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ON FOURIER IMAGE OF THE SINGULAR SUPPORT
OF A DISTRIBUTION

MiLo§ DosTAL, Praha

(Received April 4, 1965)

0° Let @ € &'(R") be a distribution with compact support in R™. If p e R" we say
that @ e C*(p) if there exists a neighbourhood Q of p and f(x) e C*(R") such that
for every ¢ € 2(Q)

o(p) = | f(x)o(x)dx.

R'l
Then we put

sing supp @ = supp @ \ {p: P e C”(p)},

where supp @ means the support of @. In the present article we will give a precise
description of the convex hull of sing supp @ by means of the Fourier transform &
of &.

First of all we remember an analogous situation with the set supp ®. The well
known Paley-Wiener theorem in Schwartz’s modification says — roughly spoken —
that the radius of the least sphere with center at 0 containing supp @ is equal to the
type of the entire function &. A more precise theorem has been proved by PLANCHEREL
and POLYA ([1]). They introduced a notion of P-indicator of an entire function and
proved that for @ e I2(R") the corresponding P-indicator of & is equal to the sup-
porting function of the set H(supp @), where H means the convex hull. On the other
side a theorem of Paley-Wiener’s type is valid for the singular supports ([2]). We
will find a corresponding variant of the Plancherel-Pélya theorem for the case of
singular support i.e. we shall define a kind of indicator of & and using it we shall
completely describe the set H(sing supp ®). After some notations we begin with
a generalization of Paley-Wiener theorem in the Plancherel-Pdlya direction (theorem 1)
which will be necessary later (comp. [3], p. 130, Remarque 4°) .

1° Let R" ev. C" be the real ev. complex n-dimensional space. We write the elements

of Ctintheform{ = & + in = (& + iny, ..., & + in,), E€RL e R}. Let C, denotes
an arbitrary direction in R", ie. C,= (cosay,...,cosa,) and Y cos’o; = 1. If

231



H(M) is a closed convex hull of some M < R", denote by 4~ M(oc) the supporting
function of the set H(M) so that

H y(2) = sup (x, C,»
xeM

where (x, C,> = Y x; cos . For ® e &'(R") we write A g(x) instead of Ay, .0(x)-
Conversely if k() is a function defined on 1-sphere such that for some M < R" we
have k(o) = A (), we call k() to be a t.c. function (trigonometrically convex).
If ® € 8'(R") the Fourier transform & can be defined by @(() = &,(e” ).

Theorem 1. a) Let @ € &'(R") and k(x) be a t.c. function for which k() > A ()
for every a. Then the following assertion holds:

(.@W) There exist constants C > 0, N (N integer depending only on & is the
order of ® and C depends on ® and k) so that for every o, r > 0 and £ € R

(1) |(¢ + iC,r)| < (1 +‘|§|)N k@

Conversely: Let F be an entire function and k() a bounded t. c. function such that
for suitable C and N the condition (PW’) is satisfied, then F = & for some & €
e &'(R") and A o(2) < k(o).

b) Let @€ 2(R") and let k(«) be a t.c. function for which k(o) 2 A (o) then

(2w *) For every integer N there exists Cy > 0 depending only on N and &
such that for every a,r > 0, £ € R"

(2) ]&(f + iCur)I < CN(l + |6|)—N erk(a)

and conversely as above.

The proof is a slight modification of Hormander’s proof of Paley-Wiener theorem
([2]) but we shall reproduce it only with the aim for comparing his main idea —
translation of the integration domain from R to C" — with a similar one in the case
of singular supports, where the integration:domain R} has to be deformed in a more
complicated way.

First we shall prove the necessity of (#%"). If @ € '(R") then there exist constants
Cy, N such that for every ¢ € 2(R")

(3) |2(p)| = CllleéNSgp | D% o(x)|

Furthermore for every yx € &'(R") such that x = 1 in some neighbourhood of supp @
we have '

) H(0) = D(e™ "™ y(x))
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Supoose C, to be fixed. Put y(x) = y(|{| ((x, C,;> — H o(x))), where y e C*(R"),
Y(t) = 1 for t < 27" and Y(t) = 0 for ¢ = 1. Therefore we have

(5) |8(0)| = CIIK;NSSP |D5(e™ =9 y(x))|

It is easy to obtain from (5) the estimate
(6) I(B(C), = Cz(l + ICDN o Ho@

where C, is independent on «, and combining (6) with the obvious inequality
(L + |2V = Ca(e) (1 + |¢])¥ e, where O < & < inf (k(x) — # o(2)) we obtain (1).

Taking @ € 2(R") and applying (1) with N = 0 on (1 + 4)* & we obtain (2% ).
Conversely if for some bounded t.c. function k(x) and an entire function F (2% *)
is valid, then &(x) = (2r)™" [F(&) /% d¢ lies in & (using the usual Paley-Wiener
theorem and the boundedness of k, we see that ® e 2(R")). Take an arbitrary C,
and r > 0. Then for y = C,r we have by the Cauchy-Poincaré formula

() P(x) = (2n)‘"JF(§ + i) eimErin g
so that for a great N we obtain from (2) and (7)

®) [B(x)| < (27)" Cperti= e j (L+ | de

and leting r — oo we see that in the case of x € supp ® necessarily k(x) = (x, C,>
ie. A o) = k().

By means of a reguralization it is easy to obtain the sufficiency of (2%").
Now we recall briefly the notion of P-indicator:

Definition. Let F be an entire function. Then for any direction C* in R, we put

9 H (o) = sup lim ™" In |F(¢ + iC,r)|

¢eR™ ro>w

and call this function P-indicator of F.

Theorem 2. For ® € &'(R") holds: 9{.,,(&) = #H (o).

This is an easy consequence of the classical Plancherel-Pélya theorem and Theorem
1. Indeed, Theorem 1. gives #g(x) < #'(x) and for a regularization function
@€ D(R") with supp ¢, = {x : |x| < &} wehave Hg + &6 = Ho, = # 5, < K5 +
+ H 5 = H s+ ¢ where &, = @ = ¢, and Plancherel-Polya theorem, the theorem on
supports and subadditivity of P-indicator were used.
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Corrolary. For every @ € &'(R") there exists an integer N (= order of ®) so that
for every ¢ > 0 there is a C, > 0 such that for all o, r > 0, £ € R" we have

(10) |B(¢ + iC,r)| < C(1 + |¢])Y a0+

Let us remark that this corrolary cannot be obtained only from Theorem 1 and
that on the other side it says more than Theorem 2.

2° Now take a function #g(«) in the case n = 1. Then there are obviously only
two directions C, = +1in R, corresponding to « = 0, 7 respectively. It is not hard
to show ([1]) that then for every ¢e R} we have #(0) = lim r~"In |[F(¢ + ir)|

and so #'p(0) = hp(4n) where hy(y) denotes the well known Phragmén-Lindelsf

indicator of F (similar in the case C, = —1) Using the continuity of hx(y) we obtain
(11) #¢(0) = Tim lim In |F(¢ + i¢r)]
to>w & &t

It is a special case of the following general situation. Take a fixed positive function
:1(5, t) defined on R} x (0, + o0) which tends to infinity in every variable separately.
For every t > 0 and « the function r](é, t) determines an n-dimensional complex
manifold I', , in C" = R*:T,, = {{eC":{ =&+ iCn(¢ t)}. Now let « be fixed.
The limit  lim (ln |F(O))/(In(&, t)]) describes the growth of F on I',, at infinity

(g

lele,a,

and so the double hmlt lim lim (In [F(¢ + iC (&, ))/(|n(& 1)]) = Kp(x) gives us a
t=o &= o

simultaneous estimate of behaviour of F at infinity on the one parametrical system
I', in the direction C,. It is to be expected that for some suitable choice of function
r;(é, 1) determining the system I', we obtain an indicator &, which will indicate
a certain property of F.

We put now (¢, (o) denote
H (o) and call it the smgular mchator of F. We shall consider #7% only for F = @,
@ € &'(R"). Further put 2 5(2t) = A gingsuppa(®)

Theorem 3. Let &€ &'(R") and k(x) be a t.c. function so that k(x) > A g(x).
Then

(P2P) There exist an integer N and a positive function C(t) such that for every
o, t > 0, £e R" we have

(12) |@(& + iC(E, 1) < C(1) (1 + [¢])Y ekemsn

Conversely if for a ® e & (R") the condition (9”;9") holds with some t.c. functlon k,
then H o) < k() for all o.

We shall prove this theorem togethér with the following.
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Theorem 4. For every ® e &'(R") we have #3(x) = A $P(x).

Proof: The main idea is due to L. Ehrenpreis (see [4]). First of all we prove the
necessity of (#2). For 0 < ¢ < inf (k(xx) — #5(«)) we can find by means of a suitable

partition of unity the distributions ®; e &'(R") (i = 1, 2) such that
(13) O=0 +d,, P,eDR"), Ho(x)=Ay0)+ ¢2
From Theorem 1 we obtain for all o, r > 0, £ € R"

(14) |84 + iCur)| = C(1 + [¢])¥ e

and further we obtain that there exists a constant R > 0 such that for every integer M
we have fore some C,,

(15) |,(0)

for all { e C". Take a fixed ¢ and o and chose M = (R — R,) t — N, where R, =
= inf k() (evidently Ry > —o0). Then for n = n(&, t) we have

< Cy(l + )™M (r = [Im))

(16) [B,(0)] < 1 + [¢])¥ koo
and (16) together with (14) gives (12). From (12) we obtain immediately
(17) Hy(x) < H3l2)

Now let us prove the inverse inequality. It is sufficient to prove the following
assertion: for every ¢ > 0 we have: if « is an arbitrary but fixed, then for every
x € R" such that (x, C,> > #3%(a) + & holds ® € C*(x), that is A 3(or) < H(x) + ¢
for every ¢ > 0, a. Now take an arbitrary integer j > 0 and put Ty = {x : {x, C,> >
> #%5(0) + ¢ + 6} for & > 0. It is sufficient to prove that & e C/(T;) for every
6 > 0. Take an arbitrary 6 > 0. From the definition of 2} follows that there exists
t, > 0 so that for t = t,

(18) Jim. %%—” < #35(x) + ¢

Put now

(19) t; = max (to,(n +j + 1)071).

Further for some &(7;) > 0 we have o

(20) |B(¢ + iCyty log (1 + [E])] < exp {n(&, 1,) (#5(x) + ©)}

for all [gj] > &,(t;) so that for some constant Cl(tl) holds
21) |B(E, 11)] < Cufty) (1 + [g)crs@+o
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for all £ € R;. We put

(22) ox) = J SO BO) Ly A .. A d, =j e @(C,t)a(cl"”’ a
rtl,a R (61"- 6)

and if we take ¢ to be an arbitrary multiindex with the lenght IL| < j then estimating
the «-th derivative of the last integrand absolutely and uniformly in T; by a summable
function we shall prove that y(x) € C/(T;) and so x(x) € C¥(To).

Evidently we have for some C{(t,) (i = 2, 3)

(23) D) £ Cot) (1 + [ e Ty EeRy
Ayt

24 < Cs4t

(24) s e:) s(1h)

Combining (21), (23), (24) we see that with regard to (19)

25 D(e"%) (¢, t oA - C) d¢ < ¢y J S S—

( ) Jkén (e ) (c 1) a(él, - é = ( 1) R(]. + l€|)n+1

so Di(x(x)) = [ Di(e’™®) &(¢) d¢ and y(x)e C/(T). Especially from our conslu-
sions follows for every ¢(x) € 2(T):

.

so that we can change the order of integrations and using the formulas of Plancherel
and of Cauchy-Poincaré') we obtain finally

=9 e, 1) Lononb) ()

dxdé < +©
Aerr )

~

(27) @(e)(2m)™"

Il

B(8) p(—¢) d¢ = j () p(—0)dl =

JRen

= [ & idx,0> a(CI’ e C)d dx =
R "j x"(p(é’ tl) ‘ (p(X) a(éla ces é) é ¥

= [ (j 55(6, ty) e d(,’) pdx = j x(x) o(x) dx
Jren\Jr R

which means that ® = y on T and so ® € C/(T) and Theorem 4 is therefore proved.
If we suppose (22) to be valid for some k(x), then we have obviously #3(e) < k(cx)
which is by the Theorem 4 the same as ¢ g(x) < k().

v Kx

1) ¢ decreases very fast, see (Z# ).
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Added in the proofs: Theorem 2 is proved in [5].
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Pe3rome

Ob OBPA3E ®YPLE HOCUTEJS CUHI'VJISIPHOCTEN
OBOBIMEHHOM ®YHKLINU

MuUJIom OJOCTAJL, (Milo§ Dostal), Ipara

Iycts @ € &'(R") sBistetcst 060OLIEHHOM (QYHKIMeH ¢ KOMIAKTHBIM HOCUTEJIEM.
O06o03HaYnM Yepe3 sing supp @ ee HOCUTEb CUHTYJIsIpHOCTEM. JIJIst ies10M QyHKImu @
(npeobpaszoanue Dypbe @) MBI TIOJIOKUM

Hy(x) = Tim lim (In [B(E + iCp(&, 0)]) . [n(& 1)1,
t— o |§]=o
rae n(&, 1) = tlog (1 + |¢]) u C, = (cos &y, ..., cos ) — eMHUMHBIA BEKTOD B n-
MEPHOM BSLIECTBEHHOM NpPOCTpaHCTBE R". ®yukuus H#5(c) OMMCHIBACT POCT
byHKIMN @ B Hanpasiennn C, Ha OJHOMAPAMETPUYECKOIl CHCTEME (F ,),>0 MHOTO-
obpasuit I', = {{eC":{ = & + iCy(&, 1)} (C" n-MepHOE KOMIUITEKCHOE TIPOCTpaH-
¢1B0). Ecivt MBI Tenepb MOJIOKUM

Ha) = sup (x G,

xesingsupp®

TO UMEET MECTO cJieayronast Teopema:

Teopema 4. 11 kaxncoozo D € &'(R") umeem H'g(a) = A 5(o). Teopema 3 mpu-
BOIMT APYryr0 (OPMYTMPOBKY 3TOTO YTBSPXKACHUS MPH MOMOLIM HEPABEHCTB. Jlist
JI0Ka3aTeJbCTB 3TUX TeopeM HyxHa Teopema Isitmu Bunep-llsapua, chopMymupo-
BaHHas 6oJiee TOYHBIM 00pa3om. D10 Teopema 1, KoTopast aHAJIOTUYHA Teopeme 3.
Teopema 2, aHaJIOrOM KOTOpOIl sBjisseTCS TeopeMa 4, NpeacTaBiseT 0000IIeHwe
Teopembl [Lnanmepenb-TToia Ha ciyyail 0000IIEHHBIX (YHKIHUH.
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