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APPLICATION TO THE CONVERGENCE RATE
OF ITERATION PROCEDURES

MirosLAV FIEDLER and VLASTIMIL PTAK, Praha

(Received May 12, 1965)

Introduction. The present paper represents a continuation of the authors’ series of
communications concerning matrices of type K and their applications to spectral
problems. The paper is divided into three sections, the first section being devoted to
a recapitulation of some definitions and terminological conventions. The new results
on matrices of class K are collected in section two. Especially, we present improve-
ments of two theorems of the first paper [2] of the series. Theorems (2,5) and (2,6)
of the present paper constitute a quantitative sharpening of theorem (4,6) of [2].
Theorem (2,10) is a considerable improvement of theorem (6,7) of [2] in that it gives
conditions under which the new matrix can be singular.

As an illustration, section 3 contains theorems which are closely connected with
convergence theorems in relaxation methods. Theorem (3,3) recalls — under appro-
priate assumptions — the monotonous dependence of the convergence rate on the
choice of the matrix B in the iteration formula x,,; = B™'(B — 4) x, + B~'b for
the solution of Ax = b. This theorem was proved in [1] for 4 symmetric, R. S. VARGA
[4] generalized this result for the non-symmetric case. Theorem (3,4) shows that
analogous estimates to those obtained by Varga [5] are valid for a more general
class of Gauss-Seidel procedures.

1. Definitions and notation. In the whole paper, n will be a fixed natural number.
The set of all natural numbers <n will be denoted by N. A matrix is a real function
onN x N, the value of a matrix 4 at the point (i, k) being denoted by a;. A matrix 4
is said to be nonnegative if a; = 0 for each i and k. In this case, we write simply
A Z 0. The (unique) nonnegative proper value of a nonnegative matrix 4 which has
the greatest modulus of all proper values of A will be called Perron root of 4 and
denoted by p(A).

A matrix 4 is said to be diagonal if a;, = 0for i & k. Such a matrix will be denoted
by diag (aqy, a3, ..., a,,)- A positive diagonal matrix is a diagonal matrix with
a; > 0forall i. )
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The spectral radius of a matrix A is the maximum of the moduli of the proper values
of A and will be denoted by ’Aj‘,. In accordance with common usage we shall, some-
times, drop the unit matrix in expressions like AE — A.

We shall denote by Z the class of all matrices 4 for which a,; < 0 for i + k.
The subclass of Z consisting of all matrices 4 € Z which have all principal minors
positive will be called K, the subclass of all matrices 4 € Z which have all principal
minors nonnegative will be denoted by K,. The matrices which belong to K are
usually called M-matrices by various authors. The paper [2] presented by the authors
is devoted to the study of both the important classes K and K, and contains a whole
series of equivalent characterizations of matrices in K or K,. Since we shall repeatedly
use different results on matrices of these types contained in [2], it will be convenient
to simplify references to this paper in using the symbol 2 to denote results of [2].
Thus, theorem (2; 2,3) will be theorem (2,3) of [2] whereas (2,3) is theorem (2,3)
of the present paper.

Finally, we recall the following notation from [2]. If 4 is a matrix in K or K,, we
denote by ¢(A) the (unique) nonnegative proper value of 4 which has the smallest
modulus of all proper values of A.

2. In this section, we shall prove some theorems on nonnegative matrices, and on
matrices of classes K and K.

(2,1) 4 matrix A belongs to K if and only if it may be written in the form A =
= A — P where P is nonnegative and A > p(P). Similarly, A belongs to K, if and
only if it may be written in the form A = 1 — P where P is nonnegative and
2z p(P).

Proof. Suppose that 4 € K. Clearly there existsa 2 > Osuchthat P = 1 — 4 = 0-
The number A — p(P) is a real proper value of 4 whence A — p(P) > 0 according
to (2; 4,3). On the other hand, if a matrix t — P is given where P 2 0 and t > p(P),
we have > |P|, so that (t — P)™! = E + P + P? + ... exists and is nonnegative.
Hence t — P belongs to K by (2;4,3). The statement about matrices of type K, may
be obtained in an analogous manner or follows directly from (2;5,1).

(2,2) Let M and S be two nonnegative matrices such that m; >0 and S is
symmetric. Then p(MS) = 0 implies S = 0.

Proof. The matrix 4 = MS is nonnegative and p(4) = 0. It follows from the
theory of nonnegative matrices that there exists a per’mutation matrix P such that
B = PAP™!is a matrix with b;, = Ofori < k. f M = PMP~'and § = PSP™!, we
have for i < k

so that §;, = 0, the number #i;; being clearly positive. Since S is symmetric, this
means that S = 0 which implies S = 0.
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(2,3) Let 0 = A < B and suppose that p(A) = p(B). If A is irreducible then
A = B. .

Proof. Suppose that A is irreducible. If n = 1, the result is obvious. If n = 2,
B is irreducible as well, we have p(4) > 0 and there exist positive vectors x and y
such that Ax = p(4) x and y'B = p(B) y’. We have thus

p(A) y'x = y'Ax < y'Bx = p(B) y'x = p(A4) y'x

whence y’Ax = y'Bx. Both vectors y and x being positive, this implies 4 = B.

(2,4) Let P < Q and suppose that both P and Q belong to K. If Q is singular
then so is P. Moreover, if Q is irreducible then Q singular implies P = Q.

Proof. Suppose that PeK,, Q €K, and P < Q. If P is nonsingular, we have
P e K by (2;5,5) and it follows from (2;4,6) that Q e K as well. This proves the first
assertion. Suppose now that Q is singular. There exists an a > 0 such that both
matrices 4 = «E — Q and B = oE — P are nonnegative. It follows from (2;5,1)
that « = p(4) = p(B).

We have thus A < B and p(4) = p(B); if Q is irreducible then A is irreducible as
well so that, by (2,3), we have 4 = B whence P = Q.

(2.5) Let Ac K. If B2 A and B e Z then

1° BeK,

X0<B <A,

3° det B = det A > 0,

4° A™'B > E and BA™* Z E,

5° E> B 'A and E = AB™' and both matrices B~'A and AB~"' belong to K,
o U 1 o (F o AR-1) — 1 _ 1

61— p(E— B 1A) =1 — p(E — AB™") = B~ WA’

7° q(B) = q(A).

Proof. If Be Z and B = A, the matrix tE — B, and hence also TE — A, will be
nonnegative for a suitable positive 7. Since 4 = 1E — (1E — A), the number
T — p(tE — A) is a proper value of 4 so that © — p(tE — A) is positive by 7° of
(2;4,3). We have 0 < tE — B < tE — A whence p(tE — B) < p(rE — 4) < 7. It
follows that both the series

E+<E—]—B)+<E——lB>2+...,
T T
1 1 \?
E+(E—-A)\+(E—--4) + ...
T T
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are convergent. The first series converges to (1/t) . B™', the second series to (1/7) . A™"
It follows that 0 < B™! < A™'. This proves 2°; further it follows from 11° of (2;4,3)
that B € K. The inequalities in 4° and 5° may be obtained upon multiplying B — 4 > 0
by the nonnegative matrices A~! and B™!. Since E = B™'4 and E = AB™ !, we
have B"'4 € Zand AB™! € Z. Further, these matrices have inverses 4 !B and B4~ !
which are nonnegative by 4°. It follows that both B™*4 and AB~* belong to K.
To prove 6°, let us note first that the matrices B~'4 and AB~! are similar so that
it suffices to prove 1 — p(E — B~'A) = 1/p(A™"B). If we write A for p(E — B™'A4),
it follows that 1 — A is a proper value of B~'4. Since B™'4 € K, the number 1 — A
is positive according to 7° of (2;4,3). We intend to show now that 1/(1 — 1) is the
Perron root of A7'B. Indeed, 1/(1 — A) is a proper value of A™'B = (B~'4)" 1.
If p > 1/(1 — 2), we may write u = 1/(1 — o) for a suitable ¢ > 2. It follows that

1

1—o0

WE — A7'B = E—-A“lel—_]:_A“B(B“A—(l — 0)E) =

= 1 ATBGE - (E - B~'4))
1—0

and the last matrix is nonsingular since ¢ > A = p(E — B™'4).

To prove 7°, it is sufficient to show that AE — B is honsingular if 2 < g(4). But
in this case « — 1 = g(4) — A > 0 for each real proper value a of 4 so that 4 — AE €
e K by 7° of (2;4,3). Since B— AE > A — AE and B— AEe€Z, B — AE €K and
thus nonsingular. The proof is complete.

(2,6) Let M € K. Suppose we are given two matrices B, and B, which satisfy
B, 2B zM.

If B, € Z, then both B, and B, belong to K. Further, both B; *M and B{ 'M belong
to K and

0 < p(B; (B, — M)) < p(B;'(B, — M)) < 1.

Proof. The inclusions B, ¢ K and B, €K, B;'M €K and B;'M K follow
immediately from the preceding theorem. Clearly it suffices to prove

0<1—pB;'(B,—M)<1-—pB'(By—M)=1.
According to 6° of the preceding theorem, we have

1 < 1 _
p(M™'B;) — p(M~'B,)

1 — p(E — B;'M) = 1 — p(E — B{'M).

Together with the obvious facts 1/p(M~'B;) > 0 and p(E — By 'M) Z 0 this yields
the desired inequalities.
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(2,7) Let A €K, BeK and suppose that AB e Z. Then AB e K.

Proof. We use condition 11° of (2;4,3). Since A and B belong to K, they are both
nonsingular and A™' = 0, B~' = 0. It follows that (4B)™" exists and (4B)™' =
= B '47! = 0 whence 4B € K, taking into account the inclusion AB € Z.

(2 8) Let AcK, BeZ If AB€K, then Be K. If AB € K, and is irreducible,
then B € K.

Proof. By 2° of (2;4,3) there exists a vector x > 0 such that 4Bx = y > 0.
Since 4 e K, it follows that A~! > 0 with all diagonal elements positive. Hence
Bx = A™'y > 0 and it follows from 2° of (2;4,3) that B € K.

Let now AB e K, and let AB be irreducible. It suffices to discuss only the case
that AB is singular since otherwise AB € K and B e K. In this case, there exists,
by (2;5,6), a vector x > 0 such that ABx = 0. Thus we have Bx = 0 and B €K,
by (2;5,4). The proof is complete.

(2,9) Let A € K, be singular and suppose z is a vector for which Az = 0. If A is
irreducible then Az = 0.

Proof. According to (2;5,6) there exists a vector y > 0 such that y'4 = 0. If
u = Az, we have y > 0, u = 0 and y'u = y’Az = 0 so that u must be the zero
vector.

We shall need further a sharpening of theorem (2;6,7). For the sake of completeness
we intend to give the entire proof although a part of the present result is already
contained in (2;6,7). We introduce first a notation.

(2,10) Let A and B be two matrices of type (n, n) and let 0 < a < 1 be given.
We shall denote by g(A, B) the matrix G where

= |aiila |b“’1—a, Jix = — [aikla ,bikll_a for i k.
(2,11) Let 0 < « < 1 be given. Then the following implications hold:

1° If A€ K, BeK then g(4, B) € K.

2° If A €Ky, BeK, then g(4, B) € K

3° Let A and B belong to K, and let g(A, B) be singular. Suppose further that
g(A, B) is irreducible. Then

31° both A and B are singular and there exist vectors x, > 0 and y, > 0 with
Axy = 0 and By, = 0;

32° if x>0,y >0and Ax = 0, By = 0 then the vector z with coordinates z; =
= xiy} ™" satisfies g(4, B) z = )

33° there exist positive diagonal matrices P and Q such that PA

BQ;

I
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34° if x>0, y >0 satisfy Ax =0, By =0 and if X = diag(x,,...,x,), Y=
= diag (yy, ..., y.) then there exists a positive diagonal matrix D such that
AX = DBY.

4° Conversely, let A and B be matrices of type (n, n) and let Ae Z. Let X, Y, D
be positive diagonal matrices. Let e be the vector with e; = 1 for every i and
suppose that AXe = 0. Let B satisfy the relation AX = DBY. Then both A
and B belong to K,, BYe = 0 and g(A, B) is singular.

Proof. We shall use the Holder inequality in the following form: if a; and b; are
nonnegative numbers then

Yaib; ™ = (Tai)y (Xb)'

and equality holds if and only if the vectors a and b are linearly dependent. Consider
first the case A, B € K. According to 2° of (2;4,3), there exist positive vectors x and y
such that Ax > 0 and By > 0. We are going to show that g(4, B) z > 0 where z
is the vector with coordinates z; = x%y! ~® Indeed, we have

Z Iaik’a [bikll_a Zx = Z (laik| xk)a (lbikl J’k)l_a =
k*i k¥i

(k;_|aikl xk)“ (k;Jbikl J’k)l < (aiixi)a (biiyz')l—“ = a?ibt!i_azi .

This completes the proof of 1°. Suppose now that A and B belong to K,. We are
going to show that g(4, B) + ¢E belongs to K for each positive ¢. Clearly there exist
positive numbers s; and ¢; such that

gui+ &= (ay + s) (b + 1) 7.

If S and Tare diagonal matrices with s; and t; as diagonal elements, we have A + S €
eK and B + TeK by (2;5,11) and 3° of (2;5,1). Hence g(A4, B) + ¢E= g(4 + S,
B + T)eK by the first assertion of the present theorem. It follows from (2;5.1)
that g(4, B) € K,,.

To prove 3°, assume A4, B € K, and suppose that g(4, B) is singular and irreducible.
According to 2°, we have g(A4, B) € K,. Since g(A4, B) is irreducible, both 4 and B
are irreducible as well. Since both A4, B € K, it follows from (2;5,8) that there exist
vectors x, > 0 and y, > 0 for which Ax, = 0 and By, = 0. If z is the vector with
coordinates z; = x3,p5; % we obtain in the same manner as above z > 0 and
g(A4, B)z 2 0. Now it follows from (2,9) that g(4, B) z = 0; hence equality is
attained in the inequalities

Z |aik‘a Ibikll Tz = Z (laikl ka)a (lbiklr yOk)l =
KF i k+i
= (k§'|aik| xo,c)"‘(lé _|bikI You)' T = (aixoi) (biyos)' * = ahbi "z
so that Ax, = 0 and By, = 0. This proves 31°.
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To prove 32°, 34° and 33°, let x > 0, y > 0 be vectors for which Ax = 0, By = 0.
Then, an analogous chain of inequalities as for x,, y, is satisfied for x, y and for
the vector z, z; = x5y} ~* By (2,9), we have g(4, B)z = 0 which proves 32°. In
these inequalities equality is attained. Hence, for each i, the vectors

X,) »

V)

@)
ur = (,aill AT Iai,i—ll Xi-15 ,ai,H—ll Xit1s +ee 'ain

o) = ('bill Yiseeos lbi,i—-l‘ Yi-1> 'bi,i+1‘ Vittr oo ’bin

are linearly dependent. Since x > 0, y > 0 and both A and B are irreducible, none

of these is the zero vector so that there exists a d; > 0 with u'® = d,p'?. Since a;;x; =

=3 Ia,-kl X =d; )y |b,~kl Yk = d;b;;y; as well, we have proved the equation AX =
k*i k*i

= DBY where D = diag (di, e d,,). This proves 34°. Since there exist vectors x
and y according to 31°, 33° is satisfied for P = D™!, Q = YX ™.

To prove 4°, let us write x = Xe, y = Ye so that x > 0 and y > 0. We have
AeZ x>0and Ax = AXe = 0. It follows from (2;5,4) that 4 € K,. Since B =
= D 'AXY™!, we have B e Z and

By = BYe = D™ 'AXe = 0.

Since y > 0, it follows from (2;5,4) that B e K,. To see that g(4, B) is singular, it
suffices to take the vector z with coordinates z; = x?y} ~* and show that g(4, B) z =
= 0. This follows from a direct computation.

The last theorem concerns matrices with all principal minors positive or non-

negative.

(2,12) Let A be a real matrix such that A + A* is positive definite. Then, all
principal minors of A are positive. If A + A* is nonnegative definite then all
principal minors of A are nonnegative.

Proof. The first part follows from (2;3,3) if we put D, = E for each x. To prove
the second part, if suffices to consider the set of matrices A + ¢E for ¢ > 0 and apply
the preceding result.

3. Some applications. As an illustration of the preceding results we shall prove here
a theorem which generalizes some earlier results of R. S. Varga. In its formulation
we shall need some notions concerning relations and their decompositions.

A relation on a set M is an arbitrary subset of M x M. If R is a relation on M we
shall write xRy for (x, y) € R. A cycle in the relation R is a sequence g, ..., g,, € M

such that
91Rg;Rg; ... gm-1RguRy, .
A relation is said to be symmetric if aRb implies bRa. If R is a symmetric relation

on M, we shall denote by R° the relation defined as follows:
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aR°c if and only if one of the following conditions is satisfied:

1° a =,

2° aRe,

3° there exist elements by, ..., b, € M such that aRbRb, ... b,Re.

Clearly R is the minimal equivalence containing R. We shall say that R is connected

if xRy for each x and y in M. (This is clearly in conformity with the terminology of
the theory of graphs.)

Let us introduce now the following definition:

(3,1) Let R be a symmetric relation on M. We shall say that the three subsets
S, P, P* of R form a conservative decomposition of R if the following conditions are
satisfied:

1° the sets S, P, P* are pairwise disjoint;
2° iPk if and only if kP*i;
3° for each cycle g4, ..., g, in R
P91 92) + P92, 93) + -+ + P(Gu-1> 9u) + P(gms 91) = O

where

(1) p(i. k)= 0 for iSk,
p(i, k) = —1 for iPk,
p(i, k)= 1 for iP*k.
(3,2) Let Su P U P* be a decomposition of a symmetric relation R satisfying 1°

.and 2° of (3,1). This decomposition is conservative if and only if there exists an
integer-valued function V on M such that iyRi R ... Rig implies

(2) v V(is) — V(iy) =kglp(ik_,, i) s

o(i, k) being defined in (1).
Moreover, this function V is unique up to an additive constant if R is connected.

Proof. It is immediately seen that the condition (2) implies 3° of (3,1). Now, let
‘the decomposition S U P U P* be conservative and let M, ..., M,, be classes of
equivalent elements in the equivalence R°. Choose arbitrary elements g;e M,
i =1,...,mand put ¥(g;) = 0. Let h € M. If h € M,, we have one of the following
three possibilities: either g, = h or g,Rh or there exists a sequence ay, ..., a, such
that

giRaiRaR ... Ra,Rh .
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Let us form the sum

V(h) = p(gs, ay) + play, a;) + ... + pla, h).

To include all the three possibilities in the definition of g,R°h, let us agree that
we take this sum to be empty if g, = h or has just one term if g, Rh.

Let us show that V(h) is independent on the sequence from g, to h. Indeed, let
giRb{R ... Rb,Rh (in the same generalized sense) as well. Then,

giwRaRa, ... Ra,RhRb,R ... Rb,Rg,

is a cycle in R and from 3° it follows that
V(h) + p(h, b,) + ... + p(by, g,) = 0.

The independence follows immediately from the.skew symmetry of p. We have thus
obtained an integer-valued function on M. To prove the formula (2), let agRa;R ...
... Ra, and let all these elements a; belong to M. Hence there exist sequences by, ..., b,
and ¢y, ..., ¢, such that g,Rb;R ... Rb,Ra,, a;Rc,R ... Rc,,Rg,, which complete the
given sequence to a cycle. It follows in a similar manner as above that

V(ao) + plag, a;) + ... + plas_y, a;) = V(a) = 0.

The formula is thus verified.

Let now R be connected (thus m = 1). If Wis another function on M satisfying
condition (2) then this formula yields

V(a) — V(b) = W(a) — W(b)
for all a, b € M. 1t follows that
V(a) = W(a) + C ,

where C is independent on a € M. The proof is complete.

In the sequel, we shall apply these notions to the case that the set M is the set of all
natural numbers <n and that R = R(4) is the relation on M corresponding to
a square n-rowed matrix 4, i.e. (i, k) € R(4) if and only if a; = 0.

Let now A4 be a given matrix. Choose a nonsingular matrix B and consider the
iteration procedure

3) Bxy.1 = (B— A)x, + b;

if the sequence x, converges, its limit x will be a solution of Ax = b. The preceding
Gauss-Seidel procedure is clearly equivalent to the ordinary Ritz procedure

(4) Xop1 = BB — A)x, + B~ 'b.
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It is therefore convenient to introduce the following abbreviation: given A4, we shall
denote by A(B) the spectral radius of B~'(B — A). The number A(B) may be considered
as a measure of the convergence-rate of the procedure (3). The question of estimating
A(B) as a function of B is of considerable practical importance.

Suppose now that A € K and that we choose a matrix Be Z and B = A4. According
to (2,5) the matrix B belongs to K as well so that, in particular, B will be nonsingular.
Further, A(B) = p(E — B~'A) and we see from 6° of (2,5) that A(B) < 1 so that the
procedure (3) is convergent.

The following theorem on the monotonic dependence was proved for a symmetric
matrix A in [1], for the general case in [3]:

(3,3) Let A€ K and let By, B, be two matrices from Z such that A £ B; < B,.
Then A(B,) < A(B,).

The proof follows immediately from (2,6).

(3,4) Let A e K be symmetric. Suppose that B = A. Put D = B + B* — A and
suppose that D € Z. Then Be K, D e K and D is symmetric.

Proof. If i & k, we have b, + b,; < ay since De Z. Since B = A, we have
—by £ —ay which, together with the preceding inequality, yields b,; < 0. We have
thus B € Z so that B € K by (2;4,6). Since B = A, we have D = Aaswelland De Z
by assumption. It follows that D e K.

In the sequel, the matrix B will be taken in the form B = D — C* where D is
a symmetric matrix of class K and C = 0 is such that 4 = D — C — C*. In the
following theorem estimates of A(B) will be given in terms of A(D) using the methods
of section 2:

(3,5) Theorem, Let A be a symmetric positive definite matrix and AeZ. Let
A=D— C — C* where DeK and C =2 0. Then, B = D — C* belongs to K and

(D) < 4(B) < ;f(——’j(’m

Suppose that A is irreducible. Then A(B) = (A(D))? if and only if R(D)u R(C)u
U R(C*) is a conservative decomposition of R(A).

Proof. Clearly Be Z and B= A4 + C = A. Since 4 € K we have B € K as well
according to (2;4,6). Now let ¢ > A(B); since A(B) = p(B~!(B — A)) = p(B~'C),
the matrix ¢ — B™'C belongs to K by (2,1). Further, 6B — CeZ and 6B — C =
= B(o — B™'C) where both B and ¢ — B~'C belong to K. It follows from (2,7)
that 6B — C e K; clearly 6B* — C* € K as well. Now take a = } and apply theorem
(2,11) to the matrices 6B — C and 0B* — C*. It follows that g(¢B — C, dB* — C*) e
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e K. Denote by W the matrix ¢D — ¢* C — 6% C* so that We Z. To show that
We K, it suffices, by (2;4,6), to show that W = g(¢B — C, oB* — C*). Indeed,

(5) wi = ody; — 20%c;; Z.0(dy; — ¢i) — cii;
fori + k
wy = ody — o*(cy + ¢;) £ 0
and
(0du — o*(cy + i)’ = (o(du — cu) — i) (o(due — i) — cu)
since
(6) 0< —o(l — o*) dyleu + ) + (1 — 0)% cpcy -

We have thus shown that We K. It follows that ¢*D — C — C*eK as well.
Denote by F the matrix ¢* — D™!(C + C*) so.that F e Z. Since DF = ¢* D —
— C — C*eKand D € K, it follows from (2,8) that F € K whence

ot > p(D7!(C + C*)) = p(D™*(D — A)) = AD).

To prove the estimate of A(B) from above, we shall denote by M the matrix

P2 p_(pb-cHtc
2-p,
where p, = A(D).
The matrix (D — C*)~' C is nonnegative and M e Z. We know already that B € K.
Les us consider the matrix '

BM =2 (p—c¥-cC.
2-p,

The matrix p,D — (C + C*) belongs to K, by (2,1) and is, accordingly, nonnegative
definite.
Since

BM + (BM)* = i[u ~ Lo c*)]
2 2 D2

is nonnegative definite as welland BM € Z, it follows from lemma (2,12) that BM € K,..
An application of (2,8) shows that M eK,. It follows that p,/(2 — p,) =
> p[(D — C*)~' C] = A(B).

Suppose now that A(B) = A(D)>. We shall distinguish two cases.

If A(D) =0, we shall show that C = 0. Indeed, we have p(D~'(C + C*)) =
= A(D) = 0 and D', being inverse to a matrix of class K, has positive diagonal
elements. Since C + C* is nonnegative and symmetric, it follows from lemma (2,2)
that C + C* = 0. Since C = 0, we have C = 0 as well. It is easy to see that, conver-
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sely, C = 0 implies A(B) = A(D) = 0. The assertion of the theorem is easily seen to
be valid.

Suppose now that A(D) =+ 0 and that 4 is irreducible. Write 7 for A(B) and observe
that B — C is singular. Further g(tB — C,tB* — C*) <D —t* C — t* C* =
=tt*D - C - C*) = * (D)D — C — C*) = ¢*D(AD) — D™'(D — A)) and
this last matrix is singular. Since 7 % 0 and D — C — C* = A is irreducible, the
matrix tD — t*C — t*C* is irreducible as well. By lemma (2,4) we have

g(tB — C,tB* — C*) = 1D — t*C — t*C*.

It follows that equality is attained both in (5) and (6) for ¢ = 7. Equation (5) yields
¢; = 0 for all i. From (6) we obtain that for each i, k, i & k, at most one of the
numbers dy, ¢y, ¢; is different from zero.

We know already that both matrices 1B — C and 7B* — C* are singular. Clearly
they are irreducible as well so that there exist (essentially unique) vectors x > 0 and
y > 0 for which (tB — C) x = 0 and (tB* — C*) y = 0. Further we have just seen
that g(tB — C, tB* — C*) = 1D — t*C — t*C* is singular and irreducible.

1t follows from (2,11) that there exists a positive diagonal matrix H such that
() (tB—C)X = H(xB* — C*) Y

where X = diag (x,, ..., x,) and Y = diag (y;, ..., y,)- On comparing the diagonal
elements and taking into account the fact that ¢;; = 0 we obtain for the diagonal
elements h(i) of H the equation

h(i) = Xt
Vi

Now let i # k. If ¢y + 0, then dy = 0 and ¢,; = 0 and it follows from (7) that
—cyX, = —h(i) Teyy, or, in other words,

(8) v h(i) = h(k) .

If d; + 0, we have ¢;, = ¢,; = 0 and it follows in the same way that
9) h(i) = h(k) .

For i  k, let us define a number p(i, k) in the following manﬁer:

pi, k)= —1 if cu +0,
pli, k)= 1 if ¢, =+ 0,
p(i, k) = 0 otherwise.

This is possible since c;.c,; = O for all i, k.
Since A = D — C — C*, we see that a; =+ 0 if and only if exactly one of the
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elements dy, cy, ¢; is different from zero. This enables us to replace (8) and (9) by
a single formula
M — ki)
h(k)
whenever a;, + 0.
Suppose now that iy, iy, ..., i, is a cycle in R(4); in other words, all the elements
a a are different from zero. Clearly

a ., a

W0 ) M) ) _

h(iz) h(is) — h(in) h(i)
whence, 1 being different from 1, p(iy, iy) + p(iz, i3) + ... + Plim—1s im) +
+ Pliy, iy) = 0.

Thus, R(D) U R(C) u R(C*) is a conservative decomposition of R(A4).

Conversely, it is easily seen that if R(D) U R(C) u R(C*) is a conservative decom-
position of R(A) then (A(D))* = A(B).

ipiz> %igizs o im—1im?
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Pesrome

HEKOTOPBIE PE3VJIBTATBI O MATPULIAX KJIACCA K
N X MPUMEHEHUA K CKOPOCTU CXOAUMOCTH
UTEPATUBHBIX METO/J0OB

MUIPOCJIAB PUIJIEP, BMACTUMMII MTAK, (Miroslav Fiedler, Vlastimil Ptak), ITpara

HoBble pe3y/ibTaThl U YyTOYHEHUST U3BECTHBIX Pe3yJbTaTOB 0 MaTpuiax kiaccos K
1 K, npuMeHs10TCsl K U3YYSHUIO CKOPOCTH CXOOUMOCTH 0000IIIEHHBIX UTePALIMOHHBIX
metonoB I'aycca-3eiimens. OcHoBHast Teopema 06061miaet pesyastatd P. C. Bapru,
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CJICAOBATEJIBHO KOTOPOMY KOHCEPBATUBHBIC METOAbl UMECIOT Haﬁ60nbu1y}o CKOpPOCThb
CXOOUMOCTH CPpEeAU UMKIIMYECKUX UTEPATHBHBIX METOAOB AJISI MAaTPUI TUIlA Sura A.

Ecnn A naunas MaTtpula 1 B HEKOTOpast HEBBIPOXACHHAA MaTpHlia, NOTOM CKO-
POCTb CXOAUMOCTU UTEPATUBHOTO METOAA

an+1 = (B - A)xn + b

W3MEPSIETCS CIIEKTPasibHBIM paanycoM Matpuupl B~ (B — A), o6o3Hauyaembim A(B).

B rmaBHOii Teopeme 5,5 nokasbiBaetcs cienyrowast oueHka mnas A(B): Ecau A
CUMMEMPUUECKASA, NOAONCUMENbHO ONPeOeaeHHAs mampuya makas, umo a;, < 0 das
i+k, ueam A=D— C — C* (C* — mpancnonuposannas mampuya k C), 2de
C = 0 u D noaoscumenvro onpedenennas mampuya marxas, umo dy < 0 daa i + k,

[A(D)]* < A(B) = AD)2 — i(D))

ﬂaCTCf{ KOM6I/IHaTOpHaﬂ XapakTepu3alus ciiydas paBE€HCTBA B JICBOM HECPABEHCTBE.
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