
Czechoslovak Mathematical Journal

Miroslav Fiedler; Vlastimil Pták
Some results on matrices of class K and their application to the convergence rate
of iteration procedures

Czechoslovak Mathematical Journal, Vol. 16 (1966), No. 2, 260–273

Persistent URL: http://dml.cz/dmlcz/100728

Terms of use:
© Institute of Mathematics AS CR, 1966

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/100728
http://dml.cz


Чехословацкий математический журнал, т. 16 (91) 1966, Прага 

SOME RESULTS ON MATRICES OF CLASS К AND THEIR 
APPLICATION TO THE CONVERGENCE RATE 

OF ITERATION PROCEDURES 

MIROSLAV FIEDLER and VLASTIMIL PTAK, Praha (Received May 12, 1965) 
Introduction. The present paper represents a continuation of the authors' series of 

communications concerning matrices of type К and their applications to spectral 
problems. The paper is divided into three sections, the first section being devoted to 
a recapitulation of some definitions and terminological conventions. The new results 
on matrices of class К are collected in section two. Especially, we present improve­
ments of two theorems of the first paper [2] of the series. Theorems (2,5) and (2,6) 
of the present paper constitute a quantitative sharpening of theorem (4,6) of [2]. 
Theorem (2,10) is a considerable improvement of theorem (6,7) of [2] in that it gives 
conditions under which the new matrix can be singular. 

As an illustration, section 3 contains theorems which are closely connected with 
convergence theorems in relaxation methods. Theorem (3,3) recalls — under appro­
priate assumptions — the monotonous dependence of the convergence rate on the 
choice of the matrix В in the iteration formula x„ + i = B~^[B — Ä)x^ + В~^Ь for 
the solution of Ax = b. This theorem was proved in [1] for A symmetric, R. S. VARGA 
[4] generalized this result for the non-symmetric case. Theorem (3,4) shows that 
analogous estimates to those obtained by Varga [5] are valid for a more general 
class of Gauss-Seidel procedures. 

1. Definitions and notation. In the whole paper, n will be a fixed natural number. 
The set of all natural numbers ^ n will be denoted by N. A matrix is a real function 
onN X N, the value of a matrix A at the point (/, k) being denoted by a^j^. A matrix A 
is said to be nonnegative if â ^ ^ 0 for each i and k. In this case, we write simply 
A ^ 0. The (unique) nonnegative proper value of a nonnegative matrix A which has 
the greatest modulus of all proper values of A will be called Perron root of A and 
denoted by p{A). 

A matrix A is said to be diagonal if â ^ = 0 for i Ф k. Such a matrix will be denoted 
by diag (<3ii, «225 " v ß/iAi)- A positive diagonal matrix is a diagonal matrix with 
ац > 0 for all i. 
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The spectral radius of a matrix A is the maximum of the moduh of the proper values 
of A and will be denoted by |л|^. In accordance with common usage we shall, some­
times, drop the unit matrix in expressions like ÀE — A. 

We shall denote by Z the class of all matrices A for which fl^^^ ̂  0 for /' ф к. 
The subclass of Z consisting of all matrices A e Z which have all principal minors 
positive will be called K, the subclass of all matrices A e Z which have all principal 
minors nonnegative will be denoted by KQ. The matrices which belong to К are 
usually called M-matrices by various authors. The paper [2] presented by the authors 
is devoted to the study of both the important classes К and KQ and contains a whole 
series of equivalent characterizations of matrices in К or K .̂. Since we shall repeatedly 
use different results on matrices of these types contained in [2], it will be convenient 
to simplify references to this paper in using the symbol 2 to denote results of [2]. 
Thus, theorem (2; 2,3) will be theorem (2,3) of [2] whereas (2,3) is theorem (2,3) 
of the present paper. 

Finally, we recall the following notation from [2]. If Л is a matrix in К or KQ, we 
denote by q[A) the (unique) nonnegative proper value of A which has the smallest 
modulus of all proper values of A. 

2. In this section, we shall prove some theorems on nonnegative matrices, and on 
matrices of classes К and KQ. 

(2.1) A matrix A belongs to К if and only if it may be written in the form A = 
= 1 — P where P is nonnegative and À > p{P). Similarly, A belongs to KQ if and 
only if it may be written in the form A = À — P where P is nonnegative and 
X ^ p{P). 

Proof. Suppose that A E K. Clearly there exists a A > 0 such that P = Я — Л ^ 0* 
The number Я — p{P) is a real proper value of A whence Я — p{P) > 0 according 
to (2; 4,3). On the other hand, if a matrix т — P is given where P ^ 0 and т >p(P) , 
we have т > |p|^ so that (т — P)~^ = £ + P + P^ + ... exists and is nonnegative. 
Hence T — P belongs to К by (2;4,3). The statement about matrices of type KQ may 
be obtained in an analogous manner or follows directly from (2;5,l). 

(2.2) Let M and S be two nonnegative matrices such that m^ > 0 and S is 
symmetric. Then p[MS) = 0 implies 5 = 0. 

Proof. The matrix A = MS is nonnegative and p(Ä) = 0. It follows from the 
theory of nonnegative matrices that there exists a permutation matrix P such that 
В = PAP-^ is a matrix with Ьц, = 0 for i й к. If M = РМР~' and S = PSP-\ we 
have for i S к 

г 

so that Sii^ = 0, the number гпц being clearly positive. Since S is symmetric, this 
means that S = 0 which implies 5 = 0. 
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(2.3) Let О S A ^ В and suppose that p(A) = р{В). If A is irreducible then 
A = B. 

Proof. Suppose that A is irreducible. If n = 1, the result is obvious. If я ^ 2, 
В is irreducible as well, we have p{A) > 0 and there exist positive vectors x and у 
such that Ax = p(A) x and /B = p(^B) у . We have thus 

pi^A) y'x = y'Ax g y'Bx = p{É) y'x = p{Ä) y'x 

whence y'Ax = y'Bx, Both vectors y and x being positive, this implies A. = B. 

(2.4) Let P ^ Q and suppose that both P and Q belong to KQ. If Q is singular 
then so is P. Moreover, if Q is irreducible then Q singular implies P = Q. 

Proof. Suppose that P e KQ, ß G KQ and P S Q- If P is nonsingular, we have 
P G К by (2;5,5) and it follows from (2;4,6) that Q e К SiS well. This proves the first 
assertion. Suppose now that Q is singular. There exists an a > 0 such that both 
matrices A = aE — Q and В = aE — P are nonnegative. It follows from (2;5,1) 
that a = p{A) = р{В). 

We have thus A ^ В and p{A) = р{В); if Q is irreducible then A is irreducible as 
well so that, by (2,3), we have A = В whence P = Q. 

(2.5) Let AeK. If В ^ A and BeZ then 

r BeK, 
2° 0 ^ B~^ й A-\ 
3° det Б ^ det Л > 0, 
4° A-'B ^ EandBA-' ^ E, 
5° E ^ B~^A and E ^ AB~^ and both matrices B'^A and AB~~^ belong to K, 

6" 1 - p{E - B-'A)= 1 -~ p{E - AB~') = ^ ^ 
p{A~'B) p{BA~-^)' 

r q{B) ^ q{Ay 

Proof. If Б G Z and В ^ A, the matrixzE — Б, and hence also т£ — A, will be 
nonnegative for a suitable positive т. Since A = iE — (jE — A), the number 
T -- P{TE — Л) is a proper value of A. so that т ~ р(тЕ — A) is positive by l"" of 
(2;4,3). We have О ^ т Е - Б ^ т Е - Л whence р{тЕ - Б) ^ р(т£ - A) < т. It 
follows that both the series 

E + (E~-B\ + (E~^- B^' 

Е~¥{Е~-УЛ\ + (Е - ^AX + ... 
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are convergent. The first series converges to (l/т) . В \ the second series to ( l / т ) . A ^ 
It follows that 0 ^ JB-^ й Л'К This proves 2°; further it follows from 1Г of (2;4,3) 
that В e K. The inequahties in 4° and 5° may be obtained upon multiplying В — A ^ 0 
by the nonnegative matrices A~^ and B~^. Since E ^ B~^A and E ^ AB~^, we 
have Б~^Л G Zand AB~^ e Z. Further, these matrices have inverses A~^B and BA~~^ 
which are nonnegative by 4°. It follows that both B~^A and AB~^ belong to K. 
To prove 6°, let us note first that the matrices B~^A and AB~^ are similar so that 
it suffices to prove 1 - p{E - B~^A) = llp{A~~^B). If we write Я for p{E - B~^A), 
it follows that 1 — Я is a proper value of B~^A. Since B~^A e K, the number 1 -- Я 
is positive according to T of (2;4,3). We intend to show now that 1/(1 — Я) is the 
Perron root of A~^B, Indeed, 1/(1 — Я) is a proper value of A~^B = {B~^Â)~^. 
If /i > 1/(1 — Я), we may write pt = 1/(1 — a) for a suitable a > Я. It follows that 

jnE - A-'B = ~^—E - A~^B = —^-—A-^B{B-^A - (1 - G)E) = 
\ — о 1 — er 

= — ^ A-^BioE - {Е - В-Ы)) 
1 — a 

and the last matrix is nonsingular since a > À = p{E — ß~M) . 
To prove 7°, it is sufficient to show that Я£ — J3 is nonsingular if Я < q{A). But 

in this case a — Я ^ q{À) — Я > 0 for each real proper value a of 4̂ so that A — XE e 
еК by r of (2;4,3). Since В - ÀE ^ A - ÀE and В - XE e Z, В - ÀE e К and 
thus nonsingular. The proof is complete. 

(2,6) Let M e K. Suppose we are given two matrices Б^ and В2 which satisfy 

B2^ B^^ M . 

If B2 e Z, then both B2 and B^ belong to K. Further, both BJ^M and B^^M belong 
to К and 

0 й p{Bl\B, - M)) й p{B2\B2 - M)) < 1 . 

Proof. The inclusions Б2 e К and B^eK, B2^MeK and B^^MeK follow 
immediately from the preceding theorem. Clearly it suffices to prove 

0 < 1 - p{B-\B2 -M))ui- P{B;\B, - M ) ) ̂  1 . 

According to 6"" of the preceding theorem, we have 

1 - p(E - B-^M) = i < —^ = 1 _ p(£ - B^^M). 
'^ ^ p{M~^B2)-p{M-'B,) '^ ^ 

Together with the obvious facts l / K ^ " ^ ^ 2 ) > 0 and p{E - B^^M) ^ 0 this yields 
the desired inequalities. 
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(2.7) Let A e К, В E К and suppose that AB e Z. Then AB e K. 

Proof. We use condition 11° of (2;4,3). Since A and В belong to K, they are both 
nonsingular and A~^ ^ 0 , B~^ ^ 0 . It follows that (AB)~^ exists and (AB)~^ = 
= B~^A~^ ^ 0 whence AB e K, taking into account the inclusion AB G Z . 

(2.8) Let Л e К, В e Z. If AB e K, then В e K. If AB e KQ and is irreducible, 
then В e KQ. 

Proof. By 2° of (2;4,3) there exists a vector x > 0 such that ABx = j ; > 0. 
Since A e K, it follows that A"^ ^0 with all diagonal elements positive. Hence 
Bx = A~^y > 0 and it follows from 2° of (2;4,3) that В e K. 

Let now AB e KQ and let AB be irreducible. It suffices to discuss only the case 
that AB is singular since otherwise AB e К and В e K. In this case, there exists, 
by (2;5,6), a vector x > 0 such that ABx = 0. Thus we have Bx ^ 0 and В e KQ 
by (2;5,4). The proof is complete. 

(2.9) Let A E KQ be singular and suppose z is a vector for which Ax ^ 0. If A is 
irreducible then Az = 0. 

Proof. According to (2;5,6) there exists a vector у > 0 such that y'A — 0. If 
и = Az, we have у > 0, и ^ 0 Sind у'и = у Az = О so that и must be the zero 
vector. 

We shall need further a sharpening of theorem (2;6,7). For the sake of completeness 
we intend to give the entire proof although a part of the present result is already 
contained in (2;6,7). We introduce first a notation. 

(2.10) Let A and В be two matrices of type (n, n) and let 0 < oc < 1 be given. 
We shall denote by g(A, B) the matrix G where 

9u=\au\'\bn\'-\ дш= -\аш\'\ь4^-'' for i + к . 

(2.11) Let 0 < a < i be given. Then the following implications hold: 

Г If A EK, BEK then g{A, B) E K. 
l"" If AE KQ, BEKQ then g{A, B) E KQ, 

3° Let A and В belong to KQ and let g{A, B) be singular. Suppose further that 
g{A, B) is irreducible. Then 

31° both A and В are singular and there exist vectors XQ > 0 and Уо > 0 with 
AXQ = 0 and ByQ = 0; 

32° if X > 0, у > 0 and Ax = 0, By = 0 then the vector z with coordinates Zi = 
= x^yl""" satisfies g{A, Б) z = 0; 

33° there exist positive diagonal matrices P and Q such that PA = BQ; 
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34^ // X > о, j ; > о satisfy Ах = 0, By = О and if X = diag (xj, ..., x„), Y = 
= diag( j i , ..., 3;,,) then there exists a positive diagonal matrix D such that 
AX = DBY. 

4° Conversely, let A and В be matrices of type [n, n) and let A e Z. Let X, У, 1) 
be positive diagonal matrices. Let e be the vector with e^ = 1 for every i and 
suppose that AXe = 0. Let В satisfy the relation AX = DBY. Then both A 
and В belong to KQ, BYe = 0 and g{A, B) is singular. 

Proof. We shall use the Holder inequality in the following form: if â  and bi are 
nonnegative numbers then 

and equality holds if and only if the vectors a and b are linearly dependent. Consider 
first the case A, В e K. According to 2° of (2;4,3), there exist positive vectors x and j ; 
such that Ax > 0 and By > 0. We are going to show that g{A, B) z > 0 where z 
is the vector with coordinates ẑ  = ^°1У1~^- Indeed, we have 

k+i fc+i 

k+i k4=i 

This completes the proof of 1°. Suppose now that A and В belong to Kg. We are 
going to show that g{A, B) 4- sE belongs to К for each positive г. Clearly there exist 
positive numbers Si and ti such that 

g,^ + e = {au + s;)'{bu + t^f-'. 

If S and Tare diagonal matrices with 5̂  and ti as diagonal elements, we have A + S e 
e К and Б + Те К by (2;5,ll) and 3° of (2;5,1). Hence g{A, B) + 8E= g{A + S, 
Б + T) G К by the first assertion of the present theorem. It follows from (2;5,1) 
that g {A, B) e K^. 

To prove 3°, assume A, В E KQ and suppose that g(A, B) is singular and irreducible. 
According to 2°, we have g{A, B) e KQ. Since g(A, B) is irreducible, both A and В 
are irreducible as well. Since both A, В e KQ it follows from (2;5,8) that there exist 
vectors Xo > 0 and уд > 0 for which AXQ ^ 0 and Вуд ^ 0. If z is the vector with 
coordinates ẑ  = Xoj j jp , we obtain in the same manner as above z > 0 and 
g[A, Б) z ^ 0. Now it follows from (2,9) that g[A, B) z = 0; hence equality is 
attained in the inequalities 

кФ1 k^i 

кФг fc+i 

SO that ÄXQ = О and Вуд = 0. This proves 31°. 
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To prove 32^ 34° and 33°, let x > 0, >̂  > 0 be vectors for which Ax = 0, By = 0. 
Then, an analogous chain of inequalities as for XQ, Уо is satisfied for x, у and for 
the vector z, ẑ  = x^ly]'". By (2,9), we have g(A, B) z = 0 which proves 32°. In 
these inequalities equality is attained. Hence, for each /, the vectors 

^^'^ = {\bn\ У1, ..., \bi,i-i\ yi-u \bi,i+i\ >'f + b "-, \bin\ Уп) 

are linearly dependent. Since x > 0, 3; > 0 and both A and В are irreducible, none 
of these is the zero vector so that there exists a J,- > 0 with u^^^ = diV^^\ Since a^Xi = 
= YJ \^A ^k = ^iYj \bik\ Ук = ^ь^иУь as well, we have proved the equation AX = 

= D ^ y where D == diag(Ji , ..., d^. This proves 34°. Since there exist vectors x 
and у according to 31°, 33° is satisfied for P = i ) ~ \ Q = YX~\ 

To prove 4°, let us write x = Xe, у — Ye so that x > 0 and j > 0. We have 
^ G Z, X > 0 and Лх = AXe = 0. It follows from (2;5,4) that A e KQ. Since В = 
= D~^AXY~\ we have ^ e Z and 

By = BYe = D'^AXe = 0. 

Since 3; > 0, it follows from (2;5,4) that В e Kg. To see that g(A, B) is singular, it 
suffices to take the vector z with coordinates ẑ  = х^у]^^ and show that g(A, B) z = 
= 0. This follows from a direct computation. 

The last theorem concerns matrices with all principal minors positive or non-
negative. 

(2,12) Let A be a real matrix such that A + A"^ is positive definite. Then, all 
principal minors of A are positive. If A + A"^^ is nonnegative definite then all 
principal minors of A are nonnegative. 

Proof. The first part follows from (2;3,3) if we put D^ = E for each x. To prove 
the second part, if suffices to consider the set of matrices A + sE for e > 0 and apply 
the preceding result. 

3, Some applications. As an illustration of the preceding results we shall prove here 
a theorem which generalizes some earlier results of R. S. Varga. In its formulation 
we shall need some notions concerning relations and their decompositions. 

A relation on a set M is an arbitrary subset of M x M. If Я is a relation on M we 
shall write xRy for (x, y) e R. A cycle in the relation R is a sequence g^, ..., ^,„ e M 
such that 

91^^92^03 ••'9m-l^9m^9i • 

A relation is said to be symmetric if aRb implies bRa. If jR is a symmetric relation 
on M, we shall denote by R^ the relation defined as follows: 
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aR^c if and only if one of the following conditions is satisfied: 

Г a = с, 
2° aRc, 
3° there exist elements b^, ..., Ъ^еМ such that aRbiRb2 ... bi,Rc, 

Clearly jR̂  is the minimal equivalence containing R. We shall say that R is connected 
if xR^y for each x and у in M. (This is clearly in conformity with the terminology of 
the theory of graphs.) 

Let us introduce now the following definition: 

(3.1) Let jR be a symmetric relation on M. We shall say that the three subsets 
S, P, P* of R form a conservative decomposition of R if the following conditions are 
satisfied: 

1° the sets S, P, P* are pairwise disjoint; 
2° ïP/cifandonlyif/сР*г; 
3° for each cycle g^, ..., g^in R 

P{9u Qi) + P{G2^ о'з) + ••• + P{gm-u 9m) + p{9.v 91) = 0 

where 

i(l) р{1Л)= 0 for iSk, 

p{i, k) = — 1 for iPk , 

p(/, k) = 1 for /P*/c. 

(3.2) Let S и P и P"^ be a decomposition of a symmetric relation R satisfying 1° 
and T of (3,1). This decomposition is conservative if and only if there exists an 
integer-valued function V on M such that ioRiiR ••• Pis i^nplies 

(2) V{i^;)-V{io) = tp^^-i^h), 
k=l 

,v{i, k) being defined in (l). 
Moreover, this function Vis unique up to an additive constant if R is connected. 

Proof. It is immediately seen that the condition (2) implies 3"" of (3,1). Now, let 
the decomposition 5* u P u P* be conservative and let M^, ..., M^ be classes of 
equivalent elements in the equivalence R^. Choose arbitrary elements gie Mi, 
i = 1, ..., m and put V{g^ = 0. Let he M.lï h e M^, we have one of the following 
three possibilities: either g,^ = h ox g^Ph or there exists a sequence a^, ..., â  such 
that 

g^RaiRa2R . . . Ra^Rh . 
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Let us form the sum 

V{h) = р{д^, ai) + p{ai, аз) + ... + р{а^, h) . 

То include all the three possibihties in the definition of QkR^h, let us agree that 
we take this sum to be empty if g,^ = h or has just one term if g^Rh. 

Let us show that V(h) is independent on the sequence from ö̂^ to h. Indeed, let 
gi^RbiR ... Rb„Rh (in the same generalized sense) as well. Then, 

g^Ra^Raj ... Ra^RhRb^R ... Rb^Rg^, 

is a cycle in R and from 3° it follows that 

K(/i) + K^, b„) + ... + Kb i , ^ , ) = o . 

The independence follows immediately from the. skew symmetry of p. We have thus 
obtained an integer-valued function on M. To prove the formula (2), let a^Ra^R . . . 
. . . Ra^ and let all these elements a ̂  belong to Mj^. Hence there exist sequences b^, ...,b^ 
and Ci, ..., c^ such that g^^Rb^R ... Rb^RüQ, a^Rc^R ... Rc^Rg,,, which complete the 
given sequence to a cycle. It follows in a similar manner as above that 

V{ao) + p{ao, ai) + ... + р{а^-1, a,) - V{a,) = 0 . 

The formula is thus verified. 
Let now jR be connected (thus m = 1). If If is another function on M satisfying 

condition (2) then this formula yields 

V{a) - V{b) = W{a) - W{b) 

for all a, b e M. It follows that 

V{a) - W{a) + С 

where С is independent on a e M. The proof is complete. 
In the sequel, we shall apply these notions to the case that the set M is the set of all 

natural numbers ^n and that R = R{A) is the relation on M corresponding to 
a square w-rowed matrix A, i.e. (i, k) e R{A) if and only if ац^ ф 0. 

Let now Л be a given matrix. Choose a nonsingular matrix В and consider the 
iteration procedure 

(3) Bx,^, ={B - А)х, + b; 

if the sequence x„ converges, its limit x will be a solution of Ax = b. The preceding 
Gauss-Seidel procedure is clearly equivalent to the ordinary Ritz procedure 

(4) x, + i =B-\B-A)x, + B-'b. 
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It is therefore convenient to introduce the following abbreviation: given A, we shall 
denote by À{B) the spectral radius of B~^(B — A). The number À{B) may be considered 
as a measure of the convergence-rate of the procedure (3). The question of estimating 
Л(В) as a function of В is of considerable practical importance. 

Suppose now that A e К and that we choose a matrix В E Z and В ^ A. According 
to (2,5) the matrix В belongs to К as well so that, in particular, В will be nonsingular. 
Further, À{B) = p{E - В~УА) and we see from 6° of (2,5) that Х{В) < 1 so that the 
procedure (3) is convergent. 

The following theorem on the monotonie dependence was proved for a symmetric 
matrix A in [1], for the general case in [3]: 

(3.3) Let A e К and let B^, B2 be two matrices from, Z such that A ^ B^ ^ B2. 
Then À{B^) S À{B2). 

The p roof follows immediately from (2,6). 

(3.4) Let A E К be symmetric. Suppose that В ^ A. Put D = В + B^ — A and 
suppose that D E Z. Then В E K, D E К and D is symmetric. 

Proof. If / Ф k, we have Ьц, + b,,i g а^}, since D E Z. Since В ^ A, we have 
— bij, S —dik which, together v/ith the preceding inequality, yields b̂ ^ ^ 0. We have 
thus BEZSO that Б G К by (2;4,6). Since Б ^ Л, we have D ^ Л as well and D e Z 
by assumption. It follows that D E K. 

In the sequel, the matrix Б will be taken in the form В = D ~ C^ where D is 
a symmetric matrix of class К and С ^ 0 is such that A = D — С — C^. In the 
following theorem estimates of Я(Б) will be given in terms of À{D) using the methods 
of section 2: 

(3.5) Theorem. Let A be a symmetric positive definite matrix and A E Z. Let 
A = D ~ С - C^ where D E К and С ^ 0. Then, В = D - С belongs to К and 

{Я{В)У й Я(Б) й ^^^^ 
2 - À{D) 

Suppose that A is irreducible. Then Д(Б) = {^{D)Y if and only if R(p) u R{C) u 
u jR(C*) is a conservative decomposition of R{Ä). 

Proof. Clearly Б G Z and В ^ A ^- С ^ A. Since Л G К we have Б G К as well 
according to (2;4,6). Now let a > X{B)\ since Я(Б) = р{В~\В - A)) = р{В'~^С\ 
the matrix G - B~^C belongs to К by (2,1). Further, GB - CEZ and GB - С = 
= B{G - B~^^C) where both Б and a - Б~^С belong to K. It follows from (2,7) 
that GB — С e K; clearly GB"^ ~ C* G К as well. Now take a = i and apply theorem 
(2,11) to the matrices GB - С and (тБ* - С*. It follows that g{GB - C, стБ* - С*) G 
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G К. Denote by Ж the matrix cri) — cĵ  С — cr̂  C* so that We Z. To show that 
Жб K, it suffices, by (2;4,6), to show that W^ д{аВ - С, аВ^ - С*). Indeed, 

(5) Wii = o-Jf,- - 2а^сц ^G{dii - c^) - c,-,- ; 

for г Ф /c 

>̂ /fc = <^äij, - a^c^k + Сиг) йО 
and 

since 

(6) 0 ^ --(7(1 - a^y d,,{c,, + c,,) + (1 - ay Ci,c,,. 

We have thus shown that WeK. It follows that a^D ~ С ~ C^ e К as well. 
Denote by F the matrix a^ - D~\C + C*) so that F G Z. Since DF = o^ D -
- С - C* G К and D G K, it follows from (2,8) that F еК whence 

(j^ > p(i)~'(C + C*)) = p{D-\D - A)) = X{D). 

To prove the estimate of X{B) from above, we shall denote by M the matrix 

Pi E - {D - C^Y^ С 
2 - P2 

where p2 = À(D). 
The matrix (D — C*)~ ^ С is nonnegative and M e Z. We know already that В e K. 

Les us consider the matrix 

BM = — ^ ^ - (D - C*) - С . 
2 - p2 

The matrix pjD — (C + C*) belongs to KQ by (2,1) and is, accordingly, nonnegative 
definite. 

Since 

BM + (вму = ^̂ ^ 
Pi Pi 

is nonnegative definite as well and BM G Z , it follows from lemma (2,12) that В M G KQ.. 
An application of (2,8) shows that M G KQ. It follows that /?2/(2 ~ P2) = 
^ p[(D - C*)-^ C] = Я(Б). 

Suppose now that À(B) = Я(/))^. We shall distinguish two cases. 
If À{D) = 0, we shall show that С = 0. Indeed, we have p{D'~\C + C*)) = 

= À[D) = 0 and D~\ being inverse to a matrix of class K, has positive diagonal 
elements. Since С + С* is nonnegative and symmetric, it follows from lemma (2,2) 
that С -{- C^^ = 0. Since С ^ 0, we have С = 0 as well. It is easy to see that, conver-
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sely, С = О implies Я(Б) = À[D) = 0. The assertion of the theorem is easily seen to 
be valid. 

Suppose now that A(JD) Ф 0 and that Ä is irreducible. Write т for À{B) and observe 
that TB - С is singular. Further д{тВ - С, тБ* - С*) ^ TD - т* С - т^ С* = 
- T^T^D ~ С - С*) = т^ (i(D) D - С - С") = éD{À{D) - D'^D - А)) and 
this last matrix is singular. Since т Ф 0 and Z) — С — C* = Л is irreducible, the 
matrix TD — т^С — т^С* is irreducible as well. By lemma (2,4) we have 

д{тВ - С, TJB* - С*) = TD - T^C - т^С^ . 

It follows that equality is attained both in (5) and (6) for cr = т. Equation (5) yields 
сII = 0 for all i. From (6) we obtain that for each f, /c, i Ф k, at most one of the 
numbers ац,, Сц^, c^i is different from zero. 

We know already that both matrices тВ — С and TJ5* — C* are singular. Clearly 
they are irreducible as well so that there exist (essentially unique) vectors x > 0 and 
у > 0 for which (xB — C) x = 0 and (тБ* — С*) у = 0. Further we have just seen 
that д{тВ — С, тБ* ~ С*) ~ xD — x^C — т^С* is singular and irreducible. 

It follows from (2,11) that there exists a positive diagonal matrix Я such that 

(7) {xB - C) X = Я(тВ* - С*) 7 

where X = diag (x^, ..., x j and Y = diag(yi, ..., y„). On comparing the diagonal 
elements and taking into account the fact that ĉ ^ = 0 we obtain for the diagonal 
elements h(i) of Я the equation 

Now let i Ф k. If Ci,^ Ф 0, then d^j, = 0 and Cĵ j = 0 and it follows from (7) that 
-~^ik^k = —h(i) xCij^yk, or, in other words, 

(8) X h{i) = h{k) . 

If dij, Ф 0, we have Сц^ = Ci.^ = 0 and it follows in the same way that 

(9) hii) = h{k). 

For / Ф k, let us define a number p{i, k) in the following manner: 

p{i,k)= - 1 if c,, Ф 0 , 
p{i,k)= 1 if c,, Ф О , 
p{i, k) = 0 otherwise. 

This is possible since Cn^Cf^i = 0 for all f, /c. 
Since Л = D - G - C*, we see that а,̂  ф 0 if and only if exactly one of the 
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elements dif,, ĉ ,̂ ĉ^̂  is different from zero. This enables us to replace (8) and (9) by 
a single formula 

h{k) 
whenever ац^ Ф 0. 

Suppose now that i^, 12, . . . , г^ is a cycle in JR(^); in other words, all the elements 
^iii2' 1̂213' •••' ^im-xirn^ ^imh ^^^ dlffcreut from zero. Clearly 

h{i2) h{i^) h{Q /z(ii) 

whence, т being different from 1, p(/i, /2) + p{h^ h) + ... + K^m-u О + 
+ P{im, h) = 0. 

Thus, R(D) U R{C) U R ( C * ) is a conservative decomposition of JR(^) . 
Conversely, it is easily seen that if R{D) U R{C) U R ( C * ) is a conservative decom­

position of R{A) then (Я(^))^ = Я(в). 
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Р е з ю м е 

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ О МАТРИЦАХ КЛАССА К 
И ИХ ПРИМЕНЕНИЯ К СКОРОСТИ СХОДИМОСТИ 

ИТЕРАТИВНЫХ МЕТОДОВ 

МИРОСЛАВ ФИДЛЕР, ВЛАСТИМИЛ ПТАК, (Miroslav Fiedler, Vlastimil Ptâk), Прага 

Новые результаты и уточнения известных результатов о матрицах классов К 
и Ко применяются к изучению скорости сходимости обобщенных итерационных 
методов Гаусса-Зейделя. Основная теорема обобщает результати Р. С. Варги, 
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следовательно которому консервативные методы имеют наибольшую скорость 
сходимости среди циклических итеративных методов для матриц типа Янга А. 

Если А данная матрица и В некоторая невырожденная матрица, потом ско­
рость сходимости итеративного метода 

Вх,^, = (В - А)х, + b 

измеряется спектральным радиусом матрицы В~\В — А), обозначаемым À{B). 
В главной теореме 5,5 доказывается следующая оценка для À(B): Если А 

симметрическая, пололсительно определенная матрица такая, что aif^ ^ О для 
i ф к, и если А = D— С — С^ (С* — транспонированная матрица к С), где 
С ^ О и D поло^рсительно определенная матрица такая, что ац, ^ О для i ф к, 
потом 

imr ^ m è mi{2 - кщ 
Дается комбинаторная характеризация случая равенства в левом неравенстве. 
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