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Yexoc/10BaUKHii MATEMATHYECKHIH xKypHaJ, T. 16 (91) 1966, Ilpara

NECESSARY AND SUFFICIENT CONDITIONS FOR SOME
CONVERGENCE METHODS

Joser KoLomy, Praha

(Received September 19, 1965)

In this note, necessary and sufficient conditions for some convergence methods
[1], [2] are given (§ 2). Furthermore in § 3 there is studied the rate of convergence of
these methods for the solution of the equation

(1) Ax=f,
where 4 :X — X is a linear bounded operator on a Hilbert space X and fe X.

The methods from [ 1], [2] are described concisely in § 1.

1. The basic idea of the methods [1], [2] is the following: We seek the approximate
solutions of (1) in the from

() Xps1 = Pf + B(I — PA)x,, (n=0,1,2,..)

where P is a linear bounded operator having bounded inverse P~' in the (real or
complex) Hilbert space X. Furthermore, let P commute with A. The real numbers
B, (n =0,1,2,...) are to be determined so as to minimize either |f — f,4x,|* or

[f = Ax,+.]% (n = 0,1,2,...). Hence either
(3) B, = Re(f, Ax,) |4x,]
or '
4) B, = Re(Lf, LAx,) |LAx,| 2,
where L = I — PA. Thus we have two sequences {x,}, {X,}, where
Re (f, Ax,)
(5) Xpi1 =Pf+~—~——(I—PA)x,,,
|4x.]?
y Re (Lf, LAX,) , .
6 w1 = Pf+ ———— "= L%, .
( ) Xn+1 f HLA)?,IHZ

The following theorem is valid:
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Theorem 1 ([1], [2]). Let A, P be linear bounded commutative operators which
map X into X, and are such that P~" exists and is bounded, and q = ”I - PA” < 1.
Then equation (1) has a unique solution x* in X. The sequences {x,}, {X,} defined
by (5), (6) converge in the norm topology of X to the solution x* of (1), and their
errors are bounded by

et = 5] < kallf = v, [e* - 5] S kalf - A%
where ke = |4~ < |P| (1 = )"

Now set A =1 — AK, where K : X — X is a linear bounded operator from X
into X, 1 is a complex parameter.

5

Theorem 2 [3]. Let one of the following conditions be fulfilled:

1) P=1, |2K|| < 1.

2) P =9I, Aisself-adjointinX,ml < A < MI,LO<m <M, 9 =2M + m)™",
where m = inf (Ax, x), M = sup (4x, x).

lxll=1 fIxll=1

3) P = 91, Re(dx, x) = m||x|? for every xe X, m > 0 and 0 < 9 < 2m|A4| 2.

4) P = Y(I.— IK*), where 1 is the complex conjugate to A, K* is an adjoint
operator to K,K is normal, |Ax| = k|x| holds for every xeX, (k > 0) and
0 <9<k2(1+ |AK])~"

Then the equation (1) has a unique solution x* in X and |x* — x,| - 0,
[x* — %,]| = 0 whenever n — oo in the norm topology of X, at least with the speed
of a geometric sequence.

Remark 1. The real numbers 8, (n = 0, 1, 2, ...) can also be determined from the
conditions (cf. [3]) that |x* — 18,x,[|> = Min, [x* — x,4]*> = Min(n = 0,1,2,...).
Then either

15 = Re (f, Px,)
" Re(x,, PAx,)
or
2p — Re (Lf, PLx,)

Re (Lx,, PLAXx,) '

If X is a real Hilbert space, then the parameters B, By "Bu 2Ba (n = 0, 1, 2, ...) have
the following form:

() B, = (f, Ax,) | Ax,|
®) B, = (Lf, LAR,) | LA%,| 2
O] 18, = (f, Px,) (x,, PAx,) ™"
(10) 28, = (Lf, PLx,) (Lx,, PLAx,)™".
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If we choose P = I, where 9 is a positive number such that the norm ||[I — 94
assumes its minimal value, then the methods (2), (7); (2), (9) (in (2) for B, set 'B,)
are simple and convenient for the solution of linear algebraic and integral equations
of the second order.

2. Let X be a real Hilbert space. Let 4: X — X, P: X — X be linear bounded
commutative operators such that P! exists and is a bounded operator and g =
= |I — PA|| < 1. In a real space X the formulae (5), (6) have the form:

() Xpr1 = Pf + (f, Ax,) [Ax,]| 72 (I - PAx,),
(6") %441 = Pf + (Lf, LA%,) |LA%,| > L%, L=1—PA.
Set h, = f — Ax,, h, = f — A%,, (n = 0, 1,2, ...). Then
Maesl® = [ = If = Axacs]? = | = 4> = |If = Axi]* -
= |If = APf — fpes A(T — PA) x, s [* = | f = Axaa]* =
— (1 = PAY[f — Bo-sAx,— ][
Because || f — B,Ax,|? = Min, (n = 0, 1, 2, ....), there is
If = Budx,|| £ |f — 4x,]
foreveryn(n =0,1,2,...). Hence

a2 = I 2 1 = Ax [ = @7 = o in,oa 2
2 (1= a) | < An | 20,

Thus |h,—| = |k, for every n (n = 1,2, ...). Similarly

lfns o = |L(f = Badz)|? = |L(f — 4%,)]* =
< @f - A% s |f - A% =&

Therefore |[,,4| < |h,] for every n (n = 01,2, ...). In the sequel we shall assume

that h, 0, h, 0, (n =0,1,2,...) ie. that ||h[|>0||h]]>o(n_o 1,2,...)

Set (cf. [4]) X,11 = x, + Y fps1 = %, + Gufiy Where o, = [Xns1 = %, 6 =
Vs 5 Do = 1, [ = 1. e

AR = Hhmllz — [m]? < —20(Ay,, ha) + 2] Aya]*
and hence

(11) o[ Aya* = 20 (Aym ) £ 0.

Similarly i
A([1a]?) = [ |? = 10> ~ al45]* — 22(A5m hu) -
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Because A(Jf,|?) <0,
(12) @2||Ay,|? - 28,(45,. h,) £ 0.

(11), (12) are equivalent to

(13) % = 4u(AVu ) [|Aya] 2

(14) &, = Gu(APw B) [ 47,72,

respectively, where 0 < g, <2, 0< 4, <2. (If (Ay, h,) =0 or (45, h,) = 0.

then g, =1, or §, = 1). Now introduce angles ¢,, @, by (Ay, h,) = [|Ay.| -
- 1] cos @, (A7, B,) = [|AF] ||| cos @ (n = 0,1,.2,...). According to (13), (14),

(19) M) = =42 = a7) ] eos® g,

and
A([8]?) = =342 = G) [ ha]]* cos® &,

The sequence {|h,|}n=&, {||f]|}a=s are bounded and monotone decreasing. There-
fore there exist
hy, =lim |h,|*, hy = lim ||k,[?
and N
0 - @0 2
< Pl? + 3 AU B = [l + S AR,
Thus we obtain

Theorem 3. Let X be a real Hilbert space. Let A:X — X, P:X — X be linear
bounded commutative operators such that P~' exists and is a bounded operator,
and q = |I — PA| £ 1. Then the series

Y 02 = 4) [a]* cos® @, X (2 = &) [ cos” 6,
n=0 n=0
converge.

Under the assumptions of theorem 3 also suppose that 4 has a bounded inverse 471
and (47'x,x) = m[x||>, (m > 0) holds for every xeX. Set ¢, = (A" 'h,, h,),
&, = (A~ 'h,, h,). Then the series

(16) Z c"q"(z - qn) COSZ ¢n > i Enqn(z - qn) COSZ {5,,
n=0 n=0

also converge. Set 7, = [[h,[ ¢, %, 7, = ||k, & *. Then

(17) a7 <r, =M, a7yt sF M,
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where M = m™"'. According to (15), (16), (17),

(1) (I = 1) (147D < T a2 - a)eos? 0, 5

= M(Hhkil2 — ha),

(Ir] = ko) a7 =X 5 20u(2 — @) cos® ¢, <
< M(“hkﬂ

Because [|h,|> = c,r,, [|1]|* = 7\

(19) (reey — limrye) A7 £ Y a2 — q,) cos® @, <
k— o0 n=k

< M(rie — l}im AN
— 0

0
(R, — lim 7&) 4]t < Z Gu(2 = G,) cos® §, < M(F&, — lim F,&,).
k— o0 n=k k- o

If x* denotes the unique solution of (1), then x, — x* (or %, — x*) if and only if
h, = 0 (or h, - 0) as n - co. Hence if x, > x* and %, — x*, then

Flx = z qun(z qn) cos? ¢, = Mricy,,

(20)

l4~] =
1 . ® .
T il < Z &2 — @,) cos® B, < MF&,.
Using (17),
1 ©
”A 1“2 é Z=kcnqn(2 - qn) COS2 [ é Mzck

and similarly for the second inequalities in (20). According to (20) and from
et tept = (A7, ) [ 72 < A7 ] ] 72 = 47

(since for n = k|h| = ||,|) we conclude that

" A_1 “ = 2 02 = ga) cos* pren(nic) ™ = |47 3 4,2 ~ 4,) cos” .

From these inequalities it follows that

1

Jla=t)®

Y42 = a,) cos* 9, 2
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Analogously one may prove that

1
S A
Thus we have proved the first part of the following

©
qu”( ) COS (Pn

Theorem 4. Let X be a real Hilbert space. Let A:X — X, P : X —» X be linear
bounded commutative operators with bounded inverses; let (A™'x, x) = m| x|
hold for every x€ X, (m > 0) and q = |I — PA| < 1. Then the sequence {x,} or
{%,} defined by (5") or (6') converge in the norm topology of X to the unique solution

x* of (1) if and only if the series Y. q,(2 — q,) cos® @, or ¥ §,(2 — §,) cos® @,
n=0 n=0
respectively, is divergent.
Second part. Let theseries Z 2.2 — q,) cos® ¢, Z 4.2 — §g,) cos* @, diverge.
According to theorem 3, the series Zq,,(z 4,) | 1a])? cos® @, Zq (2 -4, -
=0

. |A4]? cos® @, are convergent. Since {Hh I3, {| A} are bounded and monotone,
there is lim ||, = 0, lim ||A,]| = 0. From the boundedness of 4! we conclude that
n— oo n—o

x, = x*, X, = x*. This completes the proof.

Remark 2. Theorems 3,4 remain valid for the sequence {x,}, where x,,1 = Pf +
+ (I = PA)x, (e if B,=1,0,=1(n=01,2,..).

3. Set

- n—1

a* =limn™! z “hk+1“2 ”hkn—z >
n—o k=0
o n—1 - ~

3% =limn™! Z “hk+l”2 “hk“_2 :
n—>oo k=0,

Under the assumptions of theorem 3 we have that

Mol < Iy (sl < MRS (k= 0,1,2,..).

Then 0 <a <1, 0<a<=<1. Moreover, if a <1 (or @< 1), then h, >0 (or
h, — 0). For instance, we shall prove this for {h,}. Suppose a <1If|h,) - b *0,

then |[h,44]| "h,,[] -1 and limn~ ‘EHhk“H [ =2 = 1. Hence h, — 0. Set
= hm \/“h ”2 Then o £ a,d £ 4. Indeed from

I A [
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and lim [|h,[?/" = 1 it follows immediately that « < a. Analogously for the second
n—oo

inequality. If the mapping 4 : X — X is such that A™! exists and is continuous, then
the sequences {x,}, {X,} defined by (5"), (6") converge to the solution x* of (1) at least
with the rate of geometric sequences with quotients a, 4. Thus we have proved the
following theorem:

Theorem 5. Let X be a real Hilbert space, A : X — X, P : X — X linear bounded
commutative operators with bounded inverses such that q = |I — PA| < 1. If
a < 1,d < 1, then the sequences {x,}, {X,} defined by (5'), (6') converge in the norm
topology of X to the solution x* of (1) at least with the rate of geometric sequences
with quotients a, d.

Theorem 6. Under the assumptions of theorem 3, let A have a bounded inverse A™*.

n—1 n—1
Ifo=1limn 'Y q(2 — q,)cos® ¢, > 0(oro =1limn~'Y G(2 — §) cos® @ > 0)
n>w k=0 n->w k=0
then the sequence {x,} (or {%,}) converges in the norm topology of X to the solu-
tion x* of (1) at least with the rate of geometric sequences with the quotients 1 — o

(or 1 — o, respectively).

Proof. Because

IBel® = hees]* = a2 = ai) [Be]® cos® i,
there is
1 - "hk+1"2 ”hk“_z = 42 — qi) cos® o,
and

n—1 n—1
"_lkzoﬂhm“z "hk“_z =1- "_lkzoqk(z — qi) cos” @y .

Since ¢ > 0, one has a < 1 and therefore h, — 0. From the existence of bounded 4~*
one obtains that x, — x*. The assertation on the rate of convergence of {x,} obviously
holds. This completes the proof.
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Pe3rome

HEOBXOJIJUMBIE U NOCTATOYHBIE
YCJIOBUA OJIs1 HEKOTOPBLIX CXOASAUMXCS METOHJOB

MOCE® KOJIOMBI (Josef Kolomy), ITpara

Ilycrs nawo ypaBmenue Ax = f, roe A:X — X — IUHeHHbIf OrpaHHYCHHBLI
onepartop B ruibbeproBoM npocrpauncrse X, f € X. Iocaeqopareabable npubimmKe-
HUsL BEIMUCIIAFOTCS IO hopmyite (2), rae P — JuHEHRABLE OrpaHiHYCHHBLI onepaTtop B X
TAKOH, YTO P mepecTaHOBOYEH C A U CyUIeCTBYeT orpanndeHublil P~ 1, JlelicTBuTe b-
Hble Koepdumuentsr B, (n = 0,1,2,...) ompeaesIorcs Tak, 4TOGH BBITOJIHSIOCH
oxno w3 ycroswii: | f — B,Ax,|* = Min, ||f — Ax,,,|* = Min. B pa6ore u3yuenst
HEO0X0IMMBIE M JOCTATOYHbIE YCJIOBUS IJISl CXOAUMOCTH M OBICTPOTA 3THX METOJOB
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