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YexocoBaukuii MaTemMaTnyecknii xypua, 1. 16 (91) 1966, Ilpara

A NEW APPROACH TO SOME PROBLEMS IN THE THEORY OF
NON-NEGATIVE MATRICES

STEFAN SCHWARZ, Bratislava

(Received May 21, 1965)

In the paper [11] I developed a semigroup treatment of some theorems concerning
non-negative matrices. The substance of this method is the following.

Denote N = {1, 2, . n} and consider the set of all ’n x n matrix units,” i.e. the
set of symbols {e;;|ieN,jeN} together with a zero 0 adjoined. Define in S =
= {0} U {e;;| i N, j e N} a multiplication by

oo = G for j=m,

UtmETNO  for j&m,
the zero element having the usual properties of a multiplicative zero. The set S with
this multiplication is a O-simple semigroup containing n non-zero idempotents

€115 €225 +ve5 Eype
Let A = (a;;) be a non-negative n x n matrix. By the support C, of A we shall
mean the subset of S containing 0 and all e;; for which a;; > 0.

For any two non-negative n x n matrices 4, B we have C,; = C,Cg, where the
multiplication of subsets of S has the usual meaning used in the theory of semigroups.
Consider the sequence

A, A%, A3, ...
The sequence of the corresponding supports
(1) C,, C%,C3, ...

has clearly only a finite number of different members.

Let k = k(A) be the least positive integer such that C% = C for some I, > k.
Let further I = k + d [d = d(A) = 1] be the least positive integer for which C =
= C%*¥ holds. Then the sequence (1) is of the form

2 k—1 k k+d—1 k k+d—1
Cpo Cho s CiTYCh, o OB M| Y, L, O
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The system of sets {C,, C3, ..., C5**~'} with respect to the multiplication of subsets
of S forms a finite semigroup of order k + d — 1. It is well known from the elements
of the theory of finite semigroups that &, = {C%, C*', ..., C%7 '} (with respect to
the same multiplication) is a cyclic group of order d. We mention by the way (though
it will not be used in this paper) that the unit element of the group &, is the set C¢,
where g is the uniquely defined multiple td satisfyingk < td =9 < k + d — 1.

In this manner we have associated to any non-negative matrix A three positive
integers k = k(A), d = d(A), ¢ = o(A).

A non-negative n x n matrix A is called reducible if N can be decomposed in
two non-empty disjoint subsets N = I J, I nJ = & such that a;,; = 0 for iel
and j € J. Otherwise it is called irreducible.

In [11] we have shown: For an irreducible matrix A the number d = d(A) is
simply the index of imprimitivity of A and we always have d < n. [For a characteriza-
tion of d(4) in the general case see [12].]

A matrix A is irreducible if and only if
CqauCiv..uCy=S.
It turns out that this is the case if and only if
) ccucttu... ot = 5.

Note also that an irreducible matrix is primitive if and only if d(4) = 1.

In this paper we shall use a refinement of the argument used in [11] in order to
find estimations for the number k = k(A4) for any irreducible matrix.

For a primitive matrix it is well known that k(4) < (n — 1)® + 1 and that this
result is sharp. (See [1]—[4], [6], [7], [8], [10], [11], [15].)

An analogous question for irreducible (but not necessarily primitive) matrices has
been recently treated in [5] and in some special cases in [10].

The refinement of our argument consists in the fact that instead of studying the
global behaviour of the sequence (1) we shall first study the behaviour of a fixed
“row” in the sequence (1).

To this end we introduce the following notations: We denote {e;;, e;5, ..., €;,} U
U {0} = S, sothat S; US,U...uS, = S.If Aisagiven n X n matrix, we further
denote F; =F;(A) = S; n C,. Hence F;, = F{(A) is the “support of the i-th row
of A”. For further purposes note that F; = e;;C 4.

For brevity we shall occasionally say that F; is “the i-throw of C,” by considering
hereby in a natural manner the set C, (subset of S) written in the form of a square
block with the non-zero entries e;; on appropriate places. For instance for the matrix

301
A=1020
143
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we shall write C4 = {0, ey, e,5, €55, €35, €35, €33} in the form

e, 0, eq;
C,=10, e,,,0 u{O}.’)

€31, €32, €33

Here
Fy = {O’ ell’el3}’ F, = {09 322} , Fy= {0, €31, €32, 833}-

Consider now the sequence
() Fi, F.C4, FiCY, ..

and define F,C% = F,. The members of this sequence are clearly the supports of the
i-th rows in the sequence (1)

Again (3) contains only a finite numbers of different sets. Denote by k; = k(4)
the least integer such that F,C% ™' occurs in (3) more then once. Let further d; =
= dA) be the least integer =1 such that F,C™' = F,C%™'*% Then the sequence
(3) is of the form :

FuFiCy o, FCHT2 | F YT L FCETIOT RO, L
Clearly k; £k, d; <d (for i =1,2,...,n) so that, in particular, max k; < k.
Conversely, if k* = max k;, then the term F,C% ™! (for any i) occurs in the sequence

(3) more then once, hence F,C¥ ™' = F.C{™'*% (for any i). This implies that for
any integer A; = 1 we have F,C¥'™! = F,C,''**4i Let d* be the least common
multiple of the numbers d,, d,, ..., d, and put 1; = d*[d,. We then have F,C¥'"! =

= F,CY U and (U F) CY™1 = (U F) G571, e, O = 44" This shows
i=1 i=1

that C¥" occursin (1) more then once, so that k < k*. Hence k = k* = max k,.
A N i
)

Remark 1. By the way: C% = C4**" immediately implies that d < d* and d | d*.
Since it is easy to see that d; | d, we also have d* | d, so that d = d*. We shall not
need this fact in the present paper. ’

Remark 2. If A is irreducible, then (2) implies that
FCY ' OUFCH O L OFCHT T2 = 8,

fori =1,2,..., n. In particular, if 4 is primitive, then F,-C’,‘,‘_l = 8S..

Remark 3. It is easy to introduce in the sequence (3) a multiplication O so that (3)
becomes a cyclic semigroup. To this end it is sufficient to define F,C% O F,Cf =

') The set {0} can be omitted if 4 contains a zero entry.
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F.C3™P*'. Then the set {F,C%~ ", ..., F,C"{*%~?} (with the same multiplication) is
a cyclic group of order d,.

1. THE GENERAL CASE

The goal of this section is to prove some theorems, which hold for any non-negative
irreducible matrix. Some of the lemmas are of independent interest.

All matrices considered below are n x n matrices, n > 1.

We begin with the decisive

Lemma 1. Suppose that A is irreducible and M any proper subset of S; contain-
ing 0 and at least one non-zero element. Then MC , contains at least one non-zero
element € S;, which is not contained in M.

Proof. Let M = {0, e, €y, .., €}, {2, B, ..., v} & N. Suppose for an indirect
proof that for all elements e,, € C, we have

{eia’ eiﬁ» ey eiv} ego < {eiw ei[l? cees €hyg U {0} .

If oge{a B, ...,v}, we necessarily have o€ {o, f,...,v}. In other words: If g€
e{o, B,....,v}ande e N — {a, B, ..., v}, we have a,, = 0. This says that A is reducible,
contrary to the assumption.

Lemma 2. Suppose that A is irreducible.
a) If F, contains g = 1 non-zero elements € S;, we have
F,OFC,u...FC? =S5;.
b) In particular we always have
F,OUFC,u...0FC ! =5,.
c) If i # j we always have

e;€F;u FC,u...UFCy2.

Proof. a) By Lemma 1 F;u F;C, contains at least g + 1 non-zero elements.
Again by Lemma 1

(FiUFC)u(F,uF,C,)Cy=F,UFC,uF,C}

contains at least g + 2 non-zero elements. Repeating this argument we find that
F;UF,C4u...u F,C\7? contains at least n non-zero elements € S;, i.e. the whole
set S;.
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b) Follows from the fact that an irreducible matrix has in each row at least one
element different from zero.

c) Since e;;,C, contains at least one non-zero element +e¢;;, the set e;; U €;C 4 con-
tains at least two non-zero elements €S;. Analogously (e;; U €;,C) U (e;; U €;;C,)C4 =
= e; U e;;C, U e;;,C2 contains at least 3 non-zero elements, and so on. We finally

have
2 n—1
e;veCiue;Ciu...e;C  =8;.

Since e;;,C, = F,, the last equality can be written in the form
e;VF,OFC,u...UFCy? =85,
from which our assertion immediately follows.

Lemma 3. If A is irreducible, then there is an integer h = h(i) such that 1 < h <
< nand F; c F,C". Here:

a) If e;; € F;, we may choose h = 1.
b) If F, contains g non-zero elements €S;, we may choose h < n — g + 1.
Proof.a)Ife; € F, then F; = ¢;,C, = F,C,, and our statement is true with h = 1.

b) By Lemma 2b there is an integer u, 1 < u < n — g such that e; e F,C%.
Multiplying by C, we get F; = ¢;,C, = F,C4*'. Since u + 1 < n—g + 1, our
statement holds.

Remark. The example of the irreducible permutation matrix

010...0
001...0
A=
000...1
100...0

shows that F; = F,C", but F; ¢ F,C" for h = 1,2, ..., n — 1. Hence the estimation
h < nin Lemma 3 is — in general — the best possible.

Theorem 1. If A is irreducible, F; contains g non-zero elements and F; = F,C%,
h=1,thenk,<(n—g)h+ 1.

Proof. The supposition implies

(4) F,c FC' c FC¥ c...c F,.C{ " c F,CQ~ 9" < |,

Since F; contains g non-zero elements €S, the set F;C" is either equal to F; or contains
at least g + 1 non-zero elements €S;. Further F,C3" is again either equal to F;C" or
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contains at least g + 2 non-zero elements €S;; and so on. The chain (4) cannot have
more than n — g + 1 different members. There exists thereforea 1,0 <7 < n — g,

such that F,CY = F,C{*"" Hence k; — 1 < th < (n — g) h. This proves our
Theorem.

Theorem 2. If A is irreducible and F; contains g non-zero elements €S;, we have
ki<(n—9g)f+(m—-g)+1

Proof. By Lemma 3b we have h < n — g + 1, hence

kistn—g)n—g+1)+1=(n-g)*+(n—g)+1.

Remark. The results of Theorem 1 and Theorem 2 cannot be — in general —
sharpened. To show this consider the matrix 4 with

07 €12, 0
CA = 0, 0, €33
€31, €32, 0

= {0, e3,, €33}, F3C; = {0, es, €3, e33} so that k; = 3. On the other hand
n—9P+(m—9g)+1=3

With respect to the relation k(A4) = max k; we immediately get:

and the third row F; = {0, e, e;,}. Here n =3, g = 2. We have F,C, =

Corollary 1. For any irreducible non-negative n x n matrix A we always have
kA)<n* —n+ L '

Proof. Since g = 1, we have k(A) < (n — 1)* + (n — 1) + 1 =n* —n + 1.

Corollary 2. If A is irreducible and each row contains at least two non-zero
elements, we have k(4) < n* — 3n + 3.

Proof. Follows from k(4) = max k; < (n —2)> + (n —2) + 1 = n* — 3n + 3.
i

The result of Corollary 1 is not the best possible. It is intuitively clear that a possible
sharpening of this estimation depends on the possibility to sharpen Theorem 1 for
the rows containing a unique non-zero element.

Note first: If A is irreducible and F; contains a unique non-zero element €S; there

cannot hold F; = {0, e;;} since such a matrix is reducible. Therefore in the following
Theorem 3 we may suppose F; = {0, e;;} with i * j.

Theorem 3. Suppose that A is irreducible and F; contains exactly one non-zero
element €S;. Let h; be the least integer =1 such that F, = F,C%.

A)Ifh;<n—1,wehavek;<(n—1)h+1<(n—17+ 1L
B) If h; = n, we have k; < n* — 3n + 4.
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Proof. A) This follows from Theorem 1 by puttingg = land h = n — 1.
B) We first show that in this case e;; € F,C% " and e;; ¢ F,C", with h < n — 2.

By Lemma 2b we have e;; € F,C", with 1 < h £ n — 1. If there were h < n — 2,
we would have ¢;;C, = F,C"*! ie. F, ¢ F,C"*' with h + 1 < n — 1, contrary to
the assumption.

Next we show that for 1 = 1, 2, ..., n the set F;C, contains exactly one element €S,
which is not contained in the union F;u F,C,u ... v F,C"'. (Hereby F,CS = F,.)

By the same argument as in the proof of Lemma 2 a it follows that F; U ... u F,C}!
contains at least ¢ different non-zero elements €S;. Suppose for an indirect proof that
F;CY, has at least two non-zero elements not contained in F; U ... u F;C'{'. Then
F;u ...u F;,CY contains at least t + 2 non-zero elements €S, By Lemma |
(Fiu...0FCy)U(F;u...uFCY)Cy=F,u..uUFC" containsatleast t + 3
non-zero elements, and repeating this process we obtain that F; U ... U F,C%"* = S,.
Hence e;; € F;C" with h £ n — 2, which has been shown impossible.

In particular: F;C, contains exactly one element not contained in F;. But since
F; & F;,C,4, we conclude that F;C, contains exactly one non-zero element €S,.

Consider now the finite sequence F;, F,Cy, ..., F,C"”', F,C", and let I, be the
least integer such that F;C'? contains more than one non-zero element €S;. We have
just seen that [, > 1.

o) If I, = n, then each of the sets F,, ..., F;,C’,”!, contains a unique element and
since e;; € F,Cy" ', we have {0, e;} = F,C"". Therefore ¢,,C, = F.C, ie. F;=
= F,C", so that k; = 1.

B) Suppose next Iy < n — 1 and let F; = {0, e,,}, F,C4 = {0, e}, ..., FCf ™' =
= {0, e;,}. Since F,CY contains at least two non-zero elements €S; and only one not
contained in {e,, ey, ..., e;;}, there is necessarily an index &e{a, f,..., 2} such
that e, e F,C'?. Consequently: There is an integer 7, I < t < I, such that

(5) {0, e} = F.C™* = F,.CY .

Now t cannot be I, since F; = F,C with I, £ n — 1 contradicts our assumption.
Therefore we have 1 < © < I, — 1. The relation (5) implies

lo—1 lo lo+t lo+(n—1)t
FC "cFCQ c FC ™" c... c FC/ .

This chain of n + 1 sets cannot have all members different one from the other. There
is therefore an integer u, —1 £ u < n — 2, such that

Ficio+ur — FiCle+(u+l)r .
Hence

ki—1<slh+ut<lh+uly—1)<n—1+(n-2)(n—-2)=n>~3n+3.

This proves Theorem 3.
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Remark. The result k; £ n? — 3n + 4 cannot be — in general — sharpened..
To show this consider the matrix 4 with

0, e, 0
C,y=40, 0, e,5
e31,0, 3,

We have
0, 0, ey3 e, 0, eg3 e!lﬁeIZ*elal
2 3 4
Ci=1e10, eynp, Cir=1e, e, 6530, Cq=1ey e, 65U {0} s
€315 €32, €33 lesu €32, €33 €315 €32, ezs]

so that A4 is primitive (hence irreducible). Now

F1 = {O: 912}, F1CA = {0, 913}> F1Cj = {0, €11, 913}: FICi = {07 €115 €12, 913}
so that indeed F, < F,;C3 and k, = 4. On the other hand n* — 3n + 4 for n = 3
is equal to 4.

Theorems 2 and 3 allow the following conclusions. If n > 2, we have for the rows
with at least two non-zero elements

kks(n—gP+m—-g)+1=n—-22+m-2)+1=n*>-3n+3.
For the rows with a unique non-zero element we have (with h; defined above)
either k; < n®> —3n + 4 if h;=n,

or kis(n—1Dh+1<(n—-17>*+1if h<n-1.

IIA

Since (for n = 2) we have

m—-NDnr-2)+1=m-=2+(n-2)+1=n*>=3n+3<n”=3n+4=
S(m—-1P2+1,

we get with respect to k(A4) = max k;:

Theorem 4. For any non-negative irreducible matrix A we always have k(4) <
<(n—1)7+ 1.

Theorem 5. Let A be irreducible. Denote h; the least positive integer for which
F, c F,C¥. If for every row F; containing a unique non-zero element we have
h; +n — 1 (i.e. either h; = nor h; < n — 2), then k(A) < n* — 3n + 4.

Remark 1. The result of Theorem 4 is the best possible for it is known that to
every n = 2 there is a primitive matrix A with k(4) = (n — 1)* + 1. This property
has the “Wielandt matrix”, which is a matrix with C, = {0, €12, €33, €34, ...y

]
ooy en—l,u’ €n1s enZ,('
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Remark 2. Also the result of Theorem 5 cannot be — in general — sharpened. This
shows the example in the Remark after Theorem 3. Here F; = {0, e;,} and h; = 3,
F, = {0, e,5} and h, = 1 so that the suppositions of Theorem 5 are satisfied. On the
other hand k(4) = 4 = n*> — 3n + 4.

2. THE CASE OF A PRIMITIVE MATRIX

We shall now apply our results to the case of a primitive matrix. For a primitive
matrix A the set F;C%™' is the whole set S,.

Theorem 6. If A is primitive, then k(A) < n — 1 + min k.

Proof. Let e;, be any element €S;. Take j + i and write ¢;, = e;,-eja. By Lemma 2
e;; € F,Cy, where t = (i, j) satisfies 0 < t < n — 2. By definition of the number k;
we have (for any o) e;, € S; = F;C™'. Hence
S; = {0, eiy, €12, ..., €} = F,CLF,C5™" < F,CHH .

i

Therefore k; — 1 <t + kj, ie. k; £t + 1+ k; (This is, of course, trivially true
also for i = j.) Since j is arbitrary, we have k; < (n —2) + 1 + mink; =n — 1 +
i
+ min k;. Taking account of k(4) = max k;, we finally get k(4) < n — 1 + min k;.
j i J
By the way we have also proved?):

Theorem 7. For any primitive n X n matrix A we always have

max k; —mink; <n — 1.

L 1

Remark. The result of Theorem 6 is sharp in the following sense. In any primitive
matrix there is at least one row, say j-th row, containing at least g = 2 non-zero
elements. By Theorem 2 k; < n*> — 3n + 3. Hence by Theorem 6 k(4) < (n — 1) +
+ (n* = 3n + 3) =n* — 2n + 2 and the “Wielandt matrix” attains this upper
bound.

Also simple examples show that the result of Theorem 7 is the best possible. -

The following result described in Theorem 8 is known. (See [1], [4], [11].)

Lemma 4. If A is irreducible and e;; € F;, then k; < n — 1.

Remark. It is well known that in this case irreducibility implies primitivity.

2) (Added in proofs, May 1966.) In a forthcomming paper ([16]) we shall show that Theorem 7
holds for any non-negative irreducible matrix 4 and we use it to obtain estimates for k(A) in the
case of imprimitive matrices.
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Proof. By supposition e;; € F;, hence F; = ¢;;C, = F;C4. This implies F;
< F;C4 < F,C; = ... = F;C;”?. By Lemma 2c we have for j + «

e, €F;UF,C,4u.. . UFCy 2 =F,C %, ie. S;=F,C2%.

Hence thereisa 7,0 < 7 < n — 2, such that F;,C} = FjC;“. Therefore k; — 1 < 1,
e kjst+1<(n—-2)+1=n-1
001
Remark. The result of Lemma 4 is sharp, since e.g. A = | 110} is primitive and
011

direct computation shows that k, = k3 = 2(=n — 1).

Under the suppositions of Lemma 4 we have min k; < n — 1. This combined with
Theorem 6 gives the following i

Corollary. If A is irreducible and contains a non-zero element in the main
diagonal, then k(4) < 2n — 2.

In the proof of the next Theorem 8 we shall again use the inequality k; < t(i, j) +
+ 1 + k; (proved in the proof of Theorem 6).

Theorem 8. If A is primitive and contains r = 1 non-zero elements in the main
diagonal, we have k(4) < 2n — r — 1.

Proof. Suppose that {e; ., ;i - €.
=n-1L

If r = n, then k(4) = max k; < n — 1, and our statement holds,.

} = Cy Then k;y <n—1,..,k; <

J
Suppose r < n and choose an index i ¢ {jy, j,, ..., j,}. Since
e;Ue;Cqu...Ue,Ch " =e; UF,UFC,4u...U0FCYy 1

contains at least n — r + 1 non-zero elements €S; and {e;;,, ¢;;,, ..., ¢;; } contains
exactly r elements, these sets intersect and there is a j, say j;, such that e;;, € F,C’, with
0<1ij,)<n—r—1 Nowk; <i,j,)+ 1+ k;, implies k; < (n —r — 1) +
+ 14 (n—1)=2n—r — 1. Hence k(4) = max k; = 2n — r — 1, g.ed.
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Pe3rome

HOBBIT METO/] PEWIEHUSI HEKOTOPBLIX BOMNPOCOB
TEOPMUN HEOTPUUATEJIbBHBIX MATPUL]

INTE®AH IBAPL] (Stefan Schwarz), Bparucnasa

Ilyctb A — xBaapaTHas HEOTpHLATEJIbHAash MaTpHla. PacnpejesieHue HyJIEBbIX
M HEHYJIEBBIX 3JIEMEHTOB B HocnenoBaTebHOCTH A, A2, A3, ..., HauMHAs C HEKOTOPOIT
creneru k(A), nepuoandecku nosropsiercst. Lleib cTaTb — MOJNYYMTb OLEHKH U
yucia k(A) B ciiyyae Hepa3sioKUMbIX MaTpuil. [1pu 3TOM UCTIOJIb3yeTCs! HOBBIH METO,
SIBJISIOLUMIACS YTOYHEHMEM METO/IA, UCTIOJIb30BAaHHOTO aBTOPOM B pabote [11].

¢
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