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Yexoc/10BalKHii MaTeMATHYECKHH kypHat, T. 16 (91) 1966, Ilpara

NEW METHODS FOR SOLVING LINEAR FUNCTIONAL
EQUATIONS WITH BOUNDED OPERATORS

Joser KoLomy, Praha

(Received April 5, 1965)

1. In this note some new methods concerning the solution of the functional equa-
tions with linear bounded operators in Hilbert spaces are given.

Let X be real or complex Hilbert space, 4 : X — X a linear continuous operator
from X into X. We shall solve the equation

(1) . Ax=f-
by the successive approximations
(2) xn+l =Pf+/jn([_PA)xn7 (I‘I=O,1,2,...),

where P is a linear continuous mapping of X into X having a bounded inverse P~ ..
The parameters f, (n =0,1,2, ) are to b- determined either from

3) . |f = B.Ax,[|* = Min

or from the conditions

(@) If = Ax,i > = Min, (n=0,1,2,..).
From (3), (4) we obtain that

_ Re (f, Ax,)
(5) Ba ———” Ax?

¢ _ Re(Lf, LAx,)
© ST

where L = I — PA. The following théorem is valid:
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Theorem 1. ([1], [2].) Let A, P be linear bounded commutative operators in X
such that P~ exists and is bounded, and ”I - PA” = q < 1. Then the equation
(1) has a unique solution x* in X. The sequences {x,}, {%,} defined by (2), (5); (2).
(6) converge in the norm topology of X to the solution x* of (1) and their errors are
bounded by

|x* = x| < kaf = Ax,,

< kq|f - A%,

% ~
’ “x - Xy

B

where k = ”A'IH < HP”/(] - q).
Let usset 4 = I — K, where K is a linear bounded operator from X into X, Ais a
complex parameter.

Theorem 2. Let one of the following conditions be fulfilled:
1) P=1|2K| < L

2) P =9I, A is a self-adjoint operator in X, ml £ A <MI, 0 <m <M,
9 =2/(M + m), where m = inf (Ax, x), M = sup (Ax, x).

IIxll=1 lIxlf=1

3) P =9I, Re (Ax, x) = m”x”zfor everyxeX,(m > 0)and 0 < 9 < 2m/”AH2.

4) P = 9*(I — AK*), where 1 is the complex conjugate number to ), K* is an
adjoint operator to K, K is normal, AxH = ka“ holds for every x e X, (k > 0)
and 0 < 9 < k J2/(1 + |2K]))*.

5) P =1+ J, where J is a linear bounded operator in X, commutative with K
and such that HAG - J“ <11 + “AK”), where G is the resolvent operator of K.

Then the equation (1) has a unique solution x* in X. The sequences {x,}, {%,}
converge in the norm topology of X to x* at least with speed of a geometric
sequence.

Proof. 1) It follows immediately from Theorem 1.

2) Assuming that P = 81, § = 2/(M + m), we shall prove |I — PA| = q < 1.
The operator I — PA is self-adjoint, its upper bound is 1 — 9m lower one 1 — M.
The number 4 is to be determined from the condition that the norm ||I — .9A“ is to
assume its minimum value, i.e. from the equality I — 9m = — (1 — IM).

Then

[T =94 =1—-9m=9M—1=(M—m)|(M+m)<1.

3) We have
[1 = 84| = sup (x — 94x, x — 94x) <
Il =1
< sup (1 — 29 Re (Ax, x) + 92”A||2) <1-2m$+ 92”/1”2-
<l =1
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Let us put f(9) = 1 — 2m8 + 92| A|% Then f(0) = 1, f(2m/||4]|?) = 1. The function
f(9) assumes for 9, = m[|A|* the minimum value f(3,) = 1 — m?/| 4[> It is
evident that f(9) < 1 for every 9 € (0, 2m/|4|*). Hence ||I — 94| < 1 for every
b0, 2mJ A1)

4) We have HAxH > k”x“ for every x € X, (k > 0). Hence there exist the bounded
operators A1, (A7), (4*)"* and (A™")* = (4*)~". Therefore P has the bounded
inverse P~!, Because K is normal, then 4 is normal and hence A4 is commutative
with P. From the definition of the norm in X it follows that we have to prove

sup (92]|4*4|*> — 2| Ax|*) <0.

IIx]=1

Because |4*A| = |44*| = | 4]|?, the above inequality will be satisfied if |A]*9* —
— 2k* < 0. But this inequality is fulfilled, since

0< 9 < k2f(t + [AK])? 5 k2|l

5) We shall prove that ¢ = “I —(I+J) A“ < 1. According to the definition of
the resolvent operator G we conclude that

PA =[(I+ 2G) - (AG - J)] (U -—XK)zI - (4G — N 4.
Hence _
q=|1-(+ )4 =026 -J)4| £ |26 - J| |4] =

< a6 — a1+ Jax]) < 1.

To show that P~' = (I + J)~' exists and is bounded we use the following
lemma: Let T,, T; be linear continuous mappings of X into X such that T, ! exists
and ||T,|| < 1/|T5'!|. Then T = T, + T, has an inverse T=" and

[T = 7@ = w707 < +o0)

That P! exists is now clear. It is sufficient to set Ty = I + 1G, T; = P — (I + AG) =
= J — AG. This concludes the proof.

Remark. It is useful to estimate the number q. The theorems 1,2 are valid if the
number q is replaced by ¢’ such that ¢ < ¢’ < 1. We may set in the theorem 2: 1) ¢’ =
= ”/IK ,2)q = (M — m)[(M + m),3)if $ = m/|4|?, then ¢’ = (1 — (m/”A“)z)’},
¢ = (1 - 2% + 94|, 5) ¢ = a6 - J] |1 - ax].

2. Under the assumptions of Theorem 1, let A be a self-adjoint operator in X. Let
us denote by x* the unique solution of (1) in X. We shall solve the equation (1) by
an iterative process (2). The real parameters f, (n = 0, 1, 2, ...) are to be determined
now either from :

¥ |x* = Bx,|* = Min,,
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or from
(8) [x* = xp41|? =Min, (n=0,1,2,.).

First of all we shall determine f, (n = 0, 1,2, ...) from the conditions (7). According
to (2)
2 —

HX* - ﬂnxn = HX* — Xp+1 + Pf - ﬂ"PAX"|
= |x* = x,41 + Pf||> — 2B, Re (x* — x4 + Pf, PAx,) + f7| PAx,

2

From (7) it follows that
b, = Re (x* — x,,, + Pf, PAx,)
' | Pax,|?

Hence from the above equality and according to (2) we have

B.|PAx,|* = Re (x* — Pf = B,x, + B,PAx, + Pf, PAx,) =
= Re (x*, PAx,) — B, Re (x,, PAx,) + B,|PAx,||* .

Therefore
_ Re(x*, PAx,)

A = Re (x,, PAx,)

The operators A, P are commutative and A4 is self-adjoint. Hence

_ Re(f, Px,)
©) b Re (x,, PAx,)

Now we shall determinate 8, (n = 0, 1,2, ...) from the conditions (8). From (2)
we obtain '

UX* —‘xn+l”2 = ”L(X* - ann)
= |L(x* — x,.; + Pf) — B,LPAx,
= |L(x* = x,41 + Pf)|* = 2B, Re (L(x* — x,., + Pf), LPAx,) +
+ B} LPAx,|?,
where L =1 — PA. From (8) we get

2

2= L(X* — Xn+1 + Pf_ ﬁnPAxn)

2

Re (L(x* — X,y + Pf), LPAx,) = B,|LPAx,[?.
From the above equality and from (2) we see that

(10) p — _Re(Lf PLx,)
" Re(Lx,, PLAx,)

The formulae (2), (9); (2), (10) give new methods for solving linear functional
equations in Hilbert space X. The methods (2), (9); (2), (10) are more simple for
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computation in comparison with (2), (5); (2), (6). In a real Hilbert space X formulae
(9), (10) are as follows:

B. = (f, P.)(xw PAx,)™*, B, = (Lf, PLx,)(Lx,, PLAx,)"" .

Taking P = 91, where 3 > 0, then formulae (9), (10) have the simple form:

ﬂ — (f’ xn) ﬁ — (Lf> an)
" (xw Ax,) " (Lx, LAX,)

Theorem 3. Under the assumptions of Theorem 1, let A be a self-adjoint operator
in X. Then the equation (1) has a unique solution x* in X. The sequences {x,}, {%,}
defined by (2), (9); (2), (10) are convergent in the norm topology of X to the solution
x* at least with the speed of a geometric sequence.

Proof. Because

A'=Y(I-PrAa)yP,
Jj=0

then |4™"| = |P|/(1 — q). Hence the equation (1) has a unique solution x* in X.
We shall prove that |x* — x,| - 0 whenever n — c0. According to (7) we conclude
that ||B,x, — x*| < ||x* — x,| for every n (n = 0, 1,2, ...). Further

“'X* - x’n+1|| ‘= "Pf + ﬁnxn - BnPAxn - x*” =
PAx* — x* + B,x, — B,,PAx,,“ =
= “(I - PA) (X* - ann)" = q“x* - ann“ = q“x* = X -
Now it is evident that ”x* — x,,H — 0 whenever n —» co. We shall show that
|x* — %,]| > 0 when n — oo. Since the following equalities
F(gn+1) = HX* - in+1“2 = “L(X* - ﬁngn)nz

hold (B, is defined by the equality (10)), the element %, ; defined by (2), (10) minimizes
the functional F(x) = |x* — x| on the set of all the elements of the form Pf +
+ aL%,, o€ R (where R is the set of all real numbers), then the element B,%, gives
the minimum value of F(x) = ||L(x* — x)|? on the set of all points of, where
o € R. Hence

F(%,.,) = F(B,%,) = Min F(ax,) < F(x,).
acR

Observe that

2
U

F(z) = |LG* = %)|* = ¢*[x* - %,

Then, clearly, ||x* — J?,,HH < qnx* - )Z,,” Thus ||x* - )Z,,H — 0 whenever n'— 0.
The proof is complete. -

242



The analogical theorem to theorem 2 is valid. Let us set again 4 =1 — 1K,
where K is a linear bounded operator from X into X, 1 is a complex parameter
generally.

Theorem 4. Let one of the following conditions be fulfilled:
1) P=1, ”lKH < 1, K is a self-adjoint operator.
2) P = 91, Ais self-adjoint, m £ A < MI,0 < m £ M, where m = inf (Ax, x),

flx]|=1
M = sup (4x,x), $ =2/(M + m).
lIx]f=1
3) P =91, A is self-adjoint, (Ax, x) = m”x”2 holds for every xeX, (m > 0)
and 0 < 9 < 2m/|A|.
4) P = 9*(I — IK*), where X is a complex conjugate number to i, K* is an

adjoint operator to normal mapping K, ’Ax” = ka“ holds for every x e X,
(k> 0)and0 < 9 < k21 + |2K])>.

5) P =1+ J, where J is a linear bounded operator in X, commutative with K
and such that “/IG - J” < 1J(1 + “AK”) holds, where G is the resolvent operator
of the self-adjoint mapping K.

Then the equation (1) has a unique solution x* in X. The sequences {x,}, {%,}
defined by (2), (9); (2), (10) respectively, converge in the norm topology of X to x*
at least with the speed of the geometric sequence.

Remark. If x, - x* (or %, - x*) in the norm topology of X, then the sequences
{B,} defined by (9), (10) respectively converge to one, i.e. lim f, = 1. It follows

immediately from the continuity of the inner product of X. Under the assumptions
of theorem 3, F(B,x,) \ 0, F(%,8,) ~ 0 (here B, is defined by (10)). In fact

F(xn+1) é q2 F(ﬁnxn) é q2 F(xn) < F(xn) s

F(Bx,) < q* F(Bu-1%p—1) < F(Bu—1X,—1), (n=10,1,2,...).

3. The purpose of this paragraph is to remove the condition that 4 be a self-adjoint.
operator in X. We shall solve again the equation (1) with linear bounded operator A..
Let us suppose that A maps X into itself. The equation (1) is equivalent to the equation

(11) Bix = fy,

where By = A*A, f; = A*f. But the equation (11) is equivalent to

(12) x=(I—9By)x+ 9,

where 3 is an arbitrary positive number. Suppose that 4! exists and is bounded ope-

243.



rator in X. Let us denote by x* the unique solution of (1). Hence ‘c* is the unique
solution of (12) in X. We solve (12) by an iterative process

(13) Xn+1 = '9f1 + (X"(I - 931) Xu s

where the parameters a, (n =0,1,2, ) are to be determined from the conditions

that | x* = Min. Since B, is self-adjoint, then according to (9)
(14) o, = Pl
(xn: len)
Finally we have
Re( f, Ax,)
(15) p =
4,2

It is easy to show now that the following theorem is valid.

Theorem 5. Let A be a linear bounded operator which maps X into itself such
that A=" exists and is bounded in X. Furthermore let the inequality 0 < § < I/IIA”2
be fulfilled. Define the sequence {x,} as follows:

X, = YA + (1 — 9A4*4) x, .
Re(f A‘< ) (n=0,1,2,...).

Then “x* — x,,” — 0 whenever n — o0, ‘
q = “[ — SA*AH. Moreover “x,,J,1 — x*H <

— x| £ q'(1 = @) |x; = xo, where
(n=0,1,2,..).

- Proof. Since 4 has the bounded A~!, then there exists a positive constant k
‘'such that |Ax| = k| x| holds for every x € X. Because I — 94*A4 is self-adjoint, then

I1 = aava] = sup (1= 4% 2)] = sup [ = 3]s} -

= sup (1 — 9I|AXHZ),

lIxll=1
since
= afasl? = 1= ofA]* [+l = 1 = o]l > 0
for every x € X with |x| = 1. Further

q=|I—94%4| < sup (1 — K*9|x|*) =1 - 9k* < 1,
[Pxf =1

since O < 3k? < 1. Hence, we infer that conditions of theorem 3 are satisfied and
the theorem is proved.

Remark. Let us solve the equation (1) again by the successive approximations

(16) Xpp1 = 91 + (I = 9B,) x,, (9 >0, P =3I,
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where f; = A*f, B; = A*A.1f the constants y, (n = 0, 1, 2, ...) are to be determined
from the conditions that |x* — x,,|* = Min (n = 0, 1,2, ...) then

2
(17) - Re (L S X))
Re (B Lx,, Lx, )

where L; = I — 9B;. Under the assumptions of theorem 5, the sequence {x,}
defined by (16), (17) is convergent in the norm topology of X to x* and | x*
= 0(q"), where q = “I - SA*A”. But formulae (16), (17) are rather complicated
for practical computation.

It was shown that the iterative processes (2), (9); (2), (10) are convergent at least
with the rate of the geometric sequence with the quotient g = |I — PA|. Hence
it is natural to choose the operator P such that the norm |I — PA| assumes its
minimum value.

Let P =9I, A is a self-adjoint operator in X, mJ] £ A < MI, m > 0. The
constant $ (Theorem 4) is chosen such that ”I — 84|| catches its minimum value.
The lower bound of I — 34 is 1 — 9M, the upper one is 1 — Im. The spectrum of
I — 34 lies on the segment {1 — 9M, 1 — 9m). Suppose that B is a linear self-
adjoint operator in X with the lower and the upper bounds b, N respectively. Then
”B” = max |b[ |N|) The norm ”I - 9A|| will be smallest, if 1 — M =
= — (1 —9m), ie. if 9=2/(M+ m). Then |I— 94| = (M — m)|(M + m).
Hence the processes (2), (9); (2), (10) are convergent (under the best choice
of 9) at least with the speed of the gcometric sequence with the quotient g =
= (M — m)/(M + m). The constant § satisfies in 3) of theorem 4 the inequality
0 < 9 < 2m/||4|>. The estimate of the speed of the convergence is best when
9 =9, = m/|A|? Then [I — 94| < [1 — (m| ||A“2)2]Jf Taking in 4) of theorem 4
=9, = k\/2 ZHAH , then |I — 9A” [1 — 1/2(k]||A[)*]*. The parameter &
of theorem 5 satisfies the inequality 0 < § < 1/|| ” Then the norm HI - 9A*A”
will be smaller when § is nearer to 1/”A”2. The conclusions of theorem 5 remain
valid if 9 satisfies 0 < § < 2k/| 4|*, where k > 0 is the number from the inequality
|Ax|| = k||x|? (the existence of a bounded A™"). The best choice of $is $ = kf||A[*.
Then |1 94%4] = [1 - (/|47

Remark. Some results of this paper were published without proofs in [3], [4].
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Pe3srome

HOBBIE METO/[bl PEIIEHUS JJUHENHBIX ®YHKIIMOHAJILHBIX
YPABHEHUI C OTPAHUYEHHBIMU OINEPATOPAMU

MOCE® KOJIOMBI (Josef Kolomy), Ipara

[ycts navo ypasrenue (1) B JEHCTBUTENLHOM WITH KOMILIEKCHOM r’Ib0epTOBOM
npocrpanctBe X. Ilycte A, P — JMHEHHbIE OrpaHUYEHHBIE TEPECTAHOBOYHBIE OMNE-
patopsl B X, U P TaKOB, 4TO CYLIECTBYET OrpaHuYeHHbIl P~ ! B X U BBINOJHEHO yCJI0-
BUE ||I - PA” = q < 1. Ilyctb, nanee, A — camMOCONpPsDKEHHBIH omepatop B X.
O603Ha4uM 4epe3 x* eAMHCTBeHHOE B X pelucHue ypasHenus (1). TlocnenoBatesibHbie
NpUOIMKEHNS BBIYMCIISIOTCS 110 popmyite (2), rae aeficTBUTe bHbIE KOI(Q(uLMeHTbL f,
(n =0,1,2,...) onpeaeaum Tak, 4To6bl BbnoJHAIMCH yeroBus (7), (8). ®opmysbl
(2), (9); (2), (10) onpenesroT HOBbIC MTEPALMOHHBIE IPOLECCHL, OOECeYMBAIOLIIE HA
Kaxxgomul are Haubosibliee yMEHIIEHHe HOPM OUIMOOK ”x* — BuXalls ’x* - an”.
Ecnu BeiGpath P noaxomsiuuMm obpasom (Hanp., P = 91, rae § > 0), To popmysst
(9), (10) 6o1ee npoctbl, yeM (5), (6), cooTBETCTBEHHO.

Teopema. ITycmb @binoanensl Goviuie c@opmyauposanmsie npeonotoxncenus. Toz0a
nocaedosamenvnocmu {x,}, {x,}, onpedeaennvie paserncmesam (2), (9); (2), (10) cxodam-
cs no Hopme X Kk eourcmeennomy peutenuro x* ypasnenua (1) c¢ vicmpomoii 2eome-
mpuueckoli npoepeccuu {q"}.

B cirydae HecaMOCOMpPsKEHHOTO OonepaTopa A UMEET MeCTO CIIC/YIOLIUS TeopeMa.

Teopema. ITycmv A — auneiinwiii 0oepanuvennvlii onepamop 6 X makoil, umo cy-
wecmeyem ozcpanuyennviii A~'. ITyemo evinoaneno nepasencmeo 0 < 9 < 1/ ”A”Z
Onpedeaum nociedosameabHocmy {x,,} cAe0yIoWUM 00pa3om:

Xppy = A% + o (I — 84*A) x,, a, = Re(f, Ax,)/|Ax,[>, (n=0,1,2,...).

Tozoa ”x* — X,| = 0 (n > o0) u umeem mecmo oyenxa nx* — x,,n <q'(1—-g)t.
xi = xols 20e g = |1 — 84*4].
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