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YexocjioBalkuii MaTeMaTuieckuii skypuas, 1. 16 (91) 1966, Ilpara

EXTENSION OF THE AVERAGING METHOD
TO STOCHASTIC EQUATIONS

Ivo VRkOC, Praha

(Received August 18, 1965)

In the book of BoGoLiuBov and MiTroPoL’sKI [ 1] there were laid the foundations
of averaging method for systems of ordinary differential equations. I shall show
conditions under which it is possible to apply this method to Ito’s stochastic
equations and for such equations with adhesive barriers. There will also be given
conditions for stability in average and asymptotic stability in average, since stability
is very useful in this theory. Finally we shall deal with systems of integral equations
which are not in the form (2).

Let the triplet (Q, ZF, P) be given. The random values are the Z-measurable
mappings from Q into an n-dimensional Euclidean space. The norm |x| of a point
in the Euclidean space is defined in the usual way as |x| = \/(}x7). Let z(t, w) be an

arbitrary stochastic process; the expression 1.i.m. z(¢, ) = 0 has the usual meaning
t=to

that lim E|z(t, w)|* = 0 and for brevity we denote

t—to
J2. )] = VRt 0 Jaft )]s = VE sup [<(t )
First we shall formulate several assumptions:

i)  Let a(t, x) be a vector and B(t, x) a square matrix, both continuous in ¢, x and
Lipschitz continuous in x with a constant K. The components of a and B are
denoted by a; and b;;. The norm of the matrix Bis |B| = /(3.b7) .

i

ii) |a(t, 0)| = K, |B(1,0)| < K.
iif) Let wa(t) be vector stochastic processes with independent increments which are
defined for all + = 0, and with

(1) E(w,(t;) — wi(t,)) = 0, E|w(t;) — w(t))|* = F(t;) — F.(t,)

where F (1) are continuous functions.
iv) Let there exist a function ¢(g) > 0 such that L.i.m. (w/(1,) — w,(t,)) = wo(t,) —
&-0

- wo(t,) uniformly on every compact set of the t,, t,, where w(r) = \/(¢(e)) w,(t/e)
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v)  wX(t) = w,(t) — wo(t) is a process with independent increments.

vi) Let #(t) and # (1) be the smallest o-fields corresponding to the random values
wo(t2) — wo(t;) and Ww,(1,) — W,(t,), respectively, for 0 < t, < t, < t; let #(1)
contain the smallest o-field which corresponds to wi(t,) — wi(t,), 0 < 1, <

<1, £ 1, and let the smallest o-field corresponding to w)(ty) — wi(1;), t <
< 13 < 1, be independent of # (1) for all 1. These o-fields are to fulfil

F)cF(), F (1) < ,97:‘(1) .
vii) Let there exist a vector a(x) such that

1T . .
lim }J‘ a(t, x)dt = a(x) uniformly with respect to x .
T— oo 0

viii) Let there exist a square matrix B(x) such that

lim jﬂmlB(z, x) — B(x)|? dF (;) -0

T—o 1

uniformly with respect to x for all o, 8, 0 < a2 < L, 0 < # < L, where Lis
a given positive number.

ix) Let xo(w) be a random value independent of all w,(t,) — w(t;) and with
E|xo(w)|* < 0.

In the last section of this paper it is sketched the proof that the solution x(r) of
the equation

T T
2) <(1) = xo + ¢ j afz, x(x)) dr + VQD(&)J B(r. x(1)) dw,(x)

0 0
exists (under the assumptions i) ii) iii) and ix)), x(r) is a Markov process and x() € .#
(for the definition of .# see the last section).

Now we have all prepared to formulate the fundamental result:

Theorem 1.") Let the assumptions i) to ix) be fulfilled, and let y(t) be a solution
of the equation

T t
() 0= 5o+ [ ab)ar + [ Bty ame):
0 0
1y A result similar but actually distinct was published by Gichman I. I. in ,,3umHss wikoaa no
TEOpUU BEPOSITHOCTEH M MaTemaTudeckoit cratuctuke'’, Kues 1964. This book was not known to
me at the time when this paper was completed.
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then to every n > 0 there exists an g, > 0 such that

E( sup |x(f) — y(en)|?) <n for 0<e=e.
(0,L/e)

Proof. On transforming et = &, x(t) = %(&), w/(t) = /(¢()) wt/e), equation
(2) changes to

(11) £(E) = xo + j “a(ce, 5(2)) de + j *Blefe, %(1)) d(x)

0 o

We shall estimate the expression [x(&) — y(¢)[,- By the Holder inequality

(21) I%(2) - 3@, <

j *(a(efe, 5(2)) — a(y(2)) de

1
11
First estimate the first term on the right-hand side of (2,1). Choose a positive number v
and a sequence of points 7;,:0 =1y <1y < ... <71, =7, max(t;.y —1;) = V.

+
7

¥ 1!} j "(Befe, 5() — B(y(x)) dw(2) ':'{ ¥

[JO iy

[ “B(efe, 3(2)) dwi()

7
Set f(t, w, &) = a(t[e, X(t)) — a(y(t)). We may define the random value (w) by

(@) |
J f(r, @, ¢)dr|.
!

1J O

|

sup ut f(r, w,¢) dr% =

w0 |Jo 1

Let 1+(w) be defined as the maximal t; for which 7, < 7(w). There is a function v(i)
with v(n) > 0 and

O ([ e

for v <(n).

The function v(n) is independent of ¢ and of the sequence t;. This assertion follows

easily from the inequalities
(o) |2
f f(‘l:, w, 8) dr, dP) <

L e

0 ‘r

, | pr(e) | ] S CH |
VE [ J f(& o, e)déi ) (J | F(& w.e) dg| + j f(& o, a)dii)] <
Wt (o) WO Jo

T e )
o (o2 ] e 1)

IIA
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M 5([lreone)= [[VEneoas

< " ViEactslz@p) o + [ ViEao@)p) o] <
J. J |

éN/[zKL + K r\/E|x(z)12dr + KLL\/E;y(r)@Z dr] < VIKLE + 7]+ |v]0]-

0
tH(w)+v
Je([ ooy =
’ (o)
tt(w)+v N 2 T (@) +v
< A/[\/E <J‘ |a(/e. (7)) dr) + \/Ef a(y(r)) dr)z:l <
t*(w) H(w)
/ tH(w)+v 2 tH(w)+v ‘ 2
< A/[2Kv + K JE (J %(7)| dr) + K JE q iy(t)ldt) ] <
(o) (o)
Tt (w)+v 2 tH(w)+v 2
< A/[2K\ﬂ' + K \/E (f sup l)‘c(é)} d‘t) + K \/E<J sup ly(é) dr> ]§
)  <0,L> ) 0L

< 2Ky + Ky JEsup|S(2) + Kv /Esup (9] <

< J(E&(2 + 171 + [¥1) -

According to (8,7) for the norm x|, < C, Cis independent of & and 7;; thus we may
choose v(n) = n*(1 + C)~? (8K*L)~".

Hence one need only consider the expression

/E | | :‘”)(a(r/g, «(2) - (@) d _ N/E | [ttt s = atota 209 d,=

where yx(t, w) is the characteristic function of the interval <0, 1*(w)>. From the
Holder inequality,

(5.1) _|

J‘y(a(r/s, (1)) — a(¥(1))) x() de i\ =

=3[t st~ o ) 0¢| <3 [ Gt 50 -

~ a(efe. 3())) 2(7) de

%' Y !i f el 500) - alste)) o) e | +
> H [t — s o IE + z“ [ @t - ot 10 d‘il -
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As a(t, x) is Lipschitz continuous with constant K, so is d(x), and thus one may
continue

(61 <3 [ et e st ae | 4

+ 2k Y | = 5] ¢ + K[ () - s b

Ti 0

The first term at (6,1) converges to 0 as ¢ — O for fixed ; since it may be written as

Sleiss - o] —— | [ et s = atstean o f

ITH»I - Til ti/e

and one may apply Lemma 1. From assumption iv) it follows that the functions
F,(t,) — F(t;) converge to Fy(t,) — Fo(t;) uniformly with respect to 7,7, €
€0, Ly. According to (8,7) there are numbers ¢, > 0 and C > 0 such that
[%(t, w)|. < C for 0 < & < &. From (7,7) it follows that the second term in (6,1)
can be estimated as

(7.1) < 2K3(1 + C) (v + 2 /n (- max (Fo(2 + v) — Fo(2)) +
{0,L—v)>

F(2) = Fo(4)])) -

+ max
o,L)

Thus, we obtain that the second termin (6,1) converges to zero if v and ¢ converge
to zero.

From (3,1) to (7,1) we conclude

(8.1) I| j :<a(r/e, )~ )| < 0fe) + K j JECRFCINT

where lim lim ¢,(e, v) = 0.
v—0e—0

Next estimate the third term in (2,1). Since |[§ (B(t/e, %(1)) — B(y(1))) dwo(7)| is
a semi-martingale, we may use Theorem 3,4 from Chap. VII of [2],

=

o) [ 50 = B awit

I
|
, b
<2 | (e 56) = BOE) awe(o) |

and by (4,7)

(10.4) s2 (i (186l 50 - O k).

522



Now proceed similarly as in the case of (5,1):

(11.1) <4 N/ (z j el ) ~ B dfow) ¥

+ 8K / (nz J :H“)_c(t) - X(r,.)llzdFo(r)) 4K / (n J:“i(ﬂ @) dFO(r)).

The first term in (11,1) can be put in the form

and according to viii) it converges to zero for ¢ — 0. As in the previous case we prove
that the second term of (11,1) converges to 0 for v — 0, ¢ —» 0. From (7,1) to
(11,1) it follows that

(12,1) !

(B(r/e () — B(() dwe(2) H < ox(e.v)

ek (o[- y(r)nZdFo(r))

where lim lim @s(e, v) = 0.

v—0 -0

It remains to estimate the last term of (2,1). There is

9
(13.1) H j Blefe 5(9) 7 (0)

: rg 2 / <n ﬁllB(z/g, x(@)|? dF:«(T)>§

< 4K / ([0 + 151 ar209) = 01+ O (r20) ~ P20) =
< 4K(1 + O/ [N(0(6) w0e) — 700) wi0) — o) + w0 = 0

for ¢ — 0 in accordance with the uniform convergence w,(t) to w(t).

By (8,1), (12,1) and (13,1),

(14.1) 158) = W), = o(ev) + K j ;'nxm — (D). de +

+ 4K / ([[150 - sz o)

where lim lim ¢(e, v) = 0. From Lemma 2 it follows that hm [%(¢) = ()], = 0,

v—>0 -0

and this is the assertion of Theorem 1.
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Remark 1. The assumptions F (t) = Z(t), F,(t) = #X(t) may be replaced
by Z(t) = Z (1), #(t) = FX(1) since the expression in (2,1) may be estimated in
another way. In the case w)(f) = 0 the assumption Z(t) = #X(f) need not be
considered as w}(t,) — wy(t;) is already independent of & }(t).

Remark 2. If dF(f) = t* dt, the assumption viii) may be formulated in a simplier
manner, as

. 1 T _
lim —— | |B(t,x) — B(x)]*t*dt =0
T- o Tl+1 jo

uniformly with respect to x.

Proof. If the assertion did not hold, there would exist a number £ > 0 and sequen-
ces x; and T; - oo such that

1
(/;7‘})}.*—1
for large i’s. Put T; = oT, + BT. Then

B ) a \A+!
T‘“.[ 190 ) = Bl e 2 (a + ﬂ) (ocT)ulJ lB(’ x;) =
(x)|? " de + ( 4 ﬁ)z“ 1 rm” |B(t, x;) — B(x;)|* t* dt =

o + (B'I"i)}.+l

g( ﬂ )Z+1§>0,
o+ B

in contradiction with the assumption of Remark 2.

aT;+pT;
f IB(t, x)) — B(x)> *di 2 8> 0

Remark 3. If w(f) is a one-dimensional Wiener process (cf. the definition in [3]).
then the condition for B(t, x) is lim (1/T) [§ lB(t, x) — E(x)l2 dt = 0. This condition
T

is obviously more restricting than condition vii). However, the equation x(f) =
= /(&) 6 sin T dw,(r) where w(t) = (1/:/(€)) w(et), w(t) is a Wiener process shows
that condition vii) for B(t, x) would be not sufficient?). To complete the proof of the
theorem it remains to prove the Lemmas 1 and 2 .

Lemma 1. Let a(t, x) fulfil assumptions i) ii) and lim (1/T) [ a(t, x) dt = a(x)
T— o

uniformly for all x; then hm (I/T) [3* T a(t, x) dt = a(x) uniformly for all x and
arbitrary a = 0.

Proof. If the assertion of the Lemma were not valid, there would exist a number

2) Such an example also appears in the paper mentioned above.
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£ > 0, a index j and sequences x; and T; — oo such that |(1/T;) [27:* " a (1, x;) df —

— ax;)| = & Without loss of generality we may assume o > 0 and

1 aT;+T;

(15,1) -‘-J. aft, x;)dt 2 afx;) + &.
’I‘i aT ;

In the opposite case the proof is analogous. Put T;* = oT; + T;; obviously T;* — co.
It follows that

1 T* ] aT; aTi+T;
— aj(t, x;) dt =°;7; ITJ aft, \c)dt+I__1_ ajt, x;)dr.
i i ol

i 0 i idaT;

By (15,1) we obtain

H ot x)at 2 25 e = ats) de+ a4 e

o+ 1

Since oT; — o, the second term converges to zero and we find

1T
- J ot x) di 2 d(x) +
i 0

™1

o+ 2
for large i. The last inequality is in contradiction with the assumptions of Lemma 1.

Lemma 2. Let u(t) be a nonnegative integrable function on the interval {0, L)
which fulfils the inequality

(16,1) u(i) < a+ K f ;u(‘r) de + K A/ < 'f ;uz(t)dF(r)>,

where F(t) is a continuous non-decreasing function on {0, LY. The constant a is
nonnegative, the constant K is positive. Then lim u(t) = O uniformly with respect
to t in the interval {0, L. a0

Proof. From (16,1) it follows that

t
u*(t) < 3a* + 3K2tJ u
0

2(1:) dr + 3K? Jtuz(r) dF(T) .

We take the number L> 0 and put ¢ = 3K*(L+ 1), F¥(t) = F(f) + ¢. Then u*(r) <
< 3a® + ¢ 4 u*(r) dF*(x) for 0 < ¢ < L. Using this inequality we obtain
u(t) < 3a2 exp {c(F¥(t) — F*0))} = 3a* exp {c(F(t) — F(0)) + ct}

for 0 < ¢t < L. The last inequality implies the assertion of the Lemma.
Before treating the case of the adhesive barrier we have to introduce several defini-
tions.
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Definition 1. Let a region G be given. The frontier G’ of G is called smooth if it is
possible to cover the frontier G’ by a finite system of neighbourhoods U; in which
there are given functions ¥; and indices i(j) such that y; have Holder continuous
second derivatives and that

G' U, = {x:Xij) = Yi(X1s s Xigjy=1» Xijy 10 - Xa)} N U

Definition 2. Let a square matrix B(x) of b;(x) be defined on a set H. The matrix B(x)
is called canonic on H if there is a constant m > 0 such that

Y obulx) bp(x) Ad; = mYy A2
i=1

ijk=1
for all real 4,, x € H.

Definition 3. Let a process x*(¢, w) be defined on the whole space and let G be
a region from this space. Denote by 1(w) the Markov time of the first exit from G
provided that it is a random value. Put x(t, ®) = x*(1(w), ®) for t = (), x(t, w) =
= x*(t, w) for t < 1(w). The process x(t, w) is said to have the adhesive barrier G’
which corresponds to the process x*.

Remark 4. Let x*(r), y*(t) be solutions of (2), (3), where w(r) is a Wiener process,
and let a region G have smooth frontier. The processes x(t), y(t) are defined as the
processes with adhesive barrier G’ which correspond to x*(z), y*(¢). The processes
x(1), y(1) are solutions of the differential equations

x(l) = xo + j "ar, x(2) 7(x(2)) dt + V(0l®)) J:B(r, +(7)) (x(2)) dwi(z)
1) = 0+ [ 000 ) 8 + [ Bt () )

0 0
where x(x) is the characteristic function of the region G (the proof of this statement
is in [3]). We cannot use Theorem 1 in this case, since the functions a1, x) x(x),
b1, x) x(x) are not continuous in x;.nevertheless, there is a similar assertion.
The following theorem deals with this case.

Theorem 2. Let a region G be given with compact boundary and smooth frontier.
Let a(t, x), B(t, x) fulfil the assumptions of Theorem 1 throughout the boundary G,
and let the matrix B(x) be canonic in G. Let wy(t) be a Wiener process, and 7 (1) =
F(1) for all t = 0.If x*(t), y*(t) are the solutions of (2), (3) and x(t), y(t) the
processes with adhesive barrier G’ which correspond to x*(t), y*(t), then statement of
Theorem 1 holds for the processes x(t), y(t).

In order to prove this theorem in detail we would have to utilize several more
fundamental properties of Markov processes, and the proof would be very complicat-
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ed, so it will only be sketched. The functions ai(t, x), b,-j(t, x) may be extended to the
whole space in such a manner they are bounded and that the assumptions are
fulfilled on the whole space. Put gt = &, X(&) = x(t), X*(&) = x*(t); this is the same
transformation as at the beginning of the proof of Theorem 1. X*(¢) is then a solution
of (1,1). Let 7, and 7, be the Markov time of the first exit from G of the process X*
or y* respectively. We may decompose the set Q into three parts,

Ay={w:ty=1,0ormint; 2L}, A,={w:1t, <1}, A3={w:t,<1}.

Since X(t, ) = ¥*(1, w), y(t, w) = y¥t, w) for t < 1, we 4,

(1,2) f sup [%(1) — y(0)|? dP = J wp [~y P 5

, €O,L> ' {0,min(t;,L)
< j sup |x*(1) — y*(1)|*dP.
<0, L)

By Theorem 1, the last expression in (1,2) converges to 0 for ¢ — 0.
Denote by S;(H) the d-neighbourhood of the set H. The following Lemma plays
an important part in the proof.

Lemma 3. There is a function ¢(5) with ¢(3) > 0, ¢(8) — 0, ¢ > 0 such that
E(1(z)) < ¢(8) for every solution of (3) with initial condition zo, zo€ G, P(zy €
€ S§(G") > 1 — 6 (instead of x,) where 1(z) is the Markov time of the first exit
from the region G.

This lemma is a modification of Theorem 13,7, [3]. From & (t) = #(¢) it follows
that 7, is a Markov time of y*, and thus t3 = min (7, ,) is a Markov time of y*.

By Theorem 1 we obtain [,, sup [x*(f) — y*(1)|* dP < @,(c), where ¢,(g) si
<0,71>
a function with ¢,(g) > 0, @,(e) > 0 for ¢ » 0. There is a function ¢,(¢) with

¢,(¢) > 0, ¢,(g) - 0 for ¢ > 0, such that
() PO ) € S0(G) > 1 — 02

Put z(f) = y*(t + 73). As the process y* has the strong Markov property, the
process z is equivalent to some solution of (3). The Markov time of the first exit
from G of z is T, — 73, and its initial distribution is z(0) = y*(t3); by (3,2) we obtain
that P(z(0) € S,,,(G")) > 1 — ¢,. From Lemma 3, E(t, — 73) < ¢3(¢), where ¢;(¢) >
> 0, ¢5(¢) = 0 for ¢ > 0, and, according to the definition of 73,

f (t2 = 71)dP < @4(e) .
A2
From (7,7), (8,7) and the strong Markov property of y, we obtain

(4.2) j sup |%(1) — ¥(1)]* dP < @4(e) where ¢, >0, ¢, >0 for ¢—0.
42 <O.L>
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It remains to show that there is a function @s(¢) with @s(e) > 0, @s(e) — 0 for
¢ — 0, such that

(5,2) J sup [X(1) — p(1)]* dP < @s(e) .
45 <O.L>

The proof of this inequality is based on the following

Lemma 4. Let z(t, w) be a solution of (3) with initial condition z(0, w)e G'.
Then there is a sequence of regions ... G, = G, > G, ... such that G, = G,
G, have smooth frontiers, G, are compact, and also a sequence of numbers 5, > 0,
lim 8, = 0 that 1) P(lz(7,) — z(0)| < §,) = 1 for n — oo, where 1, is the Markov

n— oo

time of the first exit of z from G,, and 2) E(f,,) — 0 forn — .

This lemma follows from Theorem 13.16 of [3]. Now put z(1) = y*(t + 1,).
Since the process y* has the strong Markov property, the process z is equivalent to
a solution of (3) with initial condition z(0) = y*(t,) € G'. The Markov time of the
first exit of z from G, is t” — 7,, and

P(|z(8” = ©,) = 2(0)] < ) = P(|y*(z5”) — y*(z,)| < n).

By Lemma 4, to every # > 0 there is an n such that
62) P ) — 20 <) = 1 — 1,

E(x9” — 1) < 7.
To this n take a = min ¢(x, y), x€ G’, y € G, (¢ is the Euclidean distance of the
points x, y. By Theorem 1 there exists an &) > 0 such that E( sup |x*(1) —
— y*(1)|?) < o®n[4 whenever 0 < & < £,(n) and P( sup ]x*(t) — y*(r)| > rx/2) <
Since the distance between G’ and G, is less than o, we obtam that

(7,2) 7, < 1§ with the exception of w in A},

Ay < Ay, P(A) S oo, sln) > O, @sln) =0 for 1 0. From (62), (12) i
follows that there is a constant C > 1 such that [sup [X(t) — y(¢)]> dP < Cn for
{o,L)

0 < & < g(n) where it is integrated throught A,; then this assertion is equivalent to
(5,2). The assertion of the theorem then follows from (1,2), (4,2) and (5,2).

Remark 5. In Theorem 2 it is sufficient to assume that the frontier has continuous
curvature. The proof is then based on results from [6] and on immersion theorems.

From Theorem 1 it follows that E|[X(f) — y(1)]* < n for €40, L), 0 < & < &.
In the case that the solution () is asymptotically stable in average and if other
assumptions are fulfilled then this inequality holds for every ?.
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Next we shall consider a stochastic integral equation

(1.3) (1) = zo + J.l (t, z(r)) dr + f B(z, z(t)) dw(1)

to 10

where a, B fulfil the assumptions i) ii), the process w(t) fulfils iii) and the initial
random value z,, fulfils ix).

First there will be presented the definitions of solutions stable in average and of
solutions asymptotically stable in average.

Definition 4. A solution z(1) of (1,3) is stable in average if there is a function (g) > 0,
such that there is sup E|z(t) — Z(1)]* < & for every t, 2 0 and for every solution

) of (1) = z(t:) + [t a(r, 2(x)) dt + [, B(t, 2(7)) dw(r) with initial condition
E] (to) — 2 to)|2 < (2).

Definition 5. The solution z(r) of (1,3) is asymptotically stable in average if it is
stable in average and if there are a number A4 > 0 and a function T(6, n) defined for
d <A, n<A such that E|z(r) — Z(1)|> < n for t = t, + T(8,n) if E|z(t,) —
— #(10)|* < 8.

Theorem 3. Let the assumptions of Theorem 1 be fulfilled,

1 aT+T I aT+pT
lim ~f a(t,x)dr = a(x), lim }J |B(t, x) — B(x) [2 dt =0

T-w aT T-w aT

uniformly with respect to x and o for every B; w(t) is a Wiener process (viz [3]).
If ¥(t), y(t) = yo for t 2 1, is a solution of (3), which is constant and asymptotically
stable in average then to every n > 0 there are ¢, > 0 and 6 > 0 such that

sup E|x(f) — yo|> <n for 0<e=sg
{to,)
where x(t) is any solution of (2) with initial condition E|x(t,) — yo|* < 6.
Proof. Without loss of generality take y, = 0. In accordance with Definition 4
we find to given 77 > 0 a number 8, 0 < § < A, such that E|j(t,)|* < & implies
(2.3) E|F(1)]* < n/4 forall tz1,.

According to Theorem 1 and the assumptions of Theorem 3, to T((S, 5/4) there is
a number g, > 0 (independent of fo), such that

(3.3) sup E|x(t) — #(1)]* < 0/4 for 0<e<e,.

(to.to+T(6,6/4))

The numbers & and &, have the required properties. Let X() be the solution of (1,1)
and E|x(to)]> < & (cf. yo = 0). Let j(f) be the solution of (3) with initial condition
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F(to) = X(t,). With respect to the stability in average of y(t), one obtains (2,3).
By (2,3) and (3,3),

(43) E|X(1)|* < n for telty, to + T(5,3[4)> .

By definition of T(3, 5/4), cf. Dzfinition 5, there is E|j(t, + T(5, 5/4))|* < 6/4; and
according to the choice of &, we obtain E[X(t, + T(3, §/4)) — #(t, + T(8, 5/4)]* <
< &/4. Hence

(5.3) E|x(to + T(8, 6[4)]> < 5.

Put 1, = 1, + kT(, 6/4). Since E|X(t,)|* < 6 i. e. (5,3) holds, we obtain that (4,3)
holds again in the interval {t,, t,» and that (5,3) holds on substituting t1 + T(8, §/4)
for t, + T(J, 6/4). The proof is then concluded by induction.

Sufficient conditions for stability in average and for asymptotic stability in average
are given in the next section.

Let a function F(f) be absolutely continuous; then by (2,7) the function F;(t) are
also absolutely continuous. Denote by f(f) the derivative of F() and by f;/(f) the
derivatives of F;j(1).

Theorem 4. Let the equation (1,3) have the solution z(t) = 0, let a(t, z), B(t, z), w(t)

fulfil the conditions i) iii) ix), and let F(t) be absolutely continuous. If there is
a quadratic form V(t,z) =Y ¢;(t) z;z; which fulfils the condition that the c;{t)

1,
have continuous second derivatives and that there are constants d; > 0, d, > 0 with

(1.4) di|z]> = V(t, 2) £ dy2|*
(2,4) W(t, z) = — + Z a + Z ,,(t) bubifu(t) <0

for almost all t, then the solution z(t) = 0 is stable in average.

Proof. First we shall prove the equation

(3.4)  E(V(ty, (1)) = E(V(ty, (1)) + E j Wit Ae) de for 01, <1,
Obviously

44)  E(V(tp (1) = E [V(z,, () + % (1, (1)) (t; — tl)] +
[} 08 () (s — 0]

where t, < t* < t,. Choose a number T> 0 and assume 0 < ¢, <t, < T It 'will
be said that ©(ty, t,) has the property o(t, — t,) if there is a function ¢(f) such that
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|O(ty, 12)] £ @(t, — 1) for 0<t, <t, <T and with hm e())t =0 or if
|o(t, 1)) = ¥ (1 — 1;) (F(t,) — F(t,)) with hm ¥(1) = 0. Smce the (1) are

bounded on <0, T) and E|z(1)]* < [z(1)|7 S C2 (cf. (8,7)) for all 0<t< T,
the last expression has property o(r7 - tl) Since

lov

r— (11, 2(12)) — — (’1 ~(fx))f(‘z — 1) g
= K*[|2(t1)] - [2(z2) — "(tl)] + |z(t)] - 2(r) — '-(t1)l] (t2 — 1),

we obtain

E[}i% (11, 2(12)) — — (t,, Z(tl)) ](tz = 1) =0(t; — 1;),

by the Holder inequality and by (7,7). The equation (4,4) may be modified to
(5.4) =E [V(’b 2(11)) + Z cij(ty) (z4(ts) (zdt2) — z(1y)) +
+ z((t)) (2(t2) — z,(1)) + Z eij(td) (zi(t2) — 2i(t1)) - (2(t2) — z(1h)) +
+ (Tt (tl, (1)) (1, — t,)] + o(t, — ty).

If we substitude the right-hand side of (1,3) instead of z(t,) — (t,), and consider the
relation E (}i2 B(t, z(t)) dw(t) |#(t,)) = 0 we may proceed.

(64) > {V(tl, (1) + Teoft) [zj(tl) Jﬂla,-(r, (x)) dr +

Ty

L3t

+ (1) [ "oz 2(2) df] +Ye ,,(tl)[ J ai(x, =(x)) de J ja,.(f, 2(e)) de +

+ Ka,.(f, (1)) dr ( j :B(f, (%) dw(t)>j+ j :aj(r, A(2)) de x

y ( f :B(t, (%)) dw(r))i—f- ( J :jB(T, -(%) dw(‘r))ix ( j :jB(T, (%)) dw(r))j]+

£ 0 o) (= ) o~ 1)),

3 ( ); denotes the i-th component of the vector within the parentheses.
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We will estimate the terms from (6,4), By the Holder inequality,

(7.4) E [ j :jai(r, +(2)) dr j :a,.(f, (%)) dr] <

< JE Ja(r )dr \/E (r z(7)) d

= szElai(r, z(r))IZ dr x j \/Elaj('f, :(‘r))ll dr = 5(tz - f1)-

The last equality holds since the a; fulfil ii) and E|z(1)|* < ¢*for 0 < ¢ < T. Similarly,

(34) [ j e o) d (jB( 2(1)) dw<r>)j§
< 0 [ Vel ) a N/ [ e e 1 = ot = 0.

Obviously

(9.4) j Bz (t)aix, 2(2) dr = (t — 1) E(z(t)ait, 2(1)) +
¥ j "E(e (1 )ae 20) — ae. =(1,)))) de + j Bz 1) (af 2(11)) — i, =(1,))) de

T

The third expression has the property o(t, — t,), according to (7,7), (8,7) and
to the Lipschitz continuity of a;. To show that the last expression has the property
(t, — 1;), take M, > 0 such that K \/f; (1 + Sup |z(t)[ )dP < ¢ where G,

_l,_.
={w: sup |2(t, w)| > M,}. The functions a; are uniformly continuous in x
<

throughout the closed region |z| < M,, 0 < ¢ < T, so that one may take § > 0
with the property that |t — ¢ < & implies |a(t z) — a(t, z)| < e It follows that

\/E('ai(fa 2(1y)) = ai(ty, 2(1))]?) < /f ) lalz, z(t,)) — afty, =(t,))]> dP +
+ 4K /\/_Lc(l + |2(t)|?)dP < 3¢ for |t — 1| <o
That is, the last expression also has property 6(t2 — t;), and
(10’4) f'ZE(Zj(tr)ai(T’ Z(T))) dr = (tz - tl) E(Zj(tlr)ai(tu Z(ti))) + 5(’2 - 11) .
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Similarly one proves (cf. (5,7)) that

(11,4) E [( j :TB(T, (%)) dw(r))ix ( f :B(r, (%) dw(t)>:| _

Zi E(balty, 2(11)) byt 2(11)) (Fultz) — Fo(t,)) + o(t, — t;).

On substituting (7,4) to (11.4) into (6,4) we obtain

E(V(1, z(zz))=E[V<z1, () + ) (1 2(0)) (1~ 1) +

+ Z (tu (1)) ai(t;, (t ) (= 1) + Y cifty) balty. 2(1y)) x

i),k 1
x bty 2(t,)) (Fults) — Fi(t))] + o(1, — 1,) .
Let t; = 7§ < 1 < ... < t{¥ = 1, be a sequence of subdivisions lim max (¥, —

k— o i

k) (k) 1> and take k - oo we obtain

® = 0; if we use the last equation for {z!
(3,4). By (2.4).

(12,4) E(V(ty, 2(t,)) < E(V(1y, 2(t,)) for 1, <1,
From (12,4) and according to (1,4) it follows that
d,E|z(1)|* < EV(1, (1)) = E(V(to, 2(10)) < d,E|z(10)]* .

Put & = d,z/d,; then E|z(t,)|* < o implies E|z()|* < & for all t = t,.

The next theorems deals with the asymptotic stability in average.

Theorem 5. Let the assumptions from Theorem 4 be fulfilled, with (2,4) replaced by
(1,5) W(t, z) £ —d,|z|* for almost all t
where d5 is a positive con§tant; then z(t) = 0 is asymptotically stable in average.

Proof. By (3,4) and (1.,5),

E(V(ty 2(1,)) < E(V(14, 2(1,)) — d4 J"ZE[Z(I)‘Z dt
f

and with respect to (1,4),

dE|z(1))* £ d,E|z(t,)|* — d, J‘f E|z(z)|* dt .

By Theorem 4, z(¢) = 0 is stable in average. The number A from Definition 5 may
be chosen as A = (1) (the meaning of §(¢) is the same as in Definition 4.) Assume
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given 6 1,0 <6 < A, 0 <n < A. To every n > 0 there is a 6; > 0 such that
E|z(10)|* < &, implies

(2.5) Elz(t)* <n for t=1t,.

It is not possible to have E|z(f)|* = 8, for all t = t, Indeed, then d,E|z(t)|* <
< d,E|z(t,)|* — ds(t — t,) 8y, and hence E|z(1)|* < Ofor ¢ = t, + d,E|z(to)|/(d364)-
This contradiction shows that there is a T(3, n) such that E|z(t, + T(5, n))|* < 6,.
However by (2,5) E|z(1)|*> < n for all t = t, + T(6, n).

The applications of this method to stochastic integral equations not in the form (2)
are very important. In the case of ordinary differential equations we may apply
this method to the equation X + w?x = &f(f, x) x. Using the transformation
x = rsin (0t + @), ¥ = ro cos (wt + @) one obtains the system

Fo= zi rf(t, v sin (wt + ) sin 2wt + 2¢)
®

¢ = — £ f(t, rsin (ot + ¢))sin* (ot + @).
1)

This form is adequate for using averaging method. To arrive at stochastic integral
equations we rewrite the original differential equation asdx = y dt,dy = —w?xdt +
+ ¢f(t, x(t)) x(¢) dt. The corresponding form for stochastic differential equations is
dx = ydt, dy = —w?xdt + ea(t, x(1)) x(t) dt + /(@(e)) B(t, x(1)) x(f) dw,(t). The
integral form of the last system is x(f) = xo + [, ¥(r) d7, y(t) = yo — @? fi, x(¢) d7 +
+ & [}, a(t, x(v)) x(t) dz + /(9(e)) [, B(z, x(t)) x(z) dw,(7). There are several dif-
ficulties which are connected with utilisation of non-linear transformations: thus it
would be necessary to investigate expressions similar to those in [5].1 shall introduce
another transformation, which may also be applied for stochastic differential equa-
tions. We shall limit ourselves to the second order differential equation

(1,6) %+ pux + o’x = ¢f(1, x),

but reasoning may also be applied to systems of equations. The system of stochastic
integral equations corresponding of (1,6) is now

(2,6) ©(t) = xo + J (@) de y(t) =

to

ot g o] s

Assume w(t) is a Wiener process.
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Theorem 5. Let x(1), y(t) be a solution of (2.6) 0,(t), Q,(¢) solutions of (1,6) for
¢ =0 and with initial condition Q,(0) = Q5(0) = 1, 0,(0) = Q}(0) = 0. Then
there are the solutions u(t), v(t) of (13,6) such that

x(t) = Q4(t — to) ult) + Qu(t — 1) v(1)
W) = —w® Oyt — to) u(t) + (Q4(t — to) — 1 Qu(t — o)) v(t) .

Remark 6. The system (13,6) is already in the proper form for utilising the pre-
ceding theorems.

Proof. First we shall prove that (2,6) is equivalent to
(3,6) x(t) = xo Q4(t — to) + yo Qu(t — 1) + SJ 0,(t — 1) a(r, x(1)) dt +
#3000 [ 0se =) Bte <) (o),

}’(t) = —o’x, 0,(t — 10) + (Ql(t - to) — U Qz(t — 1)) Yo +
+ £J‘t [0:(t = ©) = 1 Qy(t — 7)] a(z, x(7)) dr +

to

+ (o) j 104t = ©) = 1 a1t — )] Be, x(2)) dw(z)

o

Using simple transformations we obtain from (2,6)

46)  x(t) = %o + yolt — o) — * J t f ix(r) drdé — J f iy(t) dedf +

tod t

te j Jg afz, x(2) dt d¢ + J(0()) f J " Bz, (1)) dw(c) de

to to

e
(5.6) (1) = —*(t — to) xo + (1 — plt — 10)) yo + ,uwzj f x(7)drdé +

to

(4 — oY) j J iy(r) drde + ¢ J :oa(‘r, () 4% + (o(2) J;B(T, () dw(z) —

~on[ [ ate ) araz oo [ [ ne s anio az.

to tod to

Choose t; 1ty < t; <...<t; <..<t =t ty —t; =At>0. Let x(r), y(t) be
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a solution of (2,6), and x7(1), yi(1) be d;:ﬁned on every interval {t;, t; > by
(6,6) x¥(t) = x(t) Q.(t — 1)) + y(t:) Qu(t — 1) +
+ 8—[ 0,(t — t)a(t, x(1)) dt + \/((p(s))“‘ 0,(t — 1) B(x, x(1)) dw(z)

y¥(1) = —ox(t) @t — 1) + (1) (@t — 1)) — n Oyt — 1)) +
+ 8j'_(Ql(t — 1) — 1 Q,(t — 1)) a(r, x(7)) dt +

T

+ \/(Q"(E))J (Q.(t — ©) — 1 Qy(t — 7)) B(x, x(7)) dw(z) .

t;

We shall prove that
(7,6) EX;]x*(tH,) — x(1;44)] = 0., Ezi:{y*(tiH) —y(t)| >0 for At 0.
According to definition of x*(t), y*(t), x(t), y(t) and (4,6), we have
(8.6) YE|xt., — xioi| < YE[x| . |0i(A1) = 1] + TE[y]. [Qx(A1) — Af| +
- UJZEZ””HJCX(T) drdéé + |u| YE ,j ‘fy(r)dr dé +

ti+
i t

ti

ti

+¢e)E 'J‘

t;

HQZ(t,-Jrl — 1) a(r, x(1)) dri + Jm l ‘r.[a(r, x(1))| dr d¢ +
+«¢m24y“@uﬂ—ﬂﬂnw»wm—jffiuwmmmwd

(9,6) ZE|}'T+1 - _Vi+1l = o’ ZEIXil . lQZ(At) - At‘ +

| ptivs g |
&J‘ Jy(‘c)drdé%-i—
o J |

'“(Ql(ti+1 - T) -

+ ZEI}'i‘ . |Q1(At) — K Qz(At) -1+ All + lwz — ,uzl ZE

+ |u| > YE %ftm‘rx(r) dr dézit +¢eYE 'j'
1= w0l — ¥ ale x(1) dr |+ J(o(e) XE }j'”’(gl(m, — -
j 1J e

| tiv1 (&
— 1 = 1 Qy(t;, — 1)) B(z, (1)) dW(T)i + el Y E J J"a(r, x(t))drdé +

ﬁffmwmmww%,

ti

+ |u| Vle(e) XE

!
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where x; = x(1;), y; = ¥(t:), X7 = x{_(t;), 7 = y¥_1(t:). Since x(t), y(1) is a solution
of (2,6), there is ||x(1)] < C. |[¥(1)] < C and all terms on the right-hand sides of

(8,6), and (9,6) converge to 0 with At — 0. Thus (7,6) is proved. Let %(1), 7(f) be the
left-hand side of (3 6) if into the right-hand side there is substituted the solution
x(1), (1) of (2,6) as well as (4,6). Since Q,(1), Q,(t) are solutions of (1,6) for & = 0,
it follows from (3,6) that (), j(z) fulfil

(10,6) Xtiv1) = Qi(AD) X(1,) + Q,(Ar) #(t:) +
Q2 it — 1) a(n x(1)) dt + /(o(e)) J Qa(ti+1 — 1) B(t, x(1)) dw(z

P(tivq) = —? X(1:) Ox(Ar) + (Q4(Ar) — 1 Q5(A1)) (1) +
te f Touti = ©) = 1 0i(tisy — )] e, x(2)) de +

+ J(o(®) f T L0ultrs1 = %) = 1 Qa1 — ] Ble. ) (o).

From (6,6), (10,6) we obtain

(11,6)  |x(t;41) — f(’i+1)l + Wltie) = J(tivy)] = Ix(ti+l) - x;k(tH»l)I +
+ ly(’i+]) - y:'k(t”l)l + (IQI(At), + wleZ(At)D ,X(ti) - g(ti)l +
+ (js(Aan] + [Qx(A0)] + [u] - |Qa(AD)]) (1) — 3(x))| -

The expressions |Q; (Ar)] + ®*Q, (A1), IQI(AI)I + |u] - le(At)| are of the type
I + o; At where o, — «{” for At - 0,7 = 1, 2. Set # = 2 max (af”, a5, 0). By (11,6),

elte1) = 50 )| + [tiar) = 3(t00)| <
< (1 + BAY (Ex(t) = x*(1))] + [1(1;) = y*(1,)])
where s = 1/At. Obviously (I + B A1) - ¢, and according to (7,6),
E[x(1) = ()] + (1) - 5[] = 0.
As (1), Q,(t) are solutions of (1,6) for ¢ = 0,
0,(1 — 1) = it - 1) Q1o — 7) + Qu(t — 1o) Q3(to — 1)

04(t — T) —u Qz(t - ‘r) =
= —w? Q,(t — o) Qalto = 7) + (Qu(t — 1,) — 1 Qa(t — 1,)) Q3(to — 7).
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The equations (3,6) may be rewritten as
(126 x()= 0t —10) ( p j :OQZ(ro — ) afz, x(0)) dt +
#0 [ utto = B x(9) aw(a) +
+0u(t - 10) (yo e j ;quo — ) ae, x()) dt +
#3000 [ 030 =) B 1) ()
o) = —w? 0yt — 10) ( o j ;ero — 1) afe, x(2)) dt +
#00) [ alto =) B x(9) aw(0)) + (@10~ 10) = 1 0401 = 1)
(o o[ 0400 = et s e + 0 [ itto =9 B 56 a(9).
Let u, v be solutions of the equations
(136) u() =xo+¢ | ;Qz(to — ) ale,u®) Qus — 1) + o) (e — 1)) dr +
ot | ;Qz(zo — ) B(e, u(®) Qufr — o) + o(5) Qufr — 1)) d(2)
W) = yo + o j ZOQ'z(to — ) ale. u(r) Qs — to) + (2) Qale — 10)) d +
#0000 [ 030 = 9 B ) @1 = 1) + 1) 04 — 1) an().

By (2,6), (3,6) and (13,6), the solution x(t), y(t) is given by
x(f) = 04(t — to) u(t) + Qa(t — o) v(t)
W) = —o? Qz(t — to) u(t) + (Qx(t —to) — p Q,(t — to)) o(?)

and the theorem is proved.

Last section is devoted to some properties of the stochastic integral {5 f(t, w) do(1)
and of solutions of stochastic equations.
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Let a process w(t) fulfil assumption iii), and let #(t) denote the smallest o-field
which corresponds to w(t,) — w(t) for 0 < t; < t, < t. There exist functions F;(t)

with
Fif(tz) — Fif(ty) = E((wi(t2) — wi(t1)) (wi(r2) — wi(ty))) -

These functions fulfil the following conditions:

(1,7) F,(t) are non-decreasing continuous functions and
Y(Filtz) = Fity)) = F(tz) — F(1,)
(2’7) . Fij(tz) - Fij(tl) = %[Elwi(tz) + Wj(tZ) - Wi(‘l) - Wj(tx)|2 -

= (Filt2) = Fu(t)) — (Fi(t2) — Fi(t1))]
and var F;(1) < F(t,) — F(ty).
{t1,t2)

Let f(t, w) be a quadratic matrix. Denote by f;(t, w) the components of f(t, w).
Assume that the f;j(t, ®) are measurable in both variables, f;(t, ) are F() —
— measurable for every t and [2 E f(t, ®) dF(t) < oo for all i,j. Defining the
stochastic integral in the usual way, we obtain

(3.7) E (f 1z, @) dw(t)) _o
7) !E ( J (5, ) dw(?), J :g(t, o) dw(r))i < WS, tys 12) W9, 11, 1)

where (,) is the scalar product and y(f, ty, t,) = /n /[ | f|* dF. Then, easily,

t2 t2
(5.7) E [( j 1z ) dw(t)) . ( '[ 1z, ) dw(r))] -
ty : i ty J.
t2
= J Y E(fult, o) fi(z, @) dF y(z)
¢ Bl
M is called the class of functions x(f, @) which are & x % measurable in both
variables (# denotes the o-field of Lebesgue measurable sets on the real line), x(t, )

is #(t)-measurable for every ¢ and |x(.)|, = VE sup |x(r, w)|* < co. With respect
to i), i), we obtain that

N'La(f, W@ S Kk j ;”x(.)",dr

JT)B(I, x(1)) dw(z) t = /\/ E (S(:I,p

P J‘;B dwizé 2 ,\/E J:B dwi2§
<2 J (n j ;E;BV dF) < 2K [\/(n(F(t) — FO)) + / <n J 0 ()2 dF(t))].
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The first inequality in the second row is satisfied according to Theorem 3,4, Chap. VII
of [2]. From these estimates it follows that if x € .# and % is given by

t t

a(t, x(r)) dr + J B(z, x(z)) dw(z),

0

(1) = xo +J

[

then £(¢) can be chosen so that £ € .# also. Since x, € .#, there is x,(t) € # where
x,,(f) are successive approximations of

(6,7) x(’t) = X, + Jta(r, x(t))dr + J‘l B(x, x(r)) dw(t) .

0 0

These approximations fulfil

Fomea() = 5 )l < K j;uxm(-) — xua(ode +

+ 2K /( [ bt = xac 1 et

thus x,, converge to some function x in the norm [[ “, This function x is a solution
of (6,7) in the sense that

Ex(’) — X — ﬁ)a(t, x(t)) dr — ~rB(r, x(7)) dw(r)

(4]

=0.

t

The following estimates can be proved:

(7.7) VEsup [x(@) = x(to)|* = (1 + [x()[) K(t = to + 2 /(n(F(r) = F(t0))))

{to,t>
(8.7) [%Clle = V2llxoll + Kt + 2K {/(n(F(1) — F(0))) -
Cexp {K2n(2 + /1) (F(t) — F(0) + 1)} .
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Pesrowme

O PACIMTPOCTPAHEHUM METOJA YCPEAHEHUSA
HA CTOXACTUYECKUE YPABHEHUA

MBO BPKOUY, (Ivo Vrkoc), INpara

l'lycu. BBIMOJIHAKOTCA CJICAYIOUIUC NPEANTOJIOKCHUSA

1) Bekrop a(t, x) u kBagpaTHasi MaTpuua B(f, x) HEPEPBIBHBL 110 f, X U BbIMOJHSIOT
ycyioBye Jlunumuia no x.

2) |a(t,0)] < K, |B(t,0)| < K, rae |B| = /(3 b}) u b;; — cocraBstowme matph-
bl B.

3) 3agaHHO CeMEHCTBO NPOLECCOB W (f) C HE32BUCUMBIMM MNPUPALUEHUSAMMU, s
kotopeix E(w(tz) — wi(t1)) = 0, E[w(t;) — wi(t,)|> = F(t;) — Fi(t;) wu dynx-
unu F(t) HempephIBHBIL.

4

~—

Cywecrsyet Gynkust ¢(e), ¢(g) > 0 ana & > 0 rak, uro L.i.m. (W (t,) — W (1)) =
=0

= wy(t2) — Wo(?;) PABHOMEPHO Ha KaXIOM KOMMNAaKTHOM MHOXECTBE 3Ha4YCHMH
t1, t, rae (1) = /(¢(e)) w(t/e) (1.i.m. 06o3HauaeT npeaes B cpeaHeM KBaapaTH-
HECKOM).

5

~—

wi(t) = w,(t) — wo(t) — npowEecchl C HE3aBUCUMBIMU 11PUPALUEHUAMM.

6) Tycts Z(t) cooTB. F () 0603HAYAIOT CaMble MaJible G-MOJIsl, MHAYIMPOBAHHbIE
CIIyyaiiHbIMU BeJIMUUHAMM wo(l;) — Wo(ty) cooTB. W,(t,) — W,(t;) ams 0 < 1, <
< t, £ t. FX(t) o6o3HauaET o-TOJIC, COACPKALICE CAMOE MAJIOE G-TIOJIE, KOTOPOE
MHLYLMPOBAHO CIIyHaiiHbiMu BesmauHamu wi(f,) — wi(ty) s 0 < t; < t, < 1]
F X(t) Taxoe, uTo Bemmumnbl w)(t,) — wi(t;) HezaBucumbl o1 FX(t) mua t < ty <

< t,. DTH TIONS YIOBJIETBOPAIOT COOTHOUIEHHAM Z (1) = F (1), F (1) = FX(1).

7) CywectByeT BeKTOD d(X) Tak, 4To

't
lim L a(t, x) dt = a(x)
T— T 0
PaBHOMEPHO MO X.

8) CywectByer MaTpuua B(x) Tak, 4to

lim f m”|3(t, %) = B(o|? dF(/T) = 0

T=w J.r

paBHOMEPHO MO X npu Beex o, f,0 < a < L,'O < B < L, rae L naHHOE MOJOXKH-
TeJIbHOE YHUCIIO. :
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9) Cryuaitnas BeuMHa Xo(w) HE3aBUCHMA OT BCeX MpupaileHuit wy(t,) — w,(ty)
u E|xy(w)|* < 0.

B pa60Te J0Ka3bIBA€TCsA OCHOBHasa T€OpeMa

Teopema 1. [Tycms npeononroncenus 1), ..., 9) svimosnaromes u nycms x(t), y(t) —
pewleHus YPasHeHull

M) X(t) = xq + ¢ j "a(e, () dt + /(0(e)) J'B(f, *(2)) dw,(7)

@) ¥(0) = xo + j () dr + j B(y(2)) ()

0 0

Toz20a k oaunbim uucaam n > 0, L > 0 cywyecmseyem g, > 0 max, umo
E( sup |x(t) — y(et)|) <n mia 0<e=e.
<0,L/sy

B ciryuae, xoraa wy(t) — nponecc Bunepa (o [3]) yciosue 8) nepeiiger B ycioBHe
lim (1/T) {3 ]B(t, x) — 1_3(x)|2 dt = 0 paBHOMepHO 1o x. IToka3aH nmpumep, JOKa3bl-
T-wo

BaIOLLWIA, YTO 3TO YCIIOBUE HEBO3MOXHO ocnabuts B ycosue lim (1/T) [§ B(t, x) dt =
= B(x). T=e

Teopemy 1 Hestb3sl HEMOCPEACTBEHHO MIPUMEHUTD B BJIyYae MPOLECCOB C MOLJIOIA-
1OLLCH CTEHKOI, HO CJIe/IyFoIast TeOpEMa MOKa3bIBAET, YTO MpH 6oJiee OrpaHNYAONINX
IIPE/IIOIOKEHUSX 2HAOTHYHOE yTBepkKAeHue BbinousieTcst. Ilycts mpouece x*(t, @)
ompeyeseH B npocrpanctse E, u nycts G — nanHast obsacts u3 E,. O603HauuM ()
MOMEHT NepBOTO BBIX0/a Npolecca x* u3 G u Gyqem npeanoiarath, 4ro t(w) — ciy-
yaitnas Benmunna. [looxuMm x(1, w) = x*(t(w), ) s t 2 t(w) u x(t, ©) = x*(t, )
st t < 1(w). pouece x(f, w) HA30BEeM IIPOLECCOM C HOrIouaoLeii crenkoi G,
COOTBETCTBYFOLLMIT ITporeccy x*(t, w).

pannna G’ obiactu G riiajkast, eciii €€ MOXHO JIOKAIBHO BBIPA3UTh NPU MOMO-
i GyHKIi, BTOPbIC POU3BOAHBIE KOTOPBIX BBIMONHSIOT ycioBue Iennepa.

CkaxeM, 4To Matpuna B(x) kaHoHIYecKas, eCliy CyLIeCTBYET NMOCTOsiHHast m > 0

n n
TaK, 9To Y, by(x) bj(x) AA; = m Y. A nnst moObIX NeHCTBHTENbHBIX YHCEN A;.
i,j.k=1 i=1

Teopema 2. ITycmb dana obaacme G ¢ komnakmuvim samvixanuem G u 24adxot
epanuyeit G'. a(t, x), B(t, x) evinoansiom ycaosus meopemot 1. u B(x) xanonuueckas
6 G. Ipednosoncum, umo wy(t) — npoyecc Bunepa [3) u F (t) = F(t). Ecau x*(t),
y*(t) — pewenus ypasuenuii (1), (2) u x(t), y(t) — npoyeccor ¢ nozaowaroweii cmen-
xoti G', coomseemcmeyrowue npoyeccam x*(t), y*(t), mo oaa npoyeccos x(t), y(t)
8bIN0AHACMCA YMEepicOeHue meopemol 1.
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7151 cite Ayronux TE0peM HYXKHO ONPEAEUTh YCTOHYMBOCTD B CPEHEM M ACUMIITO-
THYECKYIO YCTONYUBOCTH B CPEAHEM.

Onpenesenne 1. Pewenue z(t) ypaBuenust

3) (1) = zo + J

t

a(z, z(t)) dr + J" B(z, z()) dw(z)

to to

YCTOMYMBO B CpEiHEM, ecin cyluecTsyeT Gynkims (g), 5(e) > 0, 5(e) = 0 nasie — 0
TaK, 4TO Sup Elz(t) - E(t)|2 < & 1T BCAKOTO ty = 0 M BCSKOTO PELICHNMS
)

{to,x
t

(1) = 2(t,) + J a(t, 2(t)) dt + Jt B(t, (7)) dw(t),

to to

ans kotoporo E|z(ty) — £(to)|* < 6.

Onpepenenne 2. Peurenvie z(f) ypaBHenus (3) aCHMNTOTMYECKM YCTOMYMBO
B cpenHeM eciu: 1) yCTOi4MBO B cpefiHeM 2) cyluecTByeT yucio A > 0 u dynxuus
T(3, 1) > 0, onpenenennas w0 < § < A,0 < n < A, 1ak, uro E|z(1) — Z(1)|]* < n
st =ty + T(3, 1), ecin Eiz(to) - .i(to)l2 < 9.

HNmeet MecTo

Teopema 3. ITycmb npeonosoxncerus meopemsli 1 6blnoansaomces, npuuem

1 aT+T 1 aT+ BT _
lim — a(t, x)dt = a(x), lim — |B(t, x) — B(x)|*dt = 0
T-> o oT Tow T T
PasHOMepHO no X u o npu awdom f, u nycme w(t) — npoyecc Bumepa. Ecau (2)
umeem NOCMOAHHOE ACUMRMOIMUYECKU YCMoiuueoe & cpednem peutenue y(t) = y,
044t = ty, mo Kk dannomy uucay 1 > 0 cywecmeyrom yucaa €, > 0 u é > 0 maxk, umo
sup E|x(t) — yo|2 <1042 0 < ¢ < g, 2de x(t) — pewenue ypasuenus (1) c nauars-
{0,)
HbiM ycaoeuem E Ix(O) - yO[Z < 4.

st yCTOMYMBOCTH B CPETHEM W ACUMITOTHYECKOH YCTOMYUBOCTU B CPEIHEM TIPH-
BOJISITCSL OCTATOYHBIE YCITOBHSL.

Teopema 4. ITycmb ypasuenue (3) umeem pewenue z(t) = 0; a(t, z), B(t, z) svinos-
narom ycaogue 1), w(t) evinoansem 3), npuuem Pynryus F(t) abcosromuo nenpepeigna.
IMycmyb cywecmgyem keadpamuyeckasn gopma V(t, z) = Y ¢;(t) z;z ;maxas, umo Pymx-
yuu c;(t) umerom nenpepvisHble 6Mopble NPOU380OHbIE, Cyujecmsyom uucaa dy > 0,
d, > 0 max, umo

(4) di|z|* £ V(1, 2) < dy|2|?

ov v
(5) W(t, z) = o + ZFZ a; + Zk (1) bu(t, 2) bji(t, 2) filt) £ 0
i i i,j,k,1
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045 noumu ecex t (6 cmuicae mepwr Jlebeea). Tozda pewenue z(t) = 0 ycmoiiuuso

6 cpeonem.
Pyuxmu fi,(t) cyTh npousBoaHble GyHKIMA Fy (), npruuém

Fu(ty) — Fu(t)) = E(wdt2) — wity)) (wilt2) — wi(t1))) -
AHaJIOTHYHASL TeOpeMa BBIMOJIHAETCS B CJIy4ae aCUMIITOTHYECKON YCTOHYMBOCTH
B CpEIHEM.

Teopema 5. ITycmb ebinoansaomes npeonosoxcenus meopemet 4 kpome (5), komopoe
6udousmeneno x ycaosuro W(t, z) < —d3|zi2 045 noumu écex t 6 cmvicae Jlebeza
u dy > 0. Tozoa pewenue z(t) = 0 acumnmomuyecku YCcmoiuugo 6 cpeoHem.

Crnenyrolas Teopema HoKa3bBaeT, Kak IPUMEHUTD 3Ty Teopuro Kk auddepeHnuais-

HBIM yPaBHEHUSIM, KOTOpbIE He uMetoT dopmy (1).
IlycTs maHa cucTeMa OBYX CTOXAaCTHYECKUX YpaBHEHHN

t

©) *(t) = xo + J W(e) de

to

WO = vo — a)zf x(z) dr — ”f W) + af a(z, x()) dr +

#0600 | B <) ).
KOTOpasi COOTBETCTBYET OOBIKHOBEHHOMY YPaBHEHMIO BTOpOH cTemeHH X + ux +
+ o*x = ¢ f(1, x).

Teopema 6. [Iycme x(t), y(t) — pewenue (6) u Q,(1), Qi (1), Q,(1), Q5(t) — pewenus
(6) npu ¢ = 0, 0,(0) = 05(0) = 1, Q,(0) = Q1(0) = 0. Pewenue x(t), y(t) moxcro
npedcmasums 6 euode

x() = 04(t — to) u(t) + Qy(t — 1,) v(1)
1) = =0 Qu(t — to) u(t) + (Q4(t — 1) — 1 Qy(t — 15)) v(1),

20e u(t), v(t) — pewenue
) wrmﬁwf&m—ﬂwﬂ@@«—m+mmm—mwu—

+ @) [ 0alto — ) B u) Qu(x — 10) + o(x) 0t — 10) WD)

Jto

u(t) = yo + Sth 05(to — 1) a(t, u(t) Q4(t — 15) + v(z) Q,(t — o)) dT +

+ (o(2)) [ 05(to — 1) B(z, u(z) Qi(t — 1) + v(t) @yt — 1)) dw,(7).

to

K cucreme (7) MOXKHO IPUMEHUTD T1PeIECTBYOLME TeopeMbl. ITono6HbIE TeopeMB
HMEIOT MECTO M IS cHCTeM (6) BBICIINX CTETeHeid.
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