH.

1.4. Let us try to realize this program in a very simple situation: the local equi-
valence problem for surfaces in a 3-dimensional affine space.

First of all, let us formulate quite precisely our problem. Let A3 be a 3-dimensional
affine space; let us consider the previously introduced principal fibre bundle P(4°,
GA(3)) with the reduction Q (1.19) to the group GAy(3). Let D = R? be a domain,
andlet ¥, W: D — A3 be two surfaces. Let us choose the lifts v, u: D — Q of these
maps in such a way that the diagram

(1.51) YT
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is commutative. Let w* be the connection form on P, let w be its restriction to Q.
We know the forms w, = v4|ypy ®, = px®|,p); @, and o, are ga(3)-valued
I-forms on D satisfying the structure equations

(1.52) do, = -0, A 0,, do,= -0, r o,

and the conditions of the type (1.39). We have to decide whether the surfaces Vand W
are equivalent.

Let us consider, first of all, the surface ¥V: D — 4% with the corresponding lift
v:D — Q.Theformw, is

0O 0 0 O

1 1 1 1
w, w w w.
(1.53) o,=| " " "2 "3
®," W,] Oy O3

3 3 3 3
W,” Wy Wy O3

where w,’, w7 are R-valued I-forms on D. Without loss of generality, we may suppose
that

(1.54) wvl A w\,z +0.

Let us denote by K the linear subspace of the Lie algebra ga(3) spanned by the
elements of the form

11
(1.55) r=| 5, 5 32 3

Let H; = GAy(3) be the group consisting of the elements of the form

10 0 O
0 a! a! 4l lal all
1. — 1 2 3 3 %1 2 0
(1.56) 4 0 a? a% a3’ la} azl *
00 0 a3

Let us denote by P, (Q,) the restriction of the bundle P (Q) to the base space V(D).
Thelift ¢ : D — Q of the map V: D — A3 is called the tangent lift if the correspond-
ing form w, is K-valued. We have the following

Theorem 1.6. There exists the reduction Q, of the bundle Q,(V(D), GA(3)) to the
group H, with this property: The lift 9 : D — Q, of the map V: D — A% is tangent
if and only if o(D) = Q,.
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Proof. First of all, let us produce a tangent lift. Consider the given lift v: D — Q,
with the corresponding form w, (1.53). A fixed frame F,, of the space A> being given,
there is a map A4 : D — GA(3) such that

(1.57) v(u) = Fy A(u) for ueD.
Obviously,
(1.58) | w, = A7 (u) dA(u) .

Be given a map B : D - GAo3). Then

(1.59) o(u) = v(u) B(u) = Fo A(u) B(u) for ueD
1s a lift ¢ : D — Qy; the corresponding form w, is

(1.60) _ , = B~ (u) w,B(u) + B~ "(u) dB(u).

Of course, B"l(u) dB(u) € gay(3). If we use the notation

10 0 O 10 0 0
fowternt| ., (o6l B
(Ley) B=low sz o] B =lomse|
: 0 b} b3 b3 0 b3 b3 b3
we get
(1.62) o, = bjo,' + Bo? + bin,®.

Because of (1.54), there are functions o, 8 : D — R such that
(1.63) 0, =, + pu,*.
Choosing B(u) in such a way that the conditions

(1.64) B3 + ab3 =53+ pb3 =0

are satisfied, w, is K-valued, and this is the desired construction of a tangent lift.

Next, suppose that the lift o, is tangent, i.e. o, f : D - 0 € R. Then w, is K-valued
if and only if 53 = b3 = 0,i.e. b} = b3 = 0,i.e. Be H,. QE.D.

Be given a surface V': D — A3 and its tangent lift v : D — Q,. Then we have o} =
= 0; the structure equation (1.52,) yields

1 3
1 ! w w
(1.65) do,* = 'o!* A ,;,, where o!* = <w"2), Wy, = ( ";)

v
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Let us denote by M(2) the set of symmetric 2 x 2 matrices. From the Cartan’s
lemma, it follows the existence of the map S, : D — M(2) such that

(1.66) Wy, = S,w!?.
Let us determine the dependence of the function s, : D —» R,
(1.67) s, = det S,

on the tangent lift v. Instead of the lift v, let us consider the lift ¢ (1459) with

10 0 0 10 0 O

oni by by . (05! 5B
(1.68) B=lowpz ez B =los 52 52|

00 0 b3 00 0 &3

~F

bt B!
=BeGL(2), (.} 72
) peGL(2) (bzbg

1

b b
bi b3

(1.69) ( ):5%,@@:1.

Using (1.60), we obtain
(1.70) Wy12 = b3 . Pw,y,, o) = pwy?.

Substituting into the equation w,;, = Sgwéz, we get

(1.71) S, = b3 ."BS,B.
ie.
(1.72) s, = (b3)% . (det B)* . s, .

Because of (1.71) and (1.72), we may formulate the following definitions: Be given
a surface V: D — A>. The point ue D is called (1) hyperbolic, (2) elliptic, (3)
parabolic, (4) planar if for an arbitrary lift v: D — Q, (1) s, >0, (2) 5, <0,
(3) rang S, = 1, (4) rang S, = 0. In the following, we restrict ourselves to surfaces
with the points of the same type; in this sense, we speak about (1) hyperbolic, (2)
elliptic, (3) parabolic, (4) planar surfaces. If the surface has points of different types
we could divide it into parts; however, this may lead to complications.

It is not very difficult to prove the following lemma: Let the surface V: D — 43
be (1) hyperbolic, (2) elliptic, (3) parabolic, (4) planar. Let us choose a tangent lift
v:D — Q,. Then there are maps 8 : D — GL(2), b3 : D — R such that the matrix S,
given by the equation (1.71) has the form

(1.73) (1) sg=(‘1’ ;) @ se=(j) ‘1’)
050 0 5
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All the solutions b3, § of the equation S, < b3 - ‘BS,B: S, being one of the matrices
(1.73), are

(1.74) (1) b2 =bl=0, (b} ' = b} = b}b] + 0; b}, b3 arbitrary
or
b} = b3 =0, (b})* = (b})? = b3:
(2) B = cy, where 0 + ceR, yeo(z); by = +e
(3) b =0, b = (b!)%; bl, b2, b} arbitrary;
(4) b3 and B arbitrary.

Let us consider the subgroups Hy,,, Hy;, H,, of the group H, formed by the elements B
(1.68) satisfying (1), (2) or (3) of (1.74) resp. In the space K = ga(3) (1.55), let us
consider the subspace (1) Ky, (2) Ky, (3) K;,» (4) Ky spanned by the elements of
the form (1.55) where

(1.75) (1) ri=r3rn=r,
(2 ri=r',rn=r4
B R=r =0

(4) =ri=0.

The tangent lift v: D — Q, of a surface V': D —» A is called asymptotic if the cor-
responding form w, takes values in the set Ky = K, U K;; U K, U K;,;- We have
(almost) proved

Theorem 1.7. Be given a (1) hyperbolic, (2) elliptic, (3) parabolic surface V: D —
— A>. Then there is a reduction (1) Q,4, (2) Qa1 (3) Q,, of the bundle Q,(V(D), H,)
to the group (1) Hs,, (2) H,y, (3) Hy, with this property: The lift ¢ : D — Qy of the
map V: D — A* is asymptotic if and only if o(D) is situated in (1) Qu (2) Q)
(3) Q,,. Each tangent lift of a planar surface is asymptotic.

In what follows, let us restrict ourselves to hyperbolic surfaces V: D — 43, In
this case, the asymptotic lifts v : D — Q are situated in the reduction Q,;, of the
bundle Q to the group H,,, this group being the set of elements of the form

10 00 10 00
[0 b} 0 b3 00 b} b}

(1.76) B=loo s252 | ™ los20 #2
00 0 blp? 00 0 b3b,

The set of the elements of the form (1.76,) is a subgroup, let us denote it by HJ,.
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The restriction of the form w to Q2 is K,,-valued, K,, being spanned by the elements
of the type

\
0000
o1 1
rl ry ry 13
(1.77) r=1\1, 2 2 2
rryr; r3
0 r?rt rg

Now, let V: D — A3 be a hyperbolic surface and v: D — Q,, be an asymptotic
lift of V; let us consider it in the form (1.57). Be given a map B : D — H,. According
to (1.60), we get

(1'78) wQ{ + wgg - wgg = wv} + wv% - 2b2( l) 1 - 2b (b ) (0] 2 .

v

Let us denote by K; = K,, the linear subspace spanned by the elements (1.77)
satisfying the condition

(1.79) ry+ory=r3.
Further, denote by H; < H,, the group of elements (J .76) such that
(1.80) by =b:=0;

let Hy = Hy (\ H3,. The lift v: D — Q,, is called the Darboux’s lift if the cor-
responding form w, is K ;-valued. The equation (1.78) shows how to get a Darboux’s
lift from an asymptotic one. It is merely a matter of computation to prove

Theorem 1.8. To each hyperbolic surface V: D — A3, there exists the reduction Q,
of the bundle Q,(V(D), H,;) to the group H with the following property: The
lifto : D —» Q, of the map Vis a Darboux’s lift if and only if o(D) is situated in Q5.

The bundle Q, is sufficiently small, nevertheless, let us try to reduce it once more.
Let V: D — A3 be a hyperbolic surface and v: D — Q5 be a Darboux’s lift of the
map V. We have

(1.81) 0w?=0; oj=0%o0l=0'; ol +0’-03=0.
The exterior differentiation of the equations (1.812’3) yields

(1.82) oA =0)A0?=0,

see (1.52,). This shows the existence of the functions k,, [, : D — R such that
(1.83) w?=ko,, ol=1Lo?.

Let ¢ : D — Qs (1.59) be another Darboux’s lift; at this moment, let us suppose
B(D) = Hj . From (1.60), we get

(1.84) w,' =biw,', w?=bn?; o, =>bbo). 0} =>bbio]
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and
(1.85) k, = (b})* b3k, 1,=(b3)*bll,.

Now, we have to consider an arbitrary map B : D — H;. Let us denote
(1.86) e_, = 0 EH,.

It is easy to see that Hy .e_; = Hy — Hy. Therefore, it is sufficient to consider the
Darboux’s lift v_; : D — Q (1.59), where B(D) = e_,. Because of (e_;)" ' =e_,,
we get

(1.87) ky =1, I,_ =k,.

vt

We have just proved that the following definition has sense: The surface V: D — A4°
s called D-general if it is hyperbolic and we have

(1.88) k,, +0

for a Darboux’s lift v : D — Q5 of the map V.
Let K, < K; be the linear space consisting of the elements of the form

0000
rl rl r2 rl
(1.89) r=lla e :

2 1 1 2
0 r*riri+r;

further, let H, = H; be the group consisting of the elements e e GA(3) and e_,
(1.86). The Darboux’s lift v is called canonical if the corresponding form w, is
K ,-valued. We have (almost) shown how to construct a canonical lift to a given Dar-
boux’s lift of a D-general surface. Now we have

Theorem 1.9. To each D-general surface V: D — A3, there exists the reduction Q,
fo the bundle Q4(V(D), H;) to the group H, with the following property: The lift

D - Q; of the map V: D — A* is canonical if and only if o(D) = Q.

Of course, the reduction Q, consists of two sections of the bundle Q;. We orient
the surface by declaring one of them for the positive one (the other being negative).

Be given a D-general surface V: D — 43; let v: D —» @, be a canonical iift of the
map Vand w, be its associated form. Let us denote by u : D - Q, the other canonical
lift. It is easy to see that

g 1 _ 2 2 _ 1 12 2 _ 1 1 _ 2 2 _ 1
(1.90) o =0 0=0 0, =05 0;= 0, 0,3=03 ©0,5=0;.
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Taking in regard the structure equations (1.52,), the equations

(191) wvf = wvl > wv; = wvz s wvg = wvi + wv%
yield
(1.92) o) A (0] =201+ 02 A0)=0,

o' roi+to’An)=0,

1

v

1 1 2
o,! A oj+ o’ A (o, - 20,3) =0,

and we have analoguous equations for the lift u. It follows the existence of the
functions 4,, B,, C,, D,, E, : D - R such that
(1.93) w,} = A,0,' + Bw,?,

0} =Co,! + Do,

w3 =(D, = 2B,)o,' + Eo,*,

w5 =Ewn' +(4, - 2C)n>.

The passage to the lift y yields

(1.94) A,=D,, B,=C, C,=B, D,=A, E,=E,.

n
From the structure equations, we get
(1.95) do,' = Bo,! A 0,2, do?=-Co,l A o2

and analoguous equations for u. This solves completely the equivalence problem for
D-general surfaces as may be seen from the following

Theorem 1.10. Be given two surfaces V, W: D — A>; the surface V be D-general.
If the surfaces V and W are equivalent, the surface W is D-general, too. Let now V
and W be D-general surfaces. Let us construct the canonical lifts v, u of the surfaces
V and W resp. (for each surface, we choose one of the lifts) and the associated
R-valued I-forms o,', %, ®,', w,> on D and the functions A,, D, E,, A,, D, E, :
: D — R. The surfaces V and W are equivalent if and only if

(1.96) o=00*=02; A, =4, D,=D, E,=E

w
or

1 2 2 1. — - S
o, =050 "=0,; A,=D, D,=A4, E,=E,.

1.5. In this section, let us prove an existence theorem. The vector space K, is
spanned by all elements of the form (1.89), and we have dim K = 6; the numbers

rl, r?, rl, r2, rl, 12 are the coordinates of the element r. Be given a D-general surface
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V:D — A* and its canonical lifts v, u : D - Q,. Let 7, be the tangent vector space
of the domain D at the point u, and let us introduce the notation

(197) 0l = 0 @(5), 50) = ofdu(z)
a,(u) and o, (u) are planes in K,. The equations of these planes are

(1.98) ri = Au)r' + B(u)r?*, 13 =C/(u)r" + D,(u)r?,
r3 = {D,(u) — 2B(u)} r* + E(u)r?,
ry = E(u) r' + {A4,(u) — 2C(u)} r*

and

(1.99) ri=DJu)r' + C(u)r*, r; =BJu)r' + Au)r*,
ri = {4,(u) = 2C,(u)} r' + E(u) r?,
ry = E(u) r' + {D,(u) — 2B,(u)} r*

resp. Let us denote by 2 the set of all planes a of the space K, such that the inter-
section of « with the space r' = r? = 0 consists of the zero vector only. Each plane

o € 2 is given by the equations
(1.100) ri =Kr' 4+ Lr*, r} = Mr' + Nr*,
2= Pr' + Qrt, ri=Rr' + Sr?,

and we have a 1-I-correspondence # — R8. Let # = R® be the S-dimensional vector
subspace determined by the equations

(1.101) P-N+2L=0, Q=R, S—-K+2M=0.

Introduce the 1-l-correspondence ¢ : # — Z# associating to the plane

(1.102) ri=Kr' + Lr?, ri= Mr! + Nr?2,
ra=(N—-2L)r" +Qr*, ry=0r' + (K —2M)r*

the plane

(1.103) ri=Nr' + Mr*, r} =L +Kr?,

r§=(K—2M)r‘ + gr*, ri=Qr! +(N~—2L)r2;

obviously, *a = a. Let % be the set of all couples (a, B); o, B € Z; such that 1« = p.
From the equations (1.98) and (1.99), we get the following

Theorem 1.11. A D-general surface V:D — A® determines uniquely a rﬁa
o p
Ve:D >R,
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The function ¢ : #, — R is called admissible if there is a non-constant function
@, : R® - R such that

(1.104) D (X1, Xp. X3, Xgy X5) = D(Xq, X3, X3, Xg, x5) for x;€R
and
(1.105) o, @) = @,(K, L, M, N, Q).

the plane a being given by (1.102). We have the following
Theorem 1.12. Be given an admissible function ¢ : #, — R. Then there are D-
general surfaces V: D — A> such that V°(D) < ¢~ '(0).

Proof. Let the surface V: D — A4* be D-general with V(D) < ¢~ '(0);let v: D —
— Q, be its canonical lift. There are functions 4, ..., E such that

(1.106) o} = Ao' + Bow?, o} = Co' + Do?,
w} = (D — 2B) o' + Eo®, ;= Eo' + (4 - 2C)w?*;
®(4,B,C,D,E)=0.

The exterior differentiation of the equations (1.106) yields

(1.107) ®'AdA+ 0> AdB+ (1 —E— 4B + BC)w' A 0® =0,
o' AdC+ o> AdD+(E—-1—-BC+ CD)o' A 0* =0,
o' A (dD — 2dB) + o A dE +
+(2C — A — 2BD + 4B + AE + CE)o' A 0® =0,
o' A dE + o A (d4 — 2dC) +
+ (D — 2B + 2AC — 4C* — DE — BE) o' A 0 =0;
(1.108) ®,dA + ,dB + &,dC + &,dD + &5 dE = 0,

vihere @; = 0®(A, ..., E)[ox,;. The polar determinant of the system (1.106) + (1.107)
is

o' @ 0 0 0|

0 0 ol 0?0
(1.109) 4=10 —-20' 0 o!'e?l =

0> 0 =20%0 o!

o D, D O, Dy

= (22 +204) (o))" + (€, + 20,) (0')° 0? + 305(0')? (@?) +
+ (20, + 0,) 0 (0?) — (20, + ) (w?)*.
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The function @ being non-constant, we have 4 % 0. The system (1.106) + (1.107)
is in involution and its solutions depend on five functions of one variable in the usual
sense. Q.E.D.

2. GENERAL THEORY OF SPACES WITH CONNECTION

2.1. We recall here some fundamental definitions. The principal fibre bundle
P(M, G) consists of manifolds P, M and a Lie group G such that (1) G acts freely on P
on the right, and we write R,p = pg for pe P, g € G; (2) M = P/G, and the canonical
projection n : P — M is differentiable; (3) P is locally trivial. We may choose an
open covering {U,} of the base space M and the corresponding set of diffeomorphisms
@, : 7" '(U,) > G such that

(2.1) ¢pg) = @p)g for pen '(U,), geG.
Define the maps Y, : U, n Uy — G by the relations

(2.2) Vpaltt) = 04(p) - (0up)) ™' 5 weU,n Uy

pen '(u) being an arbitrary point ;

¥ 4(u) does not depend on the choice of the point p e 7™ '(u). The functions iy, are
the transition functions, and we have

(2.3) Voo(u) = Wp() ¥po(u) for uelU,nU,nU,.

Let A € g be an element of the Lie algebra g of the Lie group G. The associated
fundamental vector field A* on P is defined as follows: Let p € P, and let us consider
the map , : G — P defined by u,(g9) = pg; we have

(2.4 AE = (1) A = (A A

e € G being the identity.

Let P(M, G) be a principal fibre bundle and ¢ a representation of G on a finite
dimensional vector space V. A pseudotensorial r-form on P of type (o, V) is a V-
valued r-form ¢ on P such that

(2.5) Rup =09 "o,
ie.
(2.6) P(RysX1, ..., RpuX,) = 097 ") o(X,, ..., X,) foreach geG.

Such a form is called tensorial if

(2.7) (X4, ..., X,) = 0 whenever at least one of the vectors X is vertical.
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If V = gand gis the adjoint representation ad : G — Aut (g — g), the pseudotensorial
form of type (o, V) is called of type ad G.

In this terminology, the connection on P(M, G)is a pseudotensorial g-valued I-form
on P of type ad G such that w(A4*) = A for each vector 4 €g (A* being the fun-
damental field associated to A). Obviously, we get X = 0 from w(X) = 0. Let us
denote by hX(vX) the horizontal (vertical) part of the vector X tangent to P.

On the principal bundle P(M, G) with a connection w, the pseudotensorial forms
have following properties (see [1], p. 76, Proposition 5.1): If ¢ is a pseudotensorial
r-form on P of type (g, V), then (a) the form ¢h defined by

(2.8) (ph) (X4, ... X,) = o(hX, ..., hX,)

is a tensorial form of type (g, V); (b) de is a pseudotensorial (r + 1)-form of type
(¢, V) (c) the form Dg = (d¢) h, the so-called exterior covariant derivative of ¢,
is a tensorial (r + 1)-form of type (o, V).

The form Dw = Q is a tensorial g-valued 2-form of type ad G, and it is called the
curvature form of the connection w. We have the following structure equation

(2.9) do(X, Y) = —Ho(X), o(Y)] + X, Y);
see [1], p. 77, Theorem 5.2.

The fundamental subject of our investigations is given by the following

Definition. The space with a connection € = &(P, M, G, Q, H, w) consists of (1)
a principal fibre bundle P(M, G), (2) a reduction Q of the bundle P(M, G) to a Lie
subgroup H = G, (3) a connection w on P(M, G). Be given two spaces with con-
nection

(2.10) S =8(P,M,G,Q, H ), & =C6(P,M,G, Q,H, o).

The map f: P — P’ is called the equivalence between & and &’ if (1) f is a bundle
isomorphism, (2) f(Q) = Q', (3) fx0' = o.

Our main task is to solve the following problem: Be given the spaces (2.10) and
a diffeomorphism f, : M — M’. We have to decide whether there is a lift f : P — P’
of the map f,, f being an equivalence.

2.2. Be given a space with a connection S = S(P, M, G, Q,H, w). Let us denote by
(2.11) i~ gfh
the natural homomorphism. For h € H, define
(2.12) ad(h) : g[b - g/h
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in the natural manner: Let v € g/h, and let v’ € (5 *(v) be an arbitrary vector; then
(2.13) ad(h) v = ty(ad(h)v'), ie. ad(h)(wv’) = ty(ad(h)v’).

This is obviously a good definition; ad : H — Aut (g/h — g/b) is a representation.
On Q, let us define the forms

(2.19) o(X) = y(o(X)),
(2.15) DX, Y) = 4(QX, Y)).

It is easy to prove

Theorem 2.1. The form ¢(X) [®(X, Y)] is a g[bh-valued tensorial 1-form (2-form)
of type ad H defined on the bundle Q(M, H).

The form ¢(X, Y) is the torsion form of the space €. From the structure equation
(2.9), we get

Theorem 2.2. On Q(M, H), we have
(2.16) do(X., Y) = —3u[o(X), o(Y)] + (X, Y).

We get a more interesting situation in the case of a reductive algebra g with the
decomposition

(2.17) g=b+ N; ad(HIN=N, [h,N]=N.

In this case, we identify g/b with N. Let us denote by

(2.18) tw:g—>N, wig—Dh

the natural projections. On Q, we may write

(2.19) o(X) = o'(X) + ¢(X), where o'(X)=1tyw(X)eh,

and ¢(X) is defined by the equation (2.14). It is well known that w'(X) is a connection
on Q(M, H); see [1], p. 83, Proposition 6.4. Hence a connection w on P(M, G)
induces a connection w’ on Q(M, H) and a tensorial N-valued 1-form ¢(X) of type
ad H on the same bundle Q. Conversely, we have

Theorem 2.3. Be given a principal fibre bundle P(M, G) and its reduction
Q(M, H). Let G be reductive with the decomposition (2.17). On Q(M, H), be given
a connection o’ and a tenosiral N-valued 1-form ¢ of type ad H. Then there is
a unique connection @ on P(M G) such that

(2.20) o(X) =o'(X)+ ¢(X) on Q.
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Proof. Let pe P and X € T,,(P). Let us choose g € Q in such a way that n(p) =
= n(q); let p = qg, g € G. Further, let us choose Ye T,(Q) in such a way that X =
= R,Y + A*, A* being vertical. Let 4 € g be the vector such that the value of the
associated fundamental field at the point p is just A*. Then we set

(2.21) o(X) = ad (g71) (@/(Y) + o(Y)) + 4.

It is easy to show that w is uniquely determined, and that it is a connection. Q.E.D.
The preceding theorem is a direct generalization of Proposition 3.1 in [1], p. 127.

Theorem 2.4. Let @ = &(P, M, G, Q, H, ) be a space, and let G[H be reductive
with the decomposition (2.17). Let ' be the induced connection on Q(M, H), let ¢
be the form (2.14). Further, let Q (Q') be the curvature form of the connection w (@’).
Then

(222)  QX,Y)=Q(X,Y) + (D, ) (X, Y) + oX), o(Y)] on Q.

Here, D,, denotes the operator of the covariant exterior differentiation with
respect to @’.

Proof. It is sufficient to consider two cases. (1) X is vertical. The curvature form
being tensorial, we have Q(X, Y) = Q' (X, Y) = 0 on Q. Further, (D,,¢) (X, Y) =
= do(hy,X, h,,Y) = 0, h,,X being the horizontal part of the vector X in the con-
nection @'; in our case, h,,(X) = 0. Finally, o(X) = o'(X) + o(X) €}, i.e. p(X) =
= 0.(2) X and Yare horizontal with respect to the connection '. Because h,(h,,Z) =
= h,Z for each Z, we have Q(h,, X, h,,Y) = Q(X, Y). The structure equation (2.9)
yields

do/(hy X, hy,Y) + do(hy, X, h,,Y) = —3[e(X), o(Y)] + (X, Y),

the left hand side being equal to Q'(X, Y) + (D,,,¢) (X, Y). Q.E.D.
This theorem is a generalisation of Proposition 3.2 in [1] p. 128. Comparing the h-
and N-components in the structure equation (2.9) and using (1.19), we get

Theorem 2.5. Let the situation be the same as in Theorem 2.4. On Q, we have

(223)  do(X,Y) = —Ho'(X), ¢(Y)] — H[¢(X), @' (Y)] + (Do) (X, Y),
(2.29) (X, Y) = (D,,0) (X, Y) + Liy[o(X), o(Y)] .

2.3. Let us try to express our results in the local coordinate systems. Be given
a space @ = &(P, M, G, Q, H, w). Consider the coordinate neighbourhood U =« M

with the local coordinates (u®) = (u', ..., u"). Let e, ..., ,,, be a basis in g such
that ey, ..., e, is a basis in }. Use the following indices:

(2.25) Lj,e..=1,...r+s; ab,...=1,...,r;

o p,...=r+1,..,r+s.
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We have

r+s
(2.26) [ene] ZkZIC';jek
and
(2.27) ¢y =0.
The connection on P is given by the form
r+s
(2.28) w =) we,
i=1
and the structure equation is
r+s
(2.29) do' = =1 Y cho’ A of + QF,
Jk=1

r+s

Q =Y Qle; being the curvature form; see [1], p. 78. Let I,,,, ..., I,,, be a basis
i=1

i=

in g/h such that the homomorphism (2.11) is expressed by

r r+s r+s
(2.30) (Y X%+ Y ye) = Yy,
a=1 a=r+1 a=r+1
This means that we have
r+s r+s
(2.31) o=Y o, o=y @I,
a=r+1 a=r+1

on Q. The forms ¢ and @ being tensorial on @, the forms w*, Q* are tensorial, too.
In the coordinate neighbourhood Q n n~'(U), we may write
(2.32) o =Y aj(u',...,u"; q)du’,
. A=1
(2.33) Q=Y af(u', .. u"g)du’ A du®, aj+ a5, =0

A,B=1

in the following sense: Let

x |
geQ, n(q) = (u',....,u"), XeT,(Q), msX =Y x. KB

A=1 out|,
(2.34) o¥(X) =Y a%(u', ..., u" q) x",
A=1
and analoguously for Q%
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From (2.16), we get

r+s
(2.35) do’ = =1 Y o' A + Q@ a=r+1,..,r+5s:

i,j=1
on Q. We may explain these equations as follows: Let us consider a coordinate
neigbourhood D on Q such that n(D) = U and each point g € D has the coordinates
(u',..,u" q', ..., 4"), the point n(¢q) € U having the coordinates (u', ..., u"). In the
domain D, we may write

(2.36) w* —ZbA(u q) du” + kao gq)dg®; a=1,...r;

n
w =Y a(u,q)dut; o=r+1,..,r+s;
A=1

Q=Y ay(u, q)du* Adu®; a=r+ 1. r+s.
A=1

On Q, the 2-forms
r+s
(2.37) do” + 1Y o' Awl; a=r+1,..,r+s;

ij=1

are (at least formally) linear combinations of the forms du? A du®, du? A dg*,
dg" A dq"; the equation (2.35) shows that (2.37) are linear combinations of the forms
du® A du® only. In other words, we have

a r r+s
(2.38) é‘—z’-‘&l—q)—%—z Yo clfi(u,q)dl(u,q) =0 for a=r+1,...r+s;
Bl a=1 f=r+1

A=1,..,n; K=1,...,t

Thus we have explained the (somewhat confused) considerations due to E. Cartan,
Oeuvres, III. 1, pp. 701 and 757.

2.4. Let GL(n) = GL(n, R) be the group of non-singular matrices A = (af);
i,j =1,...,n; the element a’ standing in the i-th column and the j-th row. The
multiplication is given by

(2:39) (a)) (b)) = (¢}), where ¢f= Z ajb® .

=1

The Lie algebra gl(n) of the group GL(n) is the vector space of all matrices of the
type n x n with

(2.40) [R.S]=RS — SR for R,Segl(n).
It is well known that

(2.41) ad(4)R = ARA™" for AeGL(n), Regl(n).
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(1) Spaces with affine connection. Be given a manifold M; dim M = n.
Let m € M be a point. The affine frame F at m is a set

(2.42) F =(eg e, ...¢,)

of the vectors of the vector space T,,,(M) such that the vectors e, ..., e, are linearly
independent. Introducing in the obvious way the differentiable structure into the set
of all affine frames of the manifold M, we get a manifold denoted by P. F being formed
by the vectors of the space T,,(M), we set n(F) = m, this defining the map = : P — M.

Let GA(n) be the affine group, i.e. the subgroup of GL(n + 1) consisting of the

elements

1 0 0
1 1 1

(2:43) A= <:( 2) = o:( c:l‘ S B aeGL(n).
o al ..

The group GA(n) operates freely on P on the right according to the rule
(2.44) R,F = FA,

FA being the usual product of the matrices F and A4; thus we get the principal fibre
bundle P(M, GA(n)). Let Q be the manifold of all frames (2.42) such that e, = 0.
Let us denote by GAy(n) = GA(n) the group consisting of all elements (2.43) such
that o' = ... = o" = 0, this group is isomorphic to GL(n). It is obvious that Q is
a reduction of the bundle P to the group GA,(n). w being a connection on P, the space

S = &(P, M, GA(n), Q, GAy(n), w)

is called the space with affine connection.
Let T(n) be the group of translations, i.e. the group of elements (2.43) where
ae GL(n) is the identity. The Lie algebra ga(n) consists of all matrices of the form

00 ..0°
(2.45) R=| " T
"
Obviously,
(2.46) ga(n) = gag(n) @ (n),

ga(n) being reductive with the decomposition (2.46); we use the identification
ga(n)/gay(n) = t(n). The connection w be given by

00 ...0
1 1 1

(2.47) P ,
o" o] ... w:
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o', ) being R-valued 1-forms on P. Let ¢ be the form on Q defined by (2.14);
obviously,

0 0 ..0
10 ... 0

(2.48) o=|" . L
" 0 ... 0

On Q(M, GAO(n)), we get the so-called linear connection given by the form

0 0 0
(2.49) o =[O @
0 @ ..
The curvature form on P is
(2.50) Q=do+v A o.

The curvature form of the linear connection w’ is
(2.51) Q =do + 0 A o.
Using Theorem 2.5, let us calculate the torsion form. Obviously,

[o(X). (V)] = o(X) o(Y) = ¢(Y) o(X) = 0.
Further,

[0 (X), o(Y)] + [o(X), »'(Y)] =
= o'(X) ¢(¥) = () @'(X) + o(X) &(Y) — &'(Y) 9(X) =
=2 A @)(X,Y)+ 2p A @)(X,Y),

but we have ¢ A @’ = 0. The equation (2.23) reduces to
(2.52) dp+o0' Ap=29.

The forms Q' and & are tensorial 2-forms on Q, the first one being gag(n)-valued,
the second one t(n)-valued. The forms w', ..., »" generating the #(Q)-module of
tensorial 1-forms of type ad H on Q (#(Q) is the ring of functions on Q), the elements
of the matrices Q” and @ are 2-forms from the #(Q)-module generated by the 2-forms
o' A .

(2) Spaces with projective connection. Be given a manifold M, dim M = n.
Let m e M be a fixed point and T,, = T, (M) the tangent space at m. The analytic
point of the space T,, is a couple (¢, €); e € R, e € T,,; the couple (0, 0) being excluded.
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The analytic points (&, e;), ..., (¢,, €,) are linearly dependent if there are numbers
ky, ..., k, € R such that

(2.53) kiey + ...+ ke, =0eR, ke + ...+ ke, =0¢eT,.

In the space T,,, there are n + 1 linearly independent analytic points: it is sufficient
to consider any linearly independent vectors ej, ..., e, € T, and the analytic points
(0, €7), .-, (0, ¢,), (1, ey). If (20, €5), - -, (& €,) are linearly independent and (e, e) is
an analytic point, there is a unique set of numbers kg, ..., k, € R such that

(2.54) (e, €) = ko(go €0) + .. + ky(&, €,)

The analytic frame E at the point m € M is any ordered set (&, €), ..., (&, €,) of
linearly independent analytic points. Two analytic frames E, E’ at the point m are
called equivalent if there is a k € R such that (¢, e;) = k(¢], €}) for i = 0, ..., n. The
geometric frame is the class of equivalent analytic frames.

Let P be the manifold (with the obvious differentiable structure) of all geometric
frames of the manifold M; we have the natural projection = : P - M. Let us denote
by SL(n + 1) = GL(n + 1) the group of all matrices 4 € GL(n + 1) with det 4 =
= +1. The Lie algebra sl(n + 1) is formed by all (n + 1) x (n + 1) matrices R
satisfying the condition trace R = 0. The group SL(n + 1) operates freely on P on
the right as follows: Let F € P, n(F) = m. Let us choose an analytic frame E € F,

(2.55) . E = (¢, €0), - -+ (> €4)) »

and set R4E = EA, where EA is the obviously defined matrix product. The analytic
frame EA is the element of some geometric frame, this frame being denoted by
R F = FA. Let Q be the submanifold of the manifold P consisting of all geometric
frames containing an analytic frame of the type (2.55) with e, = 0 € T,,. The manifold
Q is a reduction of the bundle P(M, SL(n + 1)) to the group SLy(n + 1) consisting
of the elements of the form

ay af ... a°
1 1
(2.56) A=%D S esrn gy,
0 a} ... a,
The space

& = &(P, M, SL(n + 1), 0, SLy(n + 1), »)

is the space with projective connection. Let us write

0 0 0
wy o] ... o
11 1
s o) ...
(2.57) w=].° 1 ", tracew = 0.
n n n
oy o) ... o)
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The group SLo(n + 1) is not reductive in SL(n + 1). The vector space W =
= sl(n + 1)[sly(n + 1) may be identified with the space of all matrices of the form

0 0 ...0
1
(2.58) R=|"° 0. ? ,
ol
where
o o 0 0 0
(2.59) o oot ot _ re 0 0
A R M0 ... 0

Writing the elements (2.56) and (2.58) in the form

o ()09

we get
ty(ARA™T) = (© )
(@) ar

(2.61) ad(4) R

Let us apply Theorem 2.2 to our situation. We have
(2.62) [o(X), o(Y)] = o(X) o(Y) — oY) 0(X) = 2(w A w)(X,Y).

If we write the form w (2.57) as

0 (4]
(2.63) w:<° )
wo Y
we have
@° A wg wy A0’ + 0 Ay
A= o o ,
Wo AWy + Y AWy Wy A+ Y AY

and the equation (2.16) reduces to

(2'64) dwy + wo A w(0)+ U A wy =Py,

ie.

(2.65) dof + 0 A 0y + Y wj A wf=®4; i=1..n.
k=1

The torsion form &, belongs to the #(Q)-module generated by the 2-forms w§ A w);

iLhj=1,...,n
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2.5. Be given a space © = &(P, M, G, Q, H, ). Let {U,} be an open covering of
the base space M; let ¢,:n"'(U,) > G be maps such that ¢,(pg) = ¢,(p) g for
eachpen™!(U,),g € G. Let iy, : U, n U, — G be the associated transition functions.
The H-set over u € M is each set S = n~'(u) such that SH = S, SH denoting the set
of all points sh,se S,he H. Let S < n~'(u), u € U,, be a given H-set; let us choose
a point s € S and define the maps

(2.66) D.{S} = @,(s) H(es(s)) ™" = G,
(2.67) @,{S} = ad(p,(s))b=g.

The use of {.} instead of (.) indicates that there is no given point map S — ®,{S}
or S — ®,{S} resp. ¢,{S} is obviously a subgroup of the group G, and its Lie algebra
is @,{S}. It is easy to see that the maps (2.66) and (2.67) do not depend on the choice
of the point s € S.

Theorem 2.6. If ue U, n Uy and S = n~'(u) is an H-set, we have
(2.68) Du{S} = Yy (u). D AS}. (Ypalu)) ™",
(2.69) D,{S} = ad (Y4 (u)) - DS} .

An arc in the space & is simply a map p : (—1, 1) - M. Let us define the develop-
ment of the arc y at the point p(0). Let x : (—1, 1) » Q be the lift of the map , i.e.
n(x(t)) = u(t) for each te(—1,1). The following is well known: The horizontal
lift y(t) of the arc u(t) passing through the point x(0) is given by

(2.70) (1) = x(t) g(t), te(1—.,1),

(1) being the solution of the differential equation

(2.71) d~%(ti) g7 = —w<dv§§t—))
determined by the initial condition

(2.72) g(0) = e.

Let p(0) € U,. Then the development of the arc  is deﬁm;.d by
(273) () = 0.((0).a7() . H . 9(1) . 97 (x(0)
or by

(2.74) pa(t) = ad (¢(x(0))) . ad (¢7'(1)) . b
resp.
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Theorem 2.7. The developments Y, pt are well defined, i.e., they do not depend
on the special choice of the lift x : (=1, 1) » Q. If u(0) e U, n Uy, we have

(2.75) 15(t) = Vp((0)) - 13(1) - V3’ (1(0))
(2.76) mi(1) = ad (¥5(1(0)) - 1(2) -

Proof. The relations (2.75) and (2.76) are obvious. Let x":(—1,1) > Q be
another lift of the arc u; we have the map h : (—1, 1) — H such that x'(t) = x(t) h(¢)
for each t € (— 1, 1). The lift (2.70) of the arc x being horizontal, any other horizontal
lift is given by y(¢) . g, where g € G is any fixed element. Thus the horizontal lift
¥ :(—1, 1) - Q passing through the point x(0) is given by

(2.77) y'(t) = x'(t). g'(t), where g'(t) = h™'(t) g(t) h(0) .

But this means x(t) = p.*(t), pi(t) = n.*(¢). Q.E.D.
The following theorem has only an analytic signification, but it is of great impor-
tance for what follows.

Theorem 2.8. Be given a Lie group G and a map A :(—l, 1) —> g. Let the map
g :(—1,1) > G be the solution of the differential equation

(2.78) d%ft-) g7 (1) = —A)

determined by the initial condition

(2.79) g(0) = eeG.

Let V, € g be a fixed vector. Define the map V:(—1,1) - g by
(2.80) V() =ad (g~ '(1)) Vs .

Then V(0) = V, and

av(o) _
(2.81) o [4(0), Vo] .
(282) LI ["—”;(—0) , vo] + [4(0). [40). Va]]

Proof. During the proof, we shall often use the Leibniz’s formula; see [1], p. 11
Let us choose an arbitrary map y : (—1, 1) » G satisfying the conditions J’(O) =e
and

(2.83) ‘12_(9) —v,.
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The function z : (—1,1) x (=1, 1) - G be defined by

(2.84) z(t,s) = g~ (1) . ¥(s) . g(t) -
Obviously, z(t, 0) = e and
(2.85) V(i) = 9?%_0) _

From (2.84), we get g(1) z(1, s) = y(s) g(t); the differentiation with respect to s yields
(2.86) g(t) V() = Vo g(1)

at the point s = 0. Differentiating with respect to t and using the supposition (2.78),
i.e.

(2.87) % — —A(1) g(1),
we get
(2.88) — A1) (1) V(1) + g(t)‘%’) — Vo A(1) (1) :

fort = 0, we get
dz(o) A4(0) Vo — Vo 4(0),
t

i.e. (2.81). A further differentiation of the equation (2.88) and the substitution t = 0
gives

%115_0) - df(‘i(to) , dA(O) ¥y A(0) A(0) — 2 A(0) ¥, A(0) +
+ A(0) A(0) ¥ = [d’ji(j’) vo] + AQO[A®). V,] ~ [4(0). Va] 4(0).
ie. (2.82). QE.D.

Let V be a finite dimensional vector, space over reals, let dim V = n. Denote
by V11 the Stiefel manifold of all p-frames in V, a p-frame being an ordered set
of p linearly independent vectors of V. Further, denote by V® the Grassmann
manifold of all p-dimensional subspaces in V. The linear group GL(p) acts freely
on V' on the right as follows: if e = [e,, ..., e,] € V'? and A4 e GL(p), then we
get e4 € VP as the obvious matrix product of e and A. Of course, VP = VIPGL(p),
and there is the natural map V"1 - Y associating to each p-frame e the p-space
determined by the vectors ey, ..., e,

Definition. Let O = R™ be a domain and o € O be its fixed point. (1) Be given
maps f, g : O — V1. We say that f and g belong to the same t-jet at the point o
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if ji(¢f) = ji(tg) where the natural map ¢: VPP 5 V x V x ... x V (p-times) is
defined by te = (ey, ..., e,). (2) Be given maps F, F': O - V'”. The maps F and F’
are said to belong to the same t-jet at the point o if there are sections f, f' : D — VPl
D = V@ being some neighbourhood of the points F(o) and G(o), such that j;(fF) =
= jyf'F'). (3) Let @ =&(P,M,G. Q,H,w) be a given space. Be given maps
f,g : 0 > M. We say that f and g belong to the same S-jet of order ¢ at the point o,
and we write Gj(f) = Sji(g), if the following is true: Let ¢ : (—1, 1) » R™ be an
arbitrary map such that ¢(—1,1) = O and Q(O) = 0. By means of ¢, we get the
maps p = fo, v =go:(—1,1) > M. Let us denote by p* v*:(—1,1) - g¥m™
the developments of the arcs g, v at the point 0. Then jo(p*) = jo(v¥).

Be given a space @ and maps f, g : (—1, 1) » M.Ifj5(f) = jb(g), we have Sji(f) =
= ij)(g). However, the converse is not true: the most simple example is that of
a space G with H = G; for any two maps f, g : (—1, 1) > M satisfying f(0) = ¢(0).
we have Gj{(f) = Sjg(g) for each 1.

Theorem 2.9. Be given a space@ = (P, M, G, Q, H, w)and mapsf,g : (—1,1) -
— M such that f(0) = g(0). Let x, y : (—1, 1) > Q be the lifts of the maps f and g
resp. such that z, = x(0) = y(0). Define the maps A,B:(—1,1)—>g by the
equations

(2.89) AlD) = <d’;(’)>, B(1) = (dy(f))

dt
Then (1) Sjy(f) = Sjs(9), (2) Sid(f) = Sj3(g) if and only if (1)
(2.90) [4(0) — B(0).h] < b,
(2) we have (2.90) and

(2.91) [dA(") _ 4BO) L] + [A(0) — B(0), [A(0). o] -

dt dt
— [B(0), [4(0) — B(0). ] b

for each vel.

Proof. Let {U,} be the usual open covering of the base space M with the homeo-
morphisms ¢, : 7" '(U,) > G. The developments f;,g; :(—1,1)—> g@™" are
given by

(292)  £3(1) = ad (pu(=0)) ad (¢ (1)) b, g2(r) = ad (@u(zo)) ad (A" (1) D,

where ¢(t) is the solution of the equations (2.78), (2.79) and h(r) is the solution of
analogous equations

dh(t)

(2.93) h'(t) = —B(1), h(0)= e€G.
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Looking for the coptact of the maps £¥, g¥, we may as well restrict ourselves to the
investigation of the contact of the maps F, G : (—1, 1) > g'™™ given by the equa-
tions

(2.94) F(t) = K()b. G(t) = L(1)H,
where

(2-93) K =ad(97'(t)), L(t)=ad(h™'(2)).
Let Eo = (,.....eqm ) be a fixed basis in b. Then

(2.96) V(1) = K(t) Eo, W(t) = L(t) E,

are basis of thespaces £(1) and G(t) resp. The general basis of the space G(1) is
(2.97) w'(t) = w(t) S(t) = L(1) E, S(t)
where S :(~11)~ GL(dim H) is a map. Of course,

PO _IKG V0 KGO

(2:98) & @ Tae T ar
aw'(t)  dL(?) ds(?)
PO < T2 S(1) + L(t) Eg —
de ar oSO+ HOE =y

21,
aen( & £2L(1) E, S() + dL(t) dS(t) L) B, & a*s(r)
d dr dt dr?

Let us use thefollowing notation: if & = (e, ..., e.), e, € g, and v € g, then [v.¢] =

= ([v.er]. - e.]). From Theorem 2.8 and (2.96)—(2.98), we get

dV(O)

(2.99) V(0) = E, . = [4(0), Eo],

V0 - [0, Eo] + [0, [4(0). Ex]1.
qf
(2.100) W’(O) ~ EoSo, QEV(_{;(O) [B(0), Eo] So + EoSi >

d2w(0) _ [_df@’ gb] So + [B(0), [B(0), Eo]] S + 2[B(0), Eo] S1 + EoS:,

dr? dt
where
. _ ds(0) _d*s(0)
(2.101) 5 ~g@ECLWIMH), Sy =", 5, ="25".
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The condition Sj3(f) = Sja(9) is equivalent to the existence of matrices (2.101)
such that

dv(0) dw’(0) d*v(0) d*w'(0)
(2.102 V(0) = W'(0), = , - = .
' ) (©) ©) dt dt dr? dr?
From (2.102,), we get that S, is the identity of the group GL(dim H), this group
acting freely on the Stiefel manifold hlim#1 1f (2.102,) is satisfied, there is a matrix S,
of the type dim H x dim H such that

(2.103) [A4(0) — B(0), Eo] = E,S; .

This means that we have [4(0) — B(0), ;] € b for each vector e; € Eo, i.e. (2.90).
Conversely, let us suppose (2.90). [A(0) — B(0), Eo] is the set of dim H vectors in b,
and there is a matrix S such that (2.103) is satisfied. The condition (2.102;) is — see
(2.103) — equivalent to the existence of a matrix S, such that

[9%(1‘1) , Eo] + [A(0). [4(0), Eo]] = [‘j—i{@, Eo] +

+ [B(0), [B(0). E,]] + 2[4(0) — B(0), [B(0). Eo]] + EoS. .
and it is quite easy to see that this is equivalent to (2.91). Q.E.D.

It is natural to present the following

Definition. Be given spaces € = (P, M, G, 0, H, ) and € = &'(P', M', G, @',
H, ®’). A diffeomorphism f: M — M’ is called the deformation of order r if there
is a lift F : P —» P’ of f, this lift being a bundle isomorphism and satisfying the
following conditions: (1) F(Q) = Q'. (2) Denote by w* = F,' the induced con-
nection on P, and let us write €* = &*(P, M, G, Q, H, w*). Letu € M be an arbitrary
point and v :(—1,1) > M an arbitrary map such that v(0) = u. Let ¢ : (—1, 1)—
— g94im be the development of the arc v with respect to the connection w; analo-
guously, let @* be the development of the arc v with respect to the connection w*.

Then j5(@) = jo(9*).
The proof of the following theorem is very similar to that of Theorem 2.9.

Theorem 2.10. Be given spaces © = S(P, M, G, 0, H, w), & =G&'(P',M’, G, Q',
H, ') and a diffeomorphism f: M — M'. The map is a deformation of the (1)
first, (2) second order if and only if there is a bundle isomorphism F : P — P’ such
that F is a lift of f, F(Q) = Q' and (1)

(2.104) [o(X) — 0*(X), ] <h on Q,
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(2) we have (2.104) and, on Q,
(2105)  [w(X) - o*(X). [0(X), 1] ~ [@*(X), [0(X) — w*(X), o] €}
for each vector vel.

Here, w* = Fyw'.In the case of h reductive in g, the condition (2.104) is equivalent
to the condition

(2.106) o(X) = o*(X) on Q.

3. SPECIALIZATION OF FRAMES

3.1. Our fundamental problem may be formulated as follows:
Problem 1. Be given spaces
(3.1) €=¢(P,M,G QHw), & =é'(P, M,G,Q, H o);
we have to decide whether there is a bundle isomorphism
(3.2) F:P—>P

with the following properties: (1) the diagram

33 F
( ) P——>P
nl jn
id
M——-M

is commutative; (2) F(Q) = Q; (3) Fy0' = w.
Very often, this problem has the following formulation:
Problem IL. Be given spaces (3.1) and local sections
(3.4) v:M->Q, vV:M-Q.
Thus we get g-valued 1-forms
(3.5) W, =vo, o, =0

on M. We have to decide whether there is a (local) map

(3.6) h:M—->H

such that

(3.7) o, =ad(h™") o, + h™' dh
on M.

586



If the map (3.6) satisfies (3.7), let us define the map F : P — P as follows: Let
pe P, n(p) = m. Then there is a uniquely determined element g € G such that
p = v(m) hg. We set

(3.8) F(p) = v(m)g .

The map F isa bundleisomorphism satisfying the conditions (1) —(3) of our Problem I.
Thus both the problems are equivalent. In what follows, we shall try to present an
algorism leading, in the general case (what is general is to be explained later on), to
the solution of Problem II.

Be given spaces (3.1). From now on, let us suppose that
(3.9) dim M < dim g/} .

First of all, let us study the space €. Let mye M be a fixed point and U < M its
neighbourhood such that the local sections (3.4) are defined over it. Let T,,,(Q)
be the tangent vector space of the manifold Q at the point v(m,). Introduce the
notation

(3'10) KV(mo) = w(TV(mo)(Q)) .
Obviously,
(3.11) Kymy 2 b, dim K, = dimb + dim M .

Further, introduce the notation
(3.12) Lymoy = ta(Kyme)) < 9D »
iy © g — g/b being the natural homomorphism (2.11). From (3.11,) and (3.9), we get
(3.13) dim Lymyy = dim M < dim g/ .
Let hy € H be a fixed element. Then
(3.14) Kymomo = ad (15 ") K ymo) »
and we have
(3.15) Lytmorno = ad (1 ") Lygmgy »

ad being the representation (2.12).
Let H be the set of all h € H such that

v(mo)

(3]6) Kv(mo)h = Kv(mo) .
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The set H,,,, is obviously a Lie subgroup of the group H. Let g € Q be an arbitrary
point such that (q) = my; let us suppose that g = v(mo) %, x € H. If K, = o(T,(Q)),
we have

(3.17) K, =ad (% ") Kymp -

Defining H, analoguously as the Lie group of all elements h € H such that K, = K,
we have

(3.18) H, = %" "H 4, * .

Recalling the known formulas
(3.19) (—?—ad (exp 1 V) X|,oo = [¥. X], ad(exp ¥) X = exp(ad Y) X ;
t

see [2], pp. 227 —228; we get

Theorem 3.1. Be given Lie groups H = G with the Lie algebras §) < g. Let K
be a linear space such thath) =« K < g. Let

(3.20) Hy={heH|ad(h)K =K}, by = {veb|[v,K] = K}.

Then Hy is a Lie group and by its Lie algebra.

It follows that the Lie algebra B, of the group H,,,, is the Lie algebra of all
vectors v € b such that

(3.21) [0, Kymor] = Koomoy -
From (3.18), we get
(3.22) b, = ad (%71) Bygme) -

Let us summarize the preceding results in

Theorem 3.2. Be given a space© = S(P, M, G, Q, H, ) and a fixed point my € M.
To each point q € Q, n(q) = my, let us associate the space

(3.23) K,=o(T(2)), b=K,=g;
the space
(3.24) K,, =ad(h™")K,

being associated to the point gh € Q, h € H. Further, to the point q, we associate the
Lie group H, = H consisting of the elements k € H such that ad (k) K, = K,; the
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Lie algebra b, of H, is the set of the vectors v e b such that [v,K,] = K,. We have
(3.25) Hy, = h"'Hph, b, =ad(h™")b,.

Let us introduce the notation L, = yK, ty:g — g[h being the natural homo-
morphism. According to (2.14), we have

(3.26) L, = o(T(0)).
Further,
(3:27) Ly =ad(h") L,

ad (h™') : g/b — g/b being the map (2.12). Of course, dim L, = dim M.

3.2. Denote by Z the manifold of all spaces K such that ) « K < g, dimK =
= dim } + dim M. Analoguously, denote by Z’ the manifold of all subspaces L < g/h
such that dim L = dim M. The manifolds Z and Z’ are clearly diffeomorphic, the
natural identification being given by the map K — t5(K).

Let K, € Z be a fixed space. In the space g, let us choose a vector basis

(3.28) €1y ves €py Crtgsenes €ptss Crisitrooer Crpois

such that ey, ..., e, is a basis of the space ) and e, ..., ¢, a basis of the space K-
We have dimb = r, dim M = 5. Introducing in g the coordinates x!, ..., x"***"
by the relation

rt+s+t

(3.29) e= Y X,
i=1
(3.30) XL = =yt = 0

are the equations of the space K,. Any system of ¢ linearly independent linear equa-
tions in x’ determines a subspace K of the dimension r + s; ) = K if and only if the

system consists of linear equations in x"*1 . x"***! only. Each space K€ Z is
thus given by the equations
N t
(3.31) ThXTE+ Y b =0 v=1,...,1.
a=1 u=1

Clearly, there is a neighbourhood O of the space K, in Z such that each space K € O
is given by the system (3.31) with rang (b}) = 1, i.e. by a set of the form

(3.32) X =N At =1,

a=1
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This system is determined uniquely by the spaces Ko, K and the basis (3.28). The
numbers a’; are thus the coordinates in the neighbourhood O, and we get

(3.33) dim Z = dim Z' = st = dim M . (dim g/h — dim M).

Let K, € Z be our fixed space; let us determine dim b, the space f,, being defined
by the equation (3.20,). The multiplication in the Lie algebra g be given by

rts+t

(3.34) [ene]= Y e ij=,..uor+s+1.
k=1

l) being a Lie subalgebra, we have
(3.35) [eqe.] =Y cipec: 0,0 =1,...r;
=1
i.e.
(3.36) it =cr M =0; oo=1,..,r; a=1,..,5; p=1,..,1.
Letveh, weK,,i.e.
(3.37) v=Y tte,, w=Y we, +3Y wte,,.

Then
[o.w] =Y Y oY coaw” + X chvia® e, +
= = a=1

r s r s t

r+p Q. rta r+s+p. o0 r+a

+ Z 2 Cortal™W  “€ip T+ 2 Z Z Corta UW  "€pgyy -
e=1a,p=1 o=la=1p=1

If [0, w] € K, for each vector w € K, we have

+s+ . i .
Corta 0?0 =0 a=1,...,s; p= 1,...,¢.

(3.38)

T

e

The system (3.38) is the system of equations of the space b, = b. According to(3.35),
we have

Theorem 3.3. Be given Lie algebras ) = g and a space K, such thath < K, < g.
Let Z be the manifold of all spaces K such that §) « K < g, dim K = dim K,,.
Let Dk, be the Lie algebra consisting of the vectors v el such that [v, K] = K.
Then '

(3.39) dim by, = dimh — dim Z .
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Let us introduce the notation

(3.40) 2(K)=2(h < K = g) = dimb — dim by ;
(3.41) 2 =max 9(K), KeZ.

The space K € Z is called regular if 2(K) = &

Theorem 3.4. The set of regular spaces K € Z is open.

Proof. Let K, € Z be a regular space. In g, let us choose a basis (3.28) with the
described properties. The space K (3.32) is determined by the vectors

(3.42) e o=1,..,r;
T
frie = € + Z Ayepigrys oa=1,..5s.
p=1
LetweKk,i.e.
(3.43) w=ywe, + > w"f .

a=1 a=1

If v € b is given by (3.37,), we have

t

r s s
_ r+a r+p r+s+u
(344) [U W - 2 z pz dg r+a r+/i Z de r+a er+s+u) ]TlOd b 3
0=1a= = n=1
where
r+p _ r+[1 nr+p
(345) dg r+a e r+a + Z a Cr+s+;1 >
r+s+pu __ r+s+p v rtst+p
dg r+a T gr+a + Zaa gr+s+v
v=1
Now,

[v ‘v] Z ZD~M’r+aZdQ r+azfr+ﬂ -

o=1la=1

s

r S
= Z Z '*“Z A =Y dtt ah) e s, mod b .
= p=1 p=1

The equations of the space by are

+s+ +B 0 .
(d;}ria“ ch,;r+z£’ﬁ)l7o:0- ox = l,....S; H = ],...,1;

1

I~

e
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ie.

.\ r t S N s t
(346) Y (5 + Y aeinh, = Y aert, — Y Yl ) -
e=1 v=1 B=1 B=1v=1

a=1,....,8s; u=1,.,¢.

For K, = K, i.e. ai = 0, we get (3.40). Choosing a sufficiently small ¢ > 0, the rang
of the system (3.46) with |a}| < & is not less than that of the system (3.38). On the
other hand, it is not greater, the space K, being regular. Q.E.D.

3.3. We shall say that the spaces K, K’ € Z are situated in the same orbit if there
is an h € H such that

(3.47) "=ad(h)K.
Let us denote by {K} the orbit determined by the space K € Z; in the case (3.47).

we have {K} = {K'}. Quite analoguously, the spaces L, L' e Z’ are situated in the
same orbit if there is an h € H such that

(3.48) L' =ad(h)L;

introduce again the notation {L} for the orbit determined by the space L. It is easy
to see that {K} = {K'} if and only if {¢4(K)} = {14(K’)}.

Investigating a given space S, we have to determine the system of all orbits in the
manifold Z. Because the dimensions of the orbits may differ, this system is often very
complicated, and it is difficult to formulate general theorems.

Let us start with the Lie algebra g, its subalgebra }) and a space K,, ) = K, < g,
and let us consider the basis (3.28). Each space K e Z situated in some neigh-

bourhood O of the space K, € Z is given by the equations (3.32), the numbers a%
being the coordinates in O; the space K is given by the vectors (3.42).

Let K € Z and let v e f) be a fixed non-zero vector. Consider the system of spaces
(3.49) K(v, t) = ad (exp ) K ,

where t € (—6, ) and 6 > 0 is small. Obviously, K(v, 0) = K for each vector v € b.
The space (3.49) is determined by the vectors e,; 0 = 1, ..., r; and

(3.50) Grravs 1) = ad(exp t0) fran: a=1,....5;

.+ being the vector (3.42,). Again, we have g,+,(v, 0) = f,+,. We may write

(3.51) a0, 1) = fraa + thesa(v) + O(7) -

where

(3.52) hyoov) = a‘iad (exp 10)|i=0 - frea = [0:fr+al :
t
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¢ us determine the equations of

the last equation being the consequence of (3.19). Le
v t) € O for each |t] < &, these

the space K(v, ). Restricting & in such a way that K(
equations are of the form

(3.53) XY (@ thg0) £ O(R) X k= L O
B=1

our task is to determine bjj(v). Because of (3.44), we have

r s t
(3.54) hov) =Y (Y d ey + 3 d:,jfa”enusw) mod b,
e=1 fp=1 p=1
78 and d7'5* being determined by the relations (3.45). The vector (3.51) has the
coordinates
(3.55) x5 o=1,..,71;

rt+a e.rta

X E Y et 4 0(2); B =L
=1

g,rta

r
X =gt g tz edrtste O(tz); p=1...,t;
e=1

where 87%# is the Kronecker’s delta. Substituting into (3.53), we get
(3.56) bi(v) = Y ox(dtshe — Y ajdhy)
1 =1

o=

b*(v) being just the left hand side of the equation (3.46).
On 0, the vector fields 8/da%; « = 1, ...,s; p = 1, ..., t; are the basis of the vector
fields. Let us consider the vector fields

s t s a
G5 V=3 Y- Nty S e=1r:
a=1 p=1 p=1 0a‘;
on 0. Let @ < Ty(0) be the linear subspace spanned by the vectors (3.57).

Theorem 3.5. We have
(3.58) dim @y = Q(K) s

the number 2(K) being defined by (3.40).

Using the known results on a Lie group acting on a manifold — see [ 1], Proposition
4.1, p. 42 — we get
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Theorem 3.6. Let K, € Z be a regular space. Then there exists its neighbourhood
O < Z with the following properties: (1)

(3.59) dim @y =9 for KeO.

(2) The subspaces O are an involutive distribution on 0. (3) Let K, € Z be a fixed
space and V < O be the integral manifold of dimension 2 of the distribution O
passing through the space K, then V= 0 n {K,}, {K,} being the orbit of the
space K.

The following theorem is a simple consequence of the preceding one.

Theorem 3.7. Let K, € Z be a regular space. Then there exist its neighbourhood
O < Z and a manifold W = O with the following properties: (1) Ko, € W, dim W =
=dimZ — 9 (2) If K€ O, there is one and only one point K, € W such that
{K} = {Ky}.

The manifold W may be any manifold through the space K, satisfying Tg,(W) N
N Ok, = 0; of course, we might be pressed to restrict our manifold O. If O/@K has
the usual meaning, the manifolds Wand 0/@ are diffeomorphic.

Let us consider the coordinates in g introduced above. The space @, at a regular
point K, is determined by the vectors

s t
(3.60) VQ=Z Z AN 01 ce=1,...r;
a=1 p= aaalKo

2 of them are linearly independent; let us choose the numeration in such a way that

(3.61)

t
r+s+p . _
ZA,“ s A=1,..,9
r= aaaKo

”M“

are linearly independent. Choose the numbers
(3.62) rpy a=1,...5; pu=1,..,t; B=1,...,9;

such that (1) the rang of the matrix of type ¢s x 2 formed, in the obvious sense, by
the elements (3.62) is equal to 2, (2) we have

s t :
(3.63) 2 2 Bttt £0; AB=1,..,9.
Then the space determined by the equations

s t

(3.64) > ngua‘;zo; B=1,..,.9;

a=1 pu=1
is an example of the manifold W of Theorem 3.7. In other words: There is a neigh-
bourhood O = Z of the space K, such that to each K € O there exists g unique

space Ky, (3.32) such that its coordinates a% satisfy (3.64) and we have {K} = {Ky}.
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3.4. Be given a space © = S(M, P, G, Q, H, w). Let my € M be a fixed point and
U = M a neighbourhood of the point m,. Further, be given a section v:U — Q.
Let us write

(3.65) Kv(m) = w(Tv("l)(Q)) .
Obviously, K,, € Z. Analoguously, we get the space
(366) Kv'(m) = w(T'v’(m)(Q))

for each other section v/ : U —» Q. If

(3.67) vi(m) = v(m) h(m),

h :U — H being a given map, we have

(3.68) Ky my = ad (h™'(m)) K, -

Thus {K,,(m} = {K,um} for each me U.

Suppose that space K, is regular. According to Theorem 3.4, there exists a neigh-
bourhood U’ = U of the point m, such that, for each point m e U’, the space K,,
is regular, too. In what follows, we restrict ourselves to the case

(3.69) 9 =dim Z,

the case 2 < dim Z being not too much complicated. According to Theorem 3,7.
there exists a neighbourhood U” = U’ of the point m, such that

3.70 K,om} = {K for each point meU”.
(m) v(mo) p

In other words, there is a neighbourhood U” of the point my and amap h: U" - H
such that

(3.71) Kymyy = ad (h~'(m)) K, for meU”.

The section u : U” — Q given by the equation u(m) = v(m) h(m) has the property
that

(3.72) Kymey = Kymy for meU”.

Theorem 3.8. Be given a space S = (P, M, G, Q, H, ), a fixed point mye M,
its neighbourhood U = M and a section v : U — Q. Suppose that we have

(3.73) dim b — dim b, = dim Z

for the space Kyimyy = O(T,mo)(Q)); here, Z is the manifold of spaces K such that
thath < K < g, dim K = b + dim M; H,,,,, is the Lie group of all solutions h € H
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of the equation K, = ad (h) K, Dymoy IS its Lie algebra consisting of all
vectors v €l satisfying [v, Kyump) S Kyomo)- Then there is a neighbourhood U" = U
of the point my and a map k : U’ — H such that, for the section

(3.74) u(m) = v(m) k(m), meU’,
we have
(3'75) KV(Mo) = Kﬂ(mo) = Ku('r') for me u'.

Let Q(U’, H) be the restriction of the bundle Q(M, H) to the base space U' = M.
Then there is one and only one reduction Q,ume(U's Hyimy) of the bundle Q(U’, H)
to the group H.,,,, with the following property: For the section ¢ :U" — Q, we
have 6(U") © Qo if and only if K, ., = Ky for each meU'.

Be given spaces

(3.76) € =G(M,P,G, Q. H,0), & =6(M,P,G,Q H, o),

v(mo

a fixed point m, € M, its neighbourhood U = M and the local sections v, v' : U — Q.
We are going to study Problem II. All considerations being local, we shall often
diminish our neighbourhood U without mentioning it; let M = U. Let us repeat
Problem II: The forms

(3.77) W, = V0, O, = Vo

being given, we have to decide whether there exists a map

(3.78) h:M—-H
such that
(3.79) o, =ad(h™) o, + h "dh.

Let us suppose that the spaces
(380) Kmo = w(Tv(mo)(Q)) > K;no = w’(Tv’(mo)(Q))

are regular and satisfy the equation (3.73). Applying Theorem 3.8, we see the existence
of the sections p, p’ : U — Q such that

(3'81) w(Tu(m)(Q)) = Ky » w’(Tu’(M)(Q)) =K,, for meU.
If there is a map (3.78) satisfying (3.79), we have
(3.82) K,, =ad(h™'(m))K,, foreach meU .

Especially, there is an hy, = h(m,) such that
(3.83) K,, = ad(ho ") K,, -
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Let us consider an h,, satisfying (3.83), and let us write
(3.84) h(m) = k(m) h, .
From (3.82), we get

(3.85) K, =ad(hg')ad (k™ '(m)) K ie. K,, =ad(k™'(m)K,,.

mo >

But this means k(m) e Hg, where K = K, .

Theorem 3.9. Be given spaces (3.76), a fixed point my € M and sections v, v' : M -
— Q. On M, consider the g-valued 1-forms (3.77). Suppose the existence of a map
(3.78) satisfying (3.79). Finally, suppose that the spaces (3.80) are regular and that
they satisfy equations of the type (3.73). Then there is a neighbourhood U = M
of the point m, and sections p, p' : U — Q satisfying (3.81). Let 1:U — H be
a map such that

(3.86) o, = ad (I"'(m)) w, + 17'(m) dI(m) ;

here, w, = pyw, w,, = pio'. Let hy be an arbitrary solution of the equation (3.83).
Then there is a map k : U - Hyg, K = K, , such that

(3.87) I(m) = k(m)hy, for meU.

This theorem makes the equivalence problem less difficult: Instead of the study of
all the maps U — H, we have to produce one solution of the equation (3.83), the
group Hy of the solutions of the equation K,,, = ad (h) K,,,,, and afterwards we have
to study the maps U — Hg only. In all concrete cases, we are led by this general
procedure; Theorem 3.9 makes it more precise.

mo®

3.5. Let us consider once more our example, i.e. the equivalence probiem for
surfaces in affine 3-spaces. The Lie algebra g = ga(3) of the affine group GA(3) is
isomorphic to the additive group of matrices of the form

/0 0 0 O
rtorlory o)
(3.88) r=|. 242 2|

3.3 .3 .3
rery ry; r3

where [, s] = rs — sr. A general element of the group GA(3) is, of course,

1 000

L1 1 1
a' a; a; a

(3'89) a=|"5 "3 3273
a* ai a; a3

3 .3 3 3
a- ay a; a;z
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further, we have

(3.90) ad(a)r = ara™".

The Lie algebra b = gay(3) = ga(3) is formed by the elements (3.88) satisfying r' =
= r? = 3 = 0. Considering a surface in the space 4% we have dimg = 12,
dimh =9, dim M = 2. Thus the manifold Z consists of all spaces K satisfying
h = K < gand dim K = 11. Each space K € Z is given by one equation of the type
a;rt + a,r? + oyrd = 0; without loss of generality, we may suppose

(3.91) r¥ =yt + oyt
We have to produce all vectors

00 0 0

(3.92) v = 0 02 o2 o2 eh

such that [v, K] = K. We have
0000

111
sy s 83
2.2 2 2
ST S5 S3

3.3 3 3
57 83 83

(3.93) [o.r]=vr —rv =

s
s
s
st=olr' +oir* +0ir*; i=1,2,3.

(3.91) being satisfied and s> = a,s' + a,s? for each r', r?, we get the equations

(3.94) v + 0‘1(”3 — v1) = 005 — (o;)? v} — ya03 =0,

03 = a0y + ap(v3 — v3) — s — (@) 03 = 0

(3.94) are the equations of the space by < h. This equations are always linearly
independent, and we have dim b = 7. Because of dimZ = 2 = dim ) — dim b,
each space K € Z is regular, and we may apply Theorem 3.8. But we may say even
more. The manifold Z is connected and, according to Theorem 3.4, there is just one
orbit equal to Z. We may therefore choose an arbitrary fixed space K, € Z, and,
according to Theorem 3.8, concetrate ourselves to the reduction of the considered
bundle to the group Hy,. As usual, K, is given by the equation > = 0. Then by is
given by the equations v} = v3 = 0; the space K, becomes the set of elements (1.55)
and the group Hy is just the group H, consisting of the elements (1.56). Theorem 1.6
is a special case of Theorem 3.8.
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Next, we investigate the manifold Z, of spaces Lsuch that h, <« L < g, dim L =
= dim hg + dim M = 9. There are only some technical difficulties in doing this.
Applying successively Theorems 3.4, 3.7 and 3.8, we get the full classification of
surfaces and Theorems 1.7, 1.8 and 1.9. It would be instructive to accomplish this.
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Pe3romMme

METOJ KAPTAHA CIIELHUAJIN3ALUM PEIEPOB

AJIOUC IIBEL] (Alois Svec), Ilpara

ITpocTpaHcTBo co cBsi3HocThio S = S(P, M, G, Q, H, w) — (1) raaBroe paccioeH-
noe npoctpanctso P(M, G), (2) npusenenne Q npocrpancrsa P(M, G) k moarpymnmne
H < G, (3) cBasHOCTh @ Ha P(M, G). OnpepnersieTcss pa3BUTHE KPHBBIX 0a3u U Ie-
dbopMays ABYX MPOCTPAHCTB CO CBSI3BHOCTBhIO. ['JTaBHOH TeMoif paboThl — pelieHue
npobaeMbl 3KBUBAJIEHTHOCTH C TIOMOLIBIO OOOOLIEHHOrO0 MeTo/Aa CHeLHaIM3aui
pernepos.
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