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Чехословацкий математический журнал, т. 16 (91) 1966, Прага 

ON HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS 
WITH RANDOM PERTURBATIONS 

Ivo VRKOC, Praha 

(Received April 1, 1965) 

Let there be giwQn a sequence of differential equations 

(1) X == -À„X + S^{t, X, CD^) , 

a sequence of initial conditions х,̂ (0, a)„), a sequence of numbers v,,, a sequence of 
intervals <0, T„> and a sequence of (ß„, ^ „ , P„). The S„ is a stochastic process 
defined for [t, x, ш„] e <0, oo) x ( -00 ,00) x ß„, and describes random perturba­
tions. Finally X is a scalar variable, Я„ are positive numbers. We shall investigate two 
different kinds of assumptions concerning S„. Firstly, we may assume that the 
perturbations act only at discrete instants tll'\ causing discontinuities of the solution; 
secondly, they may act on the entire intervals {t^^\ t^^'^^^) being bounded there 
however a mixed case may also be considered. For the sake of simplicity we shall 
assume that these instants tH""^ are regularly distributed, i.e. there exist numbers 
d^ > 0 such that rf ^ = kd„ (k are nonnegative integers). The assumptions on S„ are 
given more precisely in § 2: in the discrete case in (16) to (18), and in the continuous 
case in (19) or (20) together with a further assumption. However, these assumptions 
do not ensure the uniqueness of the process S„ nor of the solutions x. 

We shall deal with the expressions sup P( sup х„(т, co^) ̂  v„) and 
Xn(t,cOn) те<0,Г„> 

sup P( sup |X,,(T, CO„)| ^ v„); here x„(ir, 6o„) is a solution of the n-th differential 
Xn(t,ОУ,г) Т6<0,Гп> 

equation of (1) with the given initial condition x„(0, a)„). These expressions mean the 
maximal probabiHty that the solutions x„(t, co„) (not uniquely determined by its 
initial condition) exceed at least once the bounds x ?= v„ in the interval <(0, T„). If 
the assumptions (7) to (10) are satisfied, the limits of these expressions exist for n -> 00 
and it is possible to determine them in terms of solutions of a parabolic differential 
equation (see Theorem 1 or 2). The assumptions (7) to (10) imply that the density of 
the points tl^^ on the considered intervals <0, T„> is sufficiently large for large n. 
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In the first part of this paper, in lemmas 1 to 11 as long as we look for the process 
y„(t, co„), which gives the maximum at 

sup P( sup X„(T, CO„) ^ v„), sup P( sup |X„(T, CO„)| ^ v„) 
Xn(t,con) те<0,Т„> Xn(t,con) те<0,Г„> 

we proceed similarly as in [1] and we do not use the subscript n. We shall not give 
proofs of Lemmas 1 — 9 because they are similar to those in [1]. Lemmas 10 and 11 
will be proved because the difference in method is significant. The remaining portions 
that is the determination of the limit of the expression P( sup у„[т, со„) ^ v„) is quite 
diff*erent from that in [1]. тб<о,г„> 

We shall employ the following notation: Let Xi{œ),..., x„((o) be random variables 
on a common space (Q, #", P) then conditional distributions [2] exist 

F(l i \À2,.. ., A„) = P{xi{œ) й К I ^ 2 И = h^" -, Xn{p) = К) ' 

We shall use the conditional expectation 

^(^(^i)) I ^2 = >̂ 2. • • •. ^n = K) = S^i^i) ^д / (^11 ^2, •. -, 4 ) 

The problem is formulated and solved as in [1], first without using the concept of 
a differential equation, and only in a conclusion — see § 2 — the results are applied 
to the differential equation (1). 

The conditions (2) to (4) are so chosen that solutions of (1) fulfil (2) to (4) if S 
fulfils the assumptions of § 2 (for example (16) to (18) or (19) or (20)). 

Definition 1. Let numbers J > 0 , ^ > 0 , i ^ > 0 , Я > 0 and a distribution Fo{9) be 
given. The class of processes x(t, со) which are defined for а1И ^ 0 (but not necessarily 
on the same Q) and which fulfil the following conditions P{x{0, со) S 0) = Po(^)? 

(2) £[x(r(^^^>, со) ~ ^e-''\x{t^^\ co) = fi, 

x{t^^~^\ со) = «fc-i, ..., x(0, со) = ao] --= 0 , 

(3) Ellxit^'^-'K со) - 1ле-''\ I x{t^'\ co) = fi, 
^^^(fc-i)^ ^^ ^ ад.-1, ..., x(0, со) = ao] й ^d , 

(4) P[\x{u oj) ~~ /ie-^(^-^^'^>| > K{t - t^'^) I x{t^'\ co) = 1Л, 

x{fi-'\ со) = a,_ 1, ..., x(0, со) = ao] = 0 

for all t : t^^^ < t й t^^^^\ (t^''^ = kd) will be denoted by X(Po, S,K, d, X) (or 
briefly X). 

As mentioned above, we shall be concerned with estimating the expressions 

(5) Pi(^, K, V, d, t, 1) = sup P( sup X(T, СО) ^ v) 
x(t,o}) T6<0,O 

(6) P2{ô, К, V, d, t, X) = sup P ( sup |X(T, CO)\ ^ V) 
x(t,co) Te<0,f> 
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where x(t, œ) is arbitrary process belonging to X(FQ, S, K, d, Я) (Я(о) = inf P(^), 
У4 =) Q, Л are mesurable). ^ 

The meaning of (2), (3), (4), and similarly of (16), (17), (18) or (19) or (20) of § 2, 
is as follows: (2) — random perturbantions do not cause any "systematic error", 
(3) — random perturbations are small in a certain sense, (3) — this condition has the 
same meaning as that in [1]. If condition (3) were not satisfied, a ^'systematic error" 
would arise and the results would be weaker. The following definition of bounded 
processes differs only slight by from that in [1]. 

Definition 2. Let positive numbers d,X,K,d,v and a process x{t,œ) be given. 
Assume that x{t, œ) is defined for all t ^ 0. Define t{cD) = min î ^̂ (co) if х(г^^ (̂ш), œ) ^ 
^ (v - Kd) e^^ (values of t^\œ) are only t^^^). Or if such t^\œ) do not exist set t{o:)) = 
= 00. The process x(t, CD) is bounded at v if x{t, œ) = x(t{cjù), со) for t ^ t{cD), The 
process x^{t, œ) will be termed the process bounded at v corresponding to x{t, со) if 
x^(t, œ) = x(t(co), со) for t ^ t(co), x^(t, со) = x(t, со) for t ^ t{co). 

Remark 1. The inequality (v„ — K^d^) exp {À„d„} < v„ must be fulfilled for large n 
according to (7) to (10), and thus we can assume that (v — Kd) e^^ < v. By (3), (4) 
the inequality ö > К cannot be satisfied. The meaning of the expression (v — Kd) e^^ 
in Definition 2 is obvious from the last inequality of Lemma 2. 

The following lemma differs slightly from [ l , Lemma 1] but the method of the 
proof is similar. 

Lemma 1. Let x{t,co)eX{Fo, ö, K, d, X); then x^{t, œ) satisfies (2) to (4) for 
p<{v - Kd) e^^. 

The change of the definition of a bounded process influences Lemma 2, too. 

Lemma 2. Let x e X(FQ, 3, K, d, X); then 

P{x^e-^ä + Kd(t. œ)^v) й P~{ sup X(T, СО) ^ V) ^ P( SUp х(т, Oj) ^ v) ^ 
O^xut Ourut 

й P{xXi^^\ œ) ^ (v - Kd) e'') 

where t^^^ is the greatest t^^^ such that t^^^ § t (P~(Q) = sup P''^), A a Q, A are 
measurable). ^ 

The following three Lemmas remain unchanged. 

Lemma 3. The expression P(x,(r, ш) ^ (v - Kd) e^^) is a non-increasing function 
of V for fixed t and for fixed x{t, со) e X{Fç^, 6, К, d, X). 

Lemma 4. The expression P{x^{t^^\ a>) > (v - Kd) e^^) is a non-decreasing' 
function of к for fixed v and for fixed x{t, со) бХ(Ро, »̂ К, d, Я). 

Let the numbers К, d, X and the distribution FQ be fixed. Denote C(ö) = 
= sup P(x,(f, (ü) ^ (v - Kd) e^^) for x{t, со) e X(Fo, ^^Д, à. A). 
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Lemma 5. The function C(ö) is non-decreasing. 

As Lemma 1 holds in form weaker than in [1] we cannot use the principle of 
reflection, and we must introduce the following definition which sUghtly differs from 
that in [1]. 

Definition 3. X''(Fo, ô, К, d, X) is the class of processes with initial distribution FQ )̂ 
which are bounded at v, satisfy (2) to (4) for jn < (v — Kd) e^^, and also 

P{x{t) e Л I x{t^'') = //, x{t^'~ )̂) = a,_ „ ..., x(0) = «o) = 

= P{x{t)eA\x{t^'^) = ft) 

for all t e (^fi\ (̂̂  + i>) and for all sets A which are ß-mesurable on (—oo, oo). 

The following Lemma 6 is quite similar to that in [ l ] , and now the Lemmas 7, 8 
hold for the class X^ 

Lemma 6. Let x(t, ay) e X[FQ, Ô, К, d, X); then there exists a process x^(t, g) such 
that x^(t, Q) GX^^FQ, <5, K, d, X) (x* is not necesserily defined on the same Q), and 

(6,1) P^(x*(^(^^+ >̂) e A j x%t^'^) = AO = PM^^'"''^) ^ ^ I -Ч^ '̂О = Â ) 

holds for all t e 0^^\ t^'^^^^} and for all sets A which are B-mesurable on [—GO, OO). 

Remark 2. If x eX, we can construct the bounded process x^, at v corresponding 
to X. According to Lemma 6 we may construct the process x* which corresponds 
to Xy. (The condition x e X is necessery only for the existence of conditional distribu­
tions.) According to (6,1) x*eX^ is satisfied, and for every nonnegative integer 
P(x*(r^'>) S0) = P{x{t^^^) й 0). 

Definition 4. Let a, Ь be nonnegative integers, a ^ h. Denote 

<p̂ (ö) = sup %(x(f<*'))h(f^"') = Ö), 
X 

where x belongs to X^{FQ, S, K, d, X). The expression cpa{0) also depends on v, but 
this will not be emphasised because it is not important. 

Lemma 7. Let a, b be nonnegative integers, a ^ b, and let (p{9), ф(9) be B-
mesura ble functions; if (р{в) ^ il/{e) then (pl{0) ^ ф1{в). 

Lemma 8. Let a, fe, с be nonnegative integers, a S ^ ^ c, and let ср{в), ф(0) be 
B-mesurable functions; if (pl{0) S Ф(0) then ср1{в) g ф^О). 

The following Lemma 9 is а modiftcation of that in [1]. 

)̂ i.e. Р(х(0) SO)= FoiO). 
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Lemma 9. Let (р(в) be а convex function; then each (p^^^(ö) is convex for в < 
< (v — Kd) e^^, and the relation 

(9.1) Ф Г Ч ^ ) = E{ф^{t^'^'^)) I x*(r(̂ >) = 0) for в <{v - Kd) e'' 

is satisfied, where x* is the process belonging to X^'^FQ, Ô, K, d, X) for which 

H^k + i\ ^k) = H^k + i - ^k^'^y The function F{u) is defined by 

(9.2) F{u) = 0 for и < -Kd, F{u) = 1 for и -^Kd , 

F{u) = Sl{2K) for -Kd ^ и <0, F{u) - 1 - (5/(2K) for 0 S и < Kd . 

The necessary modifications of Lemmas 10 and 11 are more essential and therefore 
they will be proved in detail. 

Lemma 10. Let (р(в) satisfy: 0 ^ (р{в) S h (р{в) = 1 for в ^ v - Kd, and 
be (p{9) convex in the region 9 ^ v - Kd (v is a positive number). Let 9*(ö) be 
defined by (^*(ö) = (р(в) for 9 ф (v — 3Kd — s, v — Kd) and 

(10,1) (рЩ = 1 for 9 ^v - 3Kd . 

(p*(0) LS linear in <v — 3Kd — s, v — 3Kdy. The process у is bounded at 
(v - 3Kd) e"̂ ^̂  + Kd corresponding to z E X{FQ, d,K, d, X), P{z{t^^^ + 0) - fie~̂ ^̂  + 
+ uKd I z{f^) =• ji) = 1 — 2p + |w| {3p — 1) where p = min {öJK, l)/2, the para­
meter и may equal only —1,0, 1, and z{t) is a solution ofz= —Xz for all 
other t. 

Then the inequality 

.(10,2) Е{ф{&-^))) ^ Е{,р*{у{&Щ 

holds for each x e X'[FQ, ô, K, d, X) arbitrary г > 0 and arbitrary nonnegative 
integer n. 

Proof. According to the definition of z the equations 

<10,3) P(z(f**+i>) = це-'' - Kd I z(f«) = n)=^ p 

P(z((('' + i)) = ^e'" + Kd\z{t^''>) = ii) = p 

P(2(f<'= + i>) = ;<e-^''jz(fW) = M) = 1 - 2p 

P(z(0) йО) = P(x(0) й 9} • 

hold. Obviously 

(10.4) O^L{n)d^F{fi\e)ul. 
J 

Let V{e) = ав + b and x e X{Fo, Ô, K, d, X); then 

(10.5) £(F(x(f(* + i')) j x(f<*') = 0) = aOe-" + b . 
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Equation (10,5) also holds for the processes xeX\ for в < {v - Kd) e^^ whose 
distributions satisfy 

(10.6) F{n \9) = 0 for fi < ве~^^ - Kd 

F{ji \e)= 1 for f.1 ^ ве~^^ + Kd 

F{fi I в) = ôl{2K) for ве-^^ - Kd ^ fi< ве-^^ 

F{fi \e)= 1 ~ d\{2K) for Oe-^^ S fi< Oe-^^ + Kd . 

Next we shall prove the following statement: 
Let (p{9) be convex for 0 ^ v — Kd, linear in <v - 3Kd, v — Kd} and (p{^) = 1 

for 9 > V ~ Kd, then every process for which 

is bounded at v. The distributions of these processes satisfy (10,6) for 9 < 
<{v - IKd) e'\ 

(10.7) F{n 10) = 0 for n< 9e~^\ 9 e ф - IKd) e^\ (v - Kd) e^^} 
F{ii I 0) = 1 for fi ^ 9e~^\ 9 e <(v - 2Kd) e^\ (v - Kd) e^^} 

(PI^\9) is convex for 0 ^ (v - Kd) e^^. 
Let j{9) = (p{9) for 9 Sv - Kd, x{9) linear for 0 ^ v - 3Kd. Obviously ^(0) ^ 

^ x{9). By Lemma 7 ^^"^^(0) й Xu^^i^) and by Lemma 8 (since x{^) is convex)* 
xl^\9) = Jx(/x) dF(/i I 0), where F{ii\9) is a conditional distribution fulfilling (10,6). 
for 0 < (v — Kd) e^^ of a process which is bounded at v. We have obtained that 
Х^^'Щ is also convex in 0 < (v - Kd)e^^. By (10,5) the equation xl^\0) = 
= /%(м) dF(fi I 0) holds, where F{fi | 0) satisfies (10,6) or (10,7) respectively and 
moreover F(ju j 0) is a conditional distribution of a process bounded at v. The process x 
which is defined by (10,7) and for which x{t^^^) = 0 < (v — Kd) e^^ cannot exceed 
the bounds x = v - X^ at f^"-^"^ and hence ^^'"^(0) = х\'^\^)^от 9 <{v - Kd) e^\. 
(Note that ^ Ф x may hold for 0 > v - Kd) As (p{9) й h (p{0) = 1 for 0 ^ v - iCJ, 
the equation (pl''\9) = J(p(/i) dF{fi\ 9) also holds for 0 ^ (v - Kd) e^\ Now start 
with the proof of Lemma 10. We define the function "i/̂  by "i/̂ (0) = ф(0) for 0 ф 
Ф (v — 3Kd, V — Kd), "i/̂ (0) is linear in <v — 3Kd, v — Kd}. Since (p{9) is convex in 
0 ^ V — Kd, we have 

(10.8) ср{в) й "Щ 

Since (p*{9) = 1 for Ö ̂  V - 3XJ, we obtain 

(10.9) "ф{в) ^ (p*(e) 

By Lemma 7 we have 
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According to the statement proved above and (10,9), 

(10.11) "Ф"„-1{0) = mt^)dF{fi\9) й \cp*{ii)dFiß\e), 

where F[ii | в) is conditional distribution fulfilling (10,6) and (IQ уч |̂- ^ process 
bounded at v. Set <pt- t(ö) = J(p*(/i) d/(/z | 0), where F(M | Q) î ŝ a Conditional distribu-
tion fulfilling (10,6) of a process bounded at (v — ЪКа) e + ^ ^ According to 
{10,1) we have 

(10.12) (pt-i{0) = 1 for e^v -ZKd, 

According to (10,4), (10,1) and (10,11) the inequality 

(10.13) ""Гп-тйср^-т 

holds. By the statement proved above, "i/^"-i(ö) is convex for Ö § ^̂  __ ̂ ^\ ^ы^ ^^^ 
by (10,4) >"_i(ö) й 1- We can now define the function ""4(0) thus: 

«-i^(ö) = >^ i (ö ) for 0 ̂  (v - 3Kd, (v - K(i) e^^), 

,/̂ (0) = 1 for Ö e <v - KJ, (v - Kd) e^dy ^ n-i 

^"V(ö) is linear in <v - 3Kd, v - Kd}. Obviously ""^(0) ^ >"_i(ö), and by 
(10,10) the inequality 

(10.14) <Pn-i(ö)^"-V(ö) 

holds. According to (10,12), (10,13) and (10,4) we have "" V(ö) § (pn-i{0). 
Now we proceed by induction. Let there exist functions ^ф, cpt such that 

(10.15) (рЦв) й V(Ö), 

(10.16) '^(0) s (РШ (PÎ{0) = 1 for 0 ^ V - 3Xrf, 

(10.17) Щв) is convex for 9 ^ v - Kd, 

(10.18) V(Ö) is linear in <v - 3Kd, v - Kd) , 

(10.19) V(ö) ^ 1, V(ö) = 1 for 9^v -Kd. 

By Lemma 8 we have 

(10,20) « ? ' t i ( ö ) ^ V t i ( e ) . 

By the statement, (10,17), (10,18) and (10,19), Vt-i(0) is convex for 0 ^ (v - Kd) e^" 
and the inequality "^l-iid) = j''ф{ц)dF{^l\в) ^ ^(p*{ß)dF{ß\e) holds, where 
'̂(̂ ^ r s a conditional distribution fulfilling (10,6) and (10,7) of a process bounded 
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at V. The last inequality holds according to (10,16). By (10,4) and (10,16) we obtain 
jçtifi) d % I в) S ^cptifi) dF{^ I 0) = cpt.ifi) and 

(10.21) V t i ( ö ) ^ 9 t i ( ö ) . 

Set '~V(6>) = Vt - i (ö ) for e${v~3Kd, {v-Kd)e'% ^~'ф{в) = 1 for Oe 
e <v - Kd, (v - Kd) e^^}, ^-^ф{9) is linear in <v ~ 3Kd, v - Kd}. Since Vfc-i(ö) 
is convex for в S {v - Kd) e^"^, we obtain Vfc-i(ö) ^ ^~ V(ö). By (10,20) the 
inequality (10,15) holds also for /c - 1. By (10,21) and according to (pt-i{0) = 1 
for Ö ̂  V — 3Kd, the relations (10,16) hold also for k - 1. By the statement proved 
above, (10,17) is true. According to definition of the function ^~^л1/{9) we obtain 
(10,18). According to (10,4) and the definition of F(^j(9) we conclude (10,19). 

From (10,15) and (10,16) we have 

(10.22) (pp) й <PÎ{0) for every ^ . 

The function (pt{0) is obtained from (p*+i(ö) by means of 

(10.23) cptie) = Lu M d % I в) = EicpUM^^'^^'')) I У{П = 0), 

where у is the process described in Lemma 10. We shall prove that 

(10.24) •ср1{в) = Е{ср*{у{1^"Щу{П^в). 

Obviously the relation 

(10.25) E{<p*{y{t^"^)) I yif'^- " ) = 0) = E\E{<p*{y{f"^)) I y{f'^^), 

Xf(*-̂ >))|y(f< -̂'>) = 0] = £№*W^'"'))lKf''0)b(«''"") = Ö] 
holds since у e X". By (10,24) we obtain the relation 

(10.26) E{cp-{y{t^^\ œ)) I y{t^'\ œ)) = cpt{y{t^^\ œ)) 

almost everywhere. If apply (10,26) in (10,25) we obtain E{(p^{y{t^"^))\y{t^^''^^) =-
= 0) = (pt-i{0) by means of (10,23). We have proved (10,24) for all k. According to 
the definition of (рЩ and (10,22) and (10,24), we obtain E{(p{x{t^''^)) \ x{0) = в) S 
S (р\,^Щ s (Pt{0) й ф*(з^(^^"0) b ( 0 ) = Ö)- Then (10,2) is easily proved. 

Previous lemmas yield 

Lemma 11. Let x e X{FQ, Ô, К, d, X) and у be the process bounded at 
(v — 3Kd) e^^ 4- Kd corresponding to the process z which is described in Lemma 10» 
The inequality 

(11,1) P{ sup X(T, СО) ^ v ) ^ Piy{t^^\ œ)^v ~ 3Kd) 

holds, where t^^ ^ t, t - t^^^ < d. 
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Proof. Choose a sequence of positive numbers s^ -> 0 (for m -> oo) and a sequence 
of functions (p^{9) such that (p,„{9) is convex for Ö ̂  v — Kd, (p,„{9) = 1 for Ö ^ 
^v ~ Kd, (p^{e) -> (p{e) which is defined by (p{e) = 0 for Ö < v - K^, ^(ö) = 
== 1 for 9 ^ V — Kd. The functions (Pm{9) (see Lemma 10, s^ -> 0) converge to 
a function ф*(о). The function cp* fulfils ф*(0) = 0 for 9 < v - 3Kd, срЩ = 1 
for Ö ̂  V — 3Kd. For arbitrary xeX choose x^ — see Definition 2. According to 
Lemma 2 we have 

(11.2) P( sup X(T, Ш) ^ v) ^ F(xX^^''0 ^ (̂  - ^^0 ^^^) 

According to Remark 2 we construct x* e X '̂ for the process x^ so that the inequality 

(11.3) P(x,(r(^^) ^ (v - Kd) e^^) S Pix^t^"^) ^ V - Kd) 

holds. As the functions (p^(ö) coverge to (p{9), we have 

(11.4) £((p^(x*(r(^>))) -> £((^(x*(r('^)))) = P(x*(t^^>) ^ V - XJ) 

Since the functions (p^{9) converge to ф*(о) we have, similarly, 

(11.5) Е(ср*МП)) - . £(<?>*(j<l«))) = Р(у(г^'>) ̂  V - 3Kd) 

By Lemma 10 
(11.6) £(фДх*(г<''>)))^%:(Хг«))). 

The inequalities (11,2) —(11,6) imply (11,1). 
We have obtaine the process y, and by means of this process we are able to estimate 

(5). In the case that j;(0, со) = yQ is SL number (and not a random variable) we can 
conceive this process in the following way. Consider a point Ä. For t ^ 0, A lies 
at Уд. For 0 < t < d the point A moves in accordance to the differential equation 
X = — Ях. At the instant t = d the point A moves to a distance Kd to the right or 
left with the same probability ojilK) or it remains at the same position with proba­
bility 1 — ôJK. In the time interval d < t < 2d the movement of A is governed by 
the differential equation x = —Ax. At the instant t = 2d the whole situation is 
repeated. We still have to determine the value of lim P( max y[tl^^\(o) ^ v„). 

n->oo O^l^Tjdn 

In [1], the modified Lagrange integral theorem was sufficient for this. But now we 
must find the distribution as the solution of certain parabolic equation. We shall 
introduce three transformations which will transfer the process y to a process v 
more convenient for our considerations. Before formulating Lemma 12 we must 
modify the definition of processes bounded at v. 

Definition 5. Let there be given a function/((^), a sequence ^^^^ < ^^^^ < ... and 
a process x(( ,̂ со). We assume that the process x(( ,̂ œ) has values from E ^). 

^) E arises from (—oo, GO) by adding ±co. 
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The process x(^, со) is bounded by / (^ ) at (̂ '̂*̂  if x(( ,̂ a>) = oo for (̂  ^ ^(œ), where 
4(co) is the minimum of ^^%œ) : x{^^'\œ), œ) ^ /((̂ ^ '̂̂ (co)) and the value of ^^%œ) are 
.<Ĵ-̂ '̂  only. If no such ^^'\œ) exists we put ^{œ) = oo. The process z(( ,̂ со) is bounded 
by f{C) at <̂ '̂̂  and corresponds to x{^, со) (for an arbitrary process x) if z(( ,̂ o)) = 
= x(( ,̂ со) for ^ ^ (̂ (co), z(<̂ , со) = 00 for ^ > ^{(D), where i{œ) is defined above. 

Lemma 12. Т/ге transformation у = e"^'y transfers the process у to a process у 
P(y(r(^ + i>) == y(r(̂ >) + uKde'^''''"-'^ I y(r(''0, ..., 7(0)) = 1 - (5/K + |i/| (3(5/(2K) - 1) , 
where the parameter и may equal only — 1, 0, 1. The absorbing barrier is described 
by у = {v - 3Kd) e'\ The transformation ^ = e^'\ 6'> = e^''''\ y{^^'^) = y{t^'^) 
transfers the process y{t) to a process y{C) 

= 1 - <5/K + |M| (3<5/(2K) - 1), 

•where again и = — 1, 0, 1. The absorbing barrier is described by у = (y — 3Kd) ^^. 
The transformation у = vv transfers the process у to a process v 

<12,1) P(ü(^<'^i>) = v{e^) + u^e"> V(^f'>) I <^*'-'),..., K6°0 = 
V 

= 1 - Ô\K+ \и\{Щ2К - 1), 

where the parameter may equal only —1, 0, 1. The absorbing barrier is described 
by 

<12,2) . = fl-^V^ 
The initial condition is 

<12,3) P{v{l) йО) = P{y{0) й v0). 

Consider now the processes v„{^, со); these processes are defined by (12,1), with 
Ô, K, d, V, Я, ^^'^ replaced by Ô„, K„, d„, v„, Я„, ^l'\ If the processes v„ are not 
bounded by any / we shall prove that under certain conditions the distributions 
F„(( ,̂ 9) = P(Vf,{0 ^ 0) converge to a solution of a certain parabolic equation. 

Hypothesis. Let sequences of real positive numbers ô^, ..., S„, ..., K^, . . . ,X„, ...; 
J i , . . . , 4 , . . . ; Яь ..., Я„...; Ti, ..., T„,..., Vi,..., v„, . . . satisfy 

<7) ^ ^ Л ^ о,йК, 

(8) Я „ Т , - > Т > 0 

(9) Я А - 0 

:(10) M î _ ^ 0 . 
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Remark 3. By (8), (9) we have Tjd„ -> oo. If we assume that ô and К are independent 
of n (as in [1]) then we the assumptions (7) - (10) reduce toô^K, 4/(Я„У,^) -> Л ̂ /(Ж), 
л,Т, -^ Т, XJ^ -> О (or Т„/4 -> оо)- By Lemma 12 we have ^^^ e <1, e^^>. 

Lemma 13. Let v^ he defined by (12,1) {where instead of Ô, K, v, d, ^^'\ X we put 
<5„, iC„, v„, (i„, (̂ ,V̂  ^n)- ^^^ ^^^ initial distributions F,j(l, Ö) converge uniformly to 
a distribution F(l , ö). / / (7) —(10) are satisfied then the distributions Fj^^,9) = 
= P(r„((^) ^ в) converge to the bounded solution of the parabolic equation 

(13,1) ^ = ^ - - - ^ 

which has initial condition F(l, Ö) and is given by Poisson formula [3] 

This covergence is uniform in each region (̂  G <1 + /i, Я>, Ö; /Î > О, Я > 1+ h. 
If F ( 1 , Ö) IS uniformly continuous then Fj^^, в) converge uniformly to F(^, в) in 
the region ^ e <1, Я>, в. 

Proof. Choose a positive number s. Observe that each bounded solution of (13,1) 
has uniformly bounded partial derivatives д^Fjд^^', ô^'FJôe^', d'^FJdQ^ in each region 
< ê <1 + /i, Я>, в. (A simple consequence of the Poisson formula.) If F(l , в) is 
uniformly continuous then F{\ + г, &) converges uniformly to F(l , в) for e -^ 0 + , 
this follows from the Poisson formula. 

First we shall assume that the function F(l , в) is uniformly continuous. Let 5 be 
the least superscript satisfying (̂ ^̂^ ^ 1 + г (s depends onn but we do not indicate 
this). We shall prove that the value 

(13,2) ßl^':\ e) = F{C\ в) - ЕДГ'\ в) 

converges to zero. To obtain this we shall estimate the expression (in the following 
two formulae we shall not indicate the dependence on n) 

oi6'\ в) = F{e'^'\ e)-F (б'», в + ^е'' ^{е^)\ A _ 

-F(e'\e)(l-^-F(e'\9-^e"'^{6'')\^ = 

2 дв v^ \lov V 

]_ 3 ^ /«(/) Q**\ ^iAA g3A<i/-̂ (0\3/2 ^ 
12 ÖÖ' ^ ' v̂  
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where 

V V 

Dividing the equation by (̂ '̂̂ ^̂  — ̂ '̂> and considering that F is a solution of (13,1), 
we obtain 

24 

By (7) —(10), ij*'̂  ^ g2A«Tn _̂  g2r for П -> 00 and since the partial derivatives are 
bounded, we have 

(13,3) «„(^1'Л Ö) 
4i'\d„ 

„{й^\ e) 0 fo r У1 -> 00 . 

Let us denote ßf^ = max |;8<"X^i'\ в)\, af^ = max |af"'('^*'\ Q)\- By (13,2) we obtain 
в в j 

ßl/^^^ й oi'^ + ßl/^ and furthermore Д^^^^ ^ ;ßi'̂  + |^ ai'>. r„/(i„ is the greatest 
i = s 

value of J (that is the number of instants at which perturbations act). Hence 

(13.4) ßU^ й ß^n^ + - max ai'^ for s u j ^ - -

We may estimate the last term of (13,4) T„/J„ max â ^̂  ^ 2Te^^ max a^''7((^i'UX)' 

and by (13,3) this term converges uniformly to 0 for n -> oo. Since ß„{^i^\ 9) = 
= F{Çi'\ 0) - FX^^^\ 0) = F{^i'\ в) - F„(l, 0) and since F{^1'\ в) converge uni­
formly to F(l , 9) for 8 -> 0, we obtain that ß^^^ converges uniformly to 0 for n -> oo, 
г -^ 0. By (13,2) 

(13.5) F{C'\ 9) - F^{ej\ 9) = ß„{er'\ 9) - [Fie'-'K 9) - F{C'\ 9)] . 

Since ^i'"-'^ - (̂ î ^ ^ 28e^^ (as for large n there is ^̂ >̂ < 1 + 2г), we have ^̂ -̂̂ ^̂  -
- ^['^ -> 0 for г -> 0, и -> 00, and the difference F{^i''^'\ 9) - F{£^i'\ 9) converges 
uniformly to 0. Let (̂  > 1 be given. We shall choose least (̂ '̂̂  with ^ '̂̂  > ^. Then 
^i'^ -> ^ holds, and by (12,1) we have \FX^i'\ 9) ~ F^L 9)\ -^ 0 uniformly with 
respect to 9. By (13,5) F„((J, 9) converges uniformly to the solution of (13,1) described 
in Lemma 13. 

We have assumed that the function F(l , Ö) is uniformly continuous. For arbitrary 
£i > 0 and for an arbitrary distribution F(l , 9) we can find distributions Fi(l , 9) and 
F2(1,Ö) suchthat 

(13.6) F , ( l , e) - F , ( l , Ö) < 8i 
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except of finite number of regions (the number of these regions is at most [2/8^], [x] 
stands for the greatest integer in x) and the Lebesgue measure of each is less than si. 
We can assume that 

(13.7) F2(l, 0) - F(l , в) > e J 4 or F2(l, 0) = 1 

F(l , Ö) - Fi ( l , Ö) > 8i/4 or F i ( l , ö ) = 0 . 

Denote by v^^ ^ the process defined by (12,1) (ô = ô„,...) with initial condition Fi ( l , 0); 
v^^'^ is defined in the same manner as t;̂ ^̂  but with initial condition F2(l, в). Put 

F["% в) = P{vi^\i) й 9), F^iÇ, 9) = P{vi'\i) ^9). 

By (13,7), the inequality F["\^, 9) ^ F„{^, 9) ^ F^^% 9) holds for large n. Passing 
to the limit for n -+ со we obtain 

(13.8) _ f i(<r, в) = hm F["% 9) й F*{i, 9) й F**{i, 9) й 
П-* сю 

ulimF^^%9) = F,{i,e), 
и->оо 

where 

F*(^, в) = lim inf F„(( ,̂ в) , F**((^, в) = Hm sup F„(^, 9) ; 

these Fi((^, 0), F2(< ,̂ Ö) exist because F i ( l , Ö), F2(l, Ö) are uniformly continuous. 
By (13,7) and the Poisson formula the inequahty 

(13.9) F,(^, 9) й F{i, 9) й i^2(f, 0) 

holds, and by (13,6) and the Poisson formula again, 

(13.10) F,{^, 9) - F,{^, 9) ^ ei(l + ф{^)). 

The function \l/(0 is monotone decreasing. By (13,8), (13,9) and (13,10) we have 
F*((^, 9) = F**((^, 9) = F(<J, 9). 

Now consider the case when z; is a bounded process (by cer ta in /a t certain ^^^^). 
We choose the absorbing barrier in a simpler way than in (12,2) in order to be 
able to apply the principle of reflection. Assume we have a finite set of numbers 
^(a) . J, ^ ^(0) ^ ^(1) ^ ^ ^(.) ^ ^2Г ^^^ gia). Q ^ ^(0) ^ ^(1) ^ ^ gU)^ N o W 

define the function / - see Definition 5̂ - by f{9) = g^^^ for (C^̂ \ C^^-^'"^}. 

Lemma 14. Let v„ be the process defined by (12,1), bounded by f at (^'\ / / the 
assumptions of Lemma 13 are satisfied, then F„(( ,̂ 9) converge to F(^^, 9). The 
function F is the bounded solution o/(13,l) in the region £, e <1, Ĉ ^̂ >, 9 ^ g^^^ with 
initial condition F(l , 9) for 9 g g^^^ and with boundary condition {dF\d9) ((̂ , g^^^) = 
= 0 /o r (̂  e <1, C '̂>>. In the region ^i'.^e {ï}'\ C^̂ "*"'̂ ), 9 й g^'\ F is the bounded 
solution 0/(13,1) with initial condition F{(,^^\ 9) for 9 ^ g^'^^K F{C^^\ 9) is constant 
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for в E (^g^''~'^\ д^'^'У, and with boundary condition {dFldÖ){^, g^^^) = Ci for ^e 
G <C^̂ \ C^^^^ )̂- The convergence of the F„ is uniform in each region Ж r\ {)Жi 
where Ж is described by (̂  6 <1 + h, НУ,в. If Р{\,в) is uniformly continuous 
then the F„(^, в) converge uniformly in the region \JЖi. 

Proof. Without loss of generality we may restrict ourselves to the first region Жо. 
Let v„ be the process fulfilling (12,1) (the numbers ô, Я, v, К, d depend on n). Let v^ 
be the process bounded by f{e) = g^^^ at Ĉ^̂  corresponding to v^. As the initial 
distribution of i;„ we can take F„(l, в) defined thus: F„(l, в) = F„(l, в) for в ^ g^^\ 
JF„(1, &) = l„ for в ^ g^^\ where F„(l, 9) is initial distribution of v„ and /„ = 
= lim FXh в). Set PX^. в) = P{vX^) ^ в), F,{^, в) = P(t;„(^) й в). It is easily 

proved that 

(14,1) FXL 0) + F„i^, Ig'^^ - e + ^éi ,я„(..н-ы) __ j^ ^ p^^^^ 0) ^ 

^Fl^,0) +РХ^Лд^""^ -0-^^^-e'-^'-''''^^)-l for Ö^.^^^>. 

Since both the left and right sides of (14,1) converge to the solution of (13,1) (taking 
(l//„) F„ instead of F„), we obtain that F„(^, в) converge to the solution of (13,1). 

The processes v^ determined by Lemma 12 are bounded by functions which con­
verge to ^^ for n -> 00 (see (12,2)). Before considering the function (12,2) we shall 
formulate certain results of the theory of differential equations which we shall need 
later. 

Lemma 15. Let F(^, 9) be the bounded solution of (13,1) in the region ä, ^ 1, 
^ S V^' ^̂ ^̂ ^ initial condition F(l , 9) and with boundary condition {dF\d9) (^, ^^) = 
= 0 for ^ ^ 1. Assume that {dFlô9)(^, 9) is continuous at [<̂ , ̂ ^ ] for ^ ^ 1, the 
initial function has continuous derivative at 9 = 1 and (dF/dö) (1, 1) = 0, F(l, 9) 
is nondecreasing, Hm F(l, 9) = 0. Then the following statements hold. 

1) Solutions are uniquely determined in the class of bounded solutions. 

2) The solutions with the properties mentioned above exist and 

F(^, 0) = F*{i, 0) - f f r«(^, y; y, ^y) F%{y, ^y) ày dy 
J -00 J 1 

holds, where F*((^, 9) is determined by the Poisson formula and F((^, 9; x, y) is 
Green's function of (13,1) for our region. 
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3) Let a, 8 be positive 0 < 28 < a. Define F^C, 9) thus F^(^, 0) is the bounded 
solution of {13,\) for (̂  G <1, 1 + a>, Ö ^ ^'(1 4- a), with initial condition Fg(l, в) = 
= F(l, 6) for в g 1, F^(\, 9) = F ( 1 , 1) for 9 ^ 1, and with boundary condition 
{OF,109) [(̂ , 7 (1 + a)] = 0. In the region ^^ 1 + a, 9 ^ ^{^ + e), F, is the 
bounded solution o/(l3,l) with initial condition F,[\ -\- a, 9) = F,[l + a, ^[i + a)) 
for 9 ^1 + a, and with boundary condition (ôFjô9) (с, ^/(^ + e)) = 0 for (̂  ^ 1 + a. 
Let F^[^, 9) be the continuous function defined by F^{^, 9) = Fj^^, 9) in the region 
^ e <1, 1 + аУ, 9 ^ дУ(1 + a). In the region ç ^ 1 + a, 0 ^ ^1^, F^ is the boun­
ded solution of (13,1) with the same initial conditions as F^ but with boundary 
condition (dF^Id9) ((̂ , ^^) = 0. We shall also need a function F_J^^, 9) defined as 
the solution of (13,1) in the region (̂  G <1, 1 4- «>, 0 ^ 1 , with initial condition 
F{i, 9) and with boundary condition (^F_J(3ö) (c, 1) == 0. Further F_,[^,9) is 
bounded solution of (13,1) in the region с ^ 1 + a, 9 ^ ^/[^ — s) with initial 
condition F_^(l + a, 9) = F^^[l + a, 1) for 9^1 and with boundary condition 
(dF_Jd9) ((̂ , 7((^ — г)) = 0 for ^ ^ 1 + a. FÎ^(^, 9) is defined in the same manner 
as F_g with only the difference that for ^ ^ 1 + a the region of definition is 
described by 9 ^ .^^ and the boundary condition is (dF'!lJd9){^, ^^) = 0. Let 
F((^, 9) be the bounded solution q /( l3 , l ) with initial condition F(l, 9) and boundary 
condition {dF\d9)[^, ^Cj = 0- T^e region of definition is described by î  ^ 1, 
9 S sj^- Then the inequalities 

F_Xt9)^FlX^^0), F:{^,9)^FX^,9) 

hold for (̂  ^ 1. 

4) There is lim F,(f, 9) = F^{^, 0), lim F_,((^, 9) = Ft^^, 9). The convergence 

is uniform with respect to ^, 9 in the region described by H ^ ^ ^ 1 -r a, 9 ^ y^^. 

5) There is lim [F^(^, 9) — F'!l^{^, ö)] = 0. The convergence is uniform in any 

region described by ^ G (^1 + h, H}, 9 ^ ^c^ with arbitrary h > 0, 1 + h < Я . 

6) If F{\, 9) is continuous then F^ ~- Ft^ converges uniformly to 0 in the region 

7) There is Fl^t 9) й F{t 9) й Т^{^ 9\ 
/ / F ( 1 , 9) has a continuous derivation, then 

8) F((^, 9) is non-decreasing with respect to 9 for fixed ^, 

9) lim JF((^, 9) = 0 uniformly with respect to all ĉ , 

10) F((^, 9) = f_̂  G(^, 7)d}', where G(^, 9) is the solution of (13,1) with initial 
condition G{\,9) = {ôFld9){U9) and with boundary condition G{^,^/^) = 0 
for ^ ^ 1. 

11) F{^,SJC) is a non-increasing function of ^. 

213 



Proof. If two solutions Fl , F2 exist, then for almost all Ö ̂  1 - т, F(l , Ö) = 0 
with F = F^ ~~ F2 (Fl, F2 are continuous at Ö = 1, т > 0). Since these solutions are 
bounded we obtain F(l , 0) = 0 for all 6^1, For F the boundary condition 
(dFlde) ((̂ , 7^) = 0 also holds. By the Theorem 3 in [4] we obtain F = 0. 

8) If we realize that {dFJdB) (ĉ , &) is also the solution of (13,1) we can easily prove 
item 8. On comparing the solution F with the solution defined on the region described 
by (̂  è 1, Ö ̂  1, we obtain item 9; and also that there exists a constant К such that 

iim e^^' F{L 0) = 0 uniformly with respect to all ^ provided that F(l , Q) = 0 

for sufficiently small Q. Using this remark we can easily prove items 10; and also 2) 
because Jo ^J^^, Ö; y, ^y) F*(};, ^y) dy is a solution of (13,1) which is equal to zero 
for ^ = 1. 

Proof of 11. Take I й ^i < 'ii. denote by Щ, 9) the solution of (13,1) which 
satisfies f{^u 0) = F(^i, в) for в ^ ^ 1 ' ^ (^ i ' ^) = ^ (^ i ' V^O for в e {^^,, V^^), 
{дР\дв) ((J, л/^а) = 0. By Lemma 14, F is the limit of distributions of processes 
bounded by 1 (at C '̂̂ )- Then the inequality F(^2, ^^i) S Щи ^IQ must hold and 
also F{^2^^^SF{^2^^^2)uF{^u^^2) = F{^u^ii\ To prove Item 3 we 
consider the partial derivative dFJdQ again. Proof of 4. Set G,((̂ , в) = {dF.jôe) {^, в), 
G+((^, 9) = {dF^ld9) ((̂ , 9). First we shall show that the G, converge to Gj". Consider 
the auxiliary function ô^{^, 9) = G^{^ - e, 9). Then G^ is a solution of (13,1) with 
the condition Ô^( ,̂ ^C) = 0 for (̂  ^ 1 + a + e. By the maximum principle, 

\G:{^, 9) - G,(f, 0)1 = \G:{1 9) ~ G,(̂  + e, 0)1 ^ 

s \G:{^, 9) - G;(^ + e, 0)1 + |G;(^ + e, 0) - GX̂  + 8,0)1 ^ 

^ [̂ «""(f, 9) - G ; ( ^ + e, 0)1 + sup | G ; ( 1 + a + e, Ö) - G ; ( 1 + a, 0)1 . 
в 

The last term can be estimate by 2Me, where M = sup {d^F^'ld9^) (1 + a, Ö). The 
0 

term \G^{i, 9) ~ G^{^ + s, 9)\ converges to 0 (with 8-^0) because the function G^ 
is continuous. As Gg(<̂ , 9) converges to Gj'(^, 9) monotonously, we obtain that 
hm F,((^, 9) = F ; ( ^ , Ö), lim F^i, ^{i + e)) = F ; ( ^ , V ^ ) for fixed ^, 9 (see 10). 

£-»0+ 8-v0 + 

By 11, the function F^fJ, ^^) is non-increasing. Using the continuity of F^{^, ^^), 
the statement to follow and the maximum principle, we see that the functions Fj^^, 9) 
converge uniformly to F^ (̂(̂ , 9) in the region mentioned above. 

Statement. Let there be given sequence of non-increasing functions /„(x) with 
/„(x) è /o (^ ) or (/„(x) ^ /o(x)) for w > 0, lim/„(x) = /o(x) for each хе<а, .Ь>, 

n-*oo 

- - o o < a < b < o o and let the function /o(x) be continuous. Then the functions 
/„(x) converge uniformly to/o(^:) on <a, b>. 
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Proof of 5. First we shall prove lim [ F ^ l + a, 0) ~ Fl«( l + a, в)] = 0 uni-
a-*0 + 

formly with respect to Ö ̂  1. Setting a* = aA^', we have 

F ; ( 1 + a, 0) ~ F ! , ( 1 + a,e)=--

= -Z-T № ' ^ + ^ + ^4«) - Ö) - ^1^^ + 2 - 0)) - - ^ e x p K - - i d x , 

2 VTT J-аэ V^ I ^ J 
for Ö ̂  1, where v(a) = ^ (1 + a) ~ 1. We write the function F(l , в) as the sum of 
the continuous part F and of functions of discontinuities Fi{l, в): Let the i-th 
discontinuity be at the point hi (there are only countably many such points) and 
Wi = F{l,h.) - F{i,hi-0). Then ^^(1, Ö) = 0 for 9 < hi, F,(1, Ö) = ŵ  for 
в ^ hi. We obtain F,(l + ^, 0) - F_«(l + a, ö) = (1/2 ^ я ) ff ^ [F(l , x + 2 + 

00 

+ 2v(a) ~ в) - F{i, X + 2 - Ö)] (1/Vfl*) exp ( - x^/a*)} dx Ч- Y. {Ф s/^) • 

. J!?„ [ f ,.(1, X + 2 + 2v(a) - 0) - Fi(l, x + 2 - 0)] (1/Va*) exp {- (x^/a*)} dx. 
The first expression obviously converges to 0 for a -+ 0, uniformly with respect to в. 
For the remaining expressions we obtain the estimate 

2 V ^ Jft,-2v(a)+ö-2 V^ I « J 
-|̂  p(hi + 0-2)/Vfl* 

2 V ^ J [(/i£+0-2)/Va*]-2(v(a)/Va*) 

< 
1 z 

^n + (v(a)/Vfl*) 

w*(a)exp{- j^}d> ' , 
n-(v(a)/Va*) 2V71 

where w*(a) is the sum of those ŵ  for which 

hi+e-2 ^ v(a) / i ,+ 0 - 2 \ , ^ л ^ п I' П 2 ~ ^ , --^— ] П (n, n + 1) Ф 0 for n > 0 , 

A , + 0 - 2 . v(a) /г, + 0 - 2\ , . ч ^ n г A 
_i—^ 2 -^^-^, -^ I n (n - 1, n) Ф 0 for n < 0 , 

Wo(a) is the sum of the remaining w .̂ Since ^w^ ^ 1 we obtain that Zw*(a) ^ 1, 
and thus estimate the above expression by 

^ p + (v(e)/Va*) 
Г - Г - 1 e x p ( - / ) d ) ; . 
^ V ^ Jn-(v(a)/Va*) 
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This last expression converges to 0 for a -> 0 because v(a) '^ ^a = a^jlA^. Further, 
for в in (1, 1 + v(a)), the function F^^(l + a, Q) is constant, and evidently 
| F ! ^ ( 1 + a, 1) ~ F.!/(l, 1)1 -^ 0 for a -> 0. As F(l , 0) is continuous at 0 = 1 we 
obtain that | F ^ 1 + a, ^{\ + of)) — F(l, l) | -^ 0, for a -> 0. Evidently the inequalities 
F ; ( 1 + аЛ)й F ; ( 1 + a, Ö) ^ F^{i + a, V(l + a)) hold for 1^9 й V(l + a). 
We have proved that lim | F ^ ( 1 + a, 0) — F i ^ l + a, 9)\ = 0. Item 5 follows from 

a-^O 

Theorem 3 in [4]. 
6) If F ( 1 , 9) is continuous, the functions F^ in the estimates introduced above are 

all zero. The expression for the remainder converges uniformly to zero. 
7) If (dFJd9) (1, 9) is continuous for all 9 we shall prove 7 by means of 10. If not, 

we can approximate all F* by functions which have continuous derivatives. Substitute 
F* into the formula in 2; the statement of 7 is then obtained by passing to the limit. 

Now, we shall consider the case when the absorbing barrier is given by (12,2). 

Lemma 16, Let v„ be given by (12,1) (where d, ä,^^\ v, ö, К depend on n) and v„ is 
bounded by (12,2) at ^l^\ Assume that F ^ l , 9) converge uniformly to F( l , 9), 
(dF/dö)(l, 0) is continuous at 9 = 1 and (dF/dö) (1, 1) = 0. Then F^L 9) = 
= P{vn{^) ^ 9) converge to the bounded solution F((^, 9) of (13,1) which is defined 
in the region described by Ç ^ 1, 9 -^ ^^, satisfies the intial condition F(l , 9) and 
the boundary condition {dFJd9) ((̂ , д/<̂ ) = 0 for «J ^ 1. This convergence is uniform 
in any region described by ^ G <1 + /г, Я>, 9 ^ ^^ with /i > 0, 1 + /t < H.If F{\, 9) 
is uniformly continuous then the convergence is uniform in the region described 
byH^^^U9u V^-

Proof. Take any rj > 0, h > 0. By Lemma 15 (5), we can choose a number a > 0 
such that 

(16.1) | F ; ( ^ , 9) - Ftl^, 9)\ <rj for ^ e <1 4- /i, H} , 

where F^,Ft^ were defined in Lemma 15 (3). By Lemma 15 (3), F^ ^ F^,F_^ ^ Fl^. 
The proof of the inequality F_g g Ft^ is the same as that of the previous inequality. 
Obviously F„,( l + a,9) = Fl^^ + ^̂  ^); F,(l + a, 9) = F^{1 + a, 9). By Lemma 
15 (4), we can choose e > 0 such that 

(16.2) F , < F ; + rj, Ft, <F_, + n. 

Let us define the following regions: Choose Cfe • Co = 1, C/c = 1 + ^ + (^ ~ 1) ^/2 
for /c ^ 1 and gi'K i = 1, 2 : g^^'^ = V(l + a), g['^ = V(C, 4- s); gi'^ = 1, д['^ = 
= ^{Ck - e/2) for /c ^ 1. Denote by g the set of points [(̂ , Ö] with ^ e (Cu^ Сл+i), 
^ ^ Я, 9 S 9^k^' Let FQ be the continuous function which is the solution of (13,1) 
in any region described by (̂  e <С ,̂ C^+i), Ö ̂  g\^^, with initial conditions FQ(C^, 9) 
for Ö ̂  é^[l>i, FQ{U. 9) = FQ{U, g['\) for 9 e (^ i l \ , ^ 1 ^ ^ with boundary condition 
(ÖFQ/^Ö) ((̂ , ^[^>) = 0 for (^e<CbC/c+i) and with initial condition FQ{\,9) = 
= F(l , e) for 0 ^ 1 , Fö(l, Ö) = F(l, 1) for 9 e (1, б̂ о'О ^^^ ^̂  = Ö. Denote by / 
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the set of points [^,0] with ^ e (Сь U+i), ^ й H, в ^ gi^\ We shall define 
a function f i(<J, 9) in / similarly as FQ in Q. In any region described by ^ e <C/c, С/̂  +1), 
6̂  ̂  б^1 \̂ Fi(^, 0) is the solution of (13,1) with initial conditions Fi(Cb в) for 0 < gfj^, 
F,{Cu, 0) = Fi(Cb gi^-^\)îoxOE{gil\, д['^1 with boundary condition {ôFJde){C, oi^^)^ 0 
and with initial condition F^{\, 9) = F(l , 9) for 9 ^ 1, /c = 0. By Lemma 15 (l[,7), 
the inequality 

(16.3) F_,(^, 9) S F,{^, 9) й FtX^, 9) ^ F(c ,̂ 9) й F:{L 9) ^ 

й FQ{^, 9) й F,(^, 9) 

holds, where F{^, 9) is defined in Lemma 15 (3). Define F^L 9) = P{vXO g 9\ 
where v„ is the process defined by (12,1), bounded by (12,2) at (^;/\ F^{^, в) = 
= P{v^^{C) ^ 9), where v^ is defined by (12,1) and it is the process bounded by g^^\^) 
at Ĉ^̂  and g^'\^) = д['^ for ^ G < U , G + I ) . Define Fl{^, 9) = P{v\{^) ^ 9) similarly, 
where v\ is defined by (12,1) and it is the process bounded by g^^\^) at Ĉ '̂  and 
(̂2>((̂ ) rr= [̂̂ > for ^ E <Cfc, Cfc + i)- For large n, the inequalities 

(16.4) Fl{^, в) й FXL 0) й F^{^, в) 

hold (fî must be large than K^d^jv^ < е/4Я). We can choose HQ for f] > 0 and /г > 0 
by Lemma 14 such that 

(16.5) \Fl{^, в) - F,(^, 0)1 < ^ , \F%, d) - Fe(^, 0)1 < Ц 

hold for n ^ /to in the regions described by ^ e <1 + /z, Я>, [^, Ö] G / or by ^ G 
G<l + /z, Я>, [(̂ , ö] G ß respectively. We shall conclude Lemma 16 from the 
inequalities (16,1) —(16,5). If F(l , Ö) is uniformly continuous, then by Lemma 15 
the inequalities (16,1) —(16,5) hold uniformly with respect to all Я ^ (̂  ^ 1. 

Now we have everything prepared for the formulation of the following theorem. 

Theorem 1. Let there he given sequences of numbers (5„, K„, v„, J„, T„,/l„ and 
a sequence of distributions F„(l, ö). Assume that the number sequences satisfy 
(7) —(10), and that the functions F„(l, öv„) converge uniformly to F(9). Let the 
function F{9) have a continuous derivative at 9 = 1 and (dF/d^) (l, 1) = 0. Set 
P^^^ = Pi{àf,, K„, v„, d„, T„, Я„) (see (5) and note that we consider processes belonging 
to X{F„{1, в), ô„, К„, d„, X„). 

Then the limit lim P^"^ exists and 

lim P<i"> = 1 - F{e'\ e^), 

where F[^, 9) is the bounded solution of the equation 

dF __ A^ d^F 
dc ~ 4 ^ 
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m the region described by ^ > 1, в < V'^ ^^^^ ^^^ initial condition F{9) and W/^'Î 
the boundary condition (dFJoe) ((̂ , ̂ ä,) ~ 0. 

Proof. By Lemma 11 we obtain 

(1,1) P( sup X„(T, со) ^ v„) ^ Р(у„(гП ^ v„ - 3 K A ) . 

Let the process v^ corresponds to the process y„ (see 12,1). Then the process f„ is 
bounded by (12,2) at ^\^^ and its initial distribution fulfils (12,3). Evidently 

-Лк) }• (1.2) Р ( л ( е О ^^n- ^KA) = P(t^„(exp {2Я„е^}) ^ ( l ~ ^ ) exp {X/J 

Put F„(( ,̂ Ö) = P{v„{i) й 0). By Lemma 16, the functions F„(( ,̂ в) converge to the 
function F{^, 0) described in Theorem 1. By (1,1), (1,2) and (7)-(10) (the assumptions 
(7)-(10) remain valid if we substitude ~t[^^ for T„ because 0 ^ T„ - t[^^ < d„) we 
obtain that 

(1.3) lim sup P̂ i"> ^ 1 - F(e2^, e ^ ) . 
n-*co 

Conversely, by Lemma 2 we have 

(1.4) sup p - ( sup X„(T, œ) ^ V,) ^ P{yt{T„) ^ v„) , 

where the processes x„ belong to X(F„(l, Ö), ^„, K„, d„, Я„) and j * is the process 
bounded at v„e"'̂ "'̂ " + K„d„ corresponding to z„, and z„ is defined in Lemma 10 
with initial distribution F„(l, в). (Now Ô, K, v, d, ^^'\ X depend on Yi), Let r* be the 
process which corresponds to yX according to Lemma 12; it is the process bounded 
by (12,2) at ^^'\ Then the following equation 

<I,5) P(j;:(T„) ^ V,) = Р « ( е х р {2A„T„}) ^ exp {KQ) 

holds. Set F*((^, Ö) = P(î *((^) ^ Ö). By Lemma 16, the functions F* converge to the 
function Щ, в). By means of (1,4), (1,5) and (7)-(10) we obtain 

(1,6) lim inf P<i"> ^ 1 - F(e2^, e^) . 
П-* oo 

The theorem follows from the inequalities (1,3) and (1,6). 
By means of the transformation т = Ig ^jlT, fi = ö/^(^, G(T, fi) = F((^, Ö) it is 

easily seen that Theorem 1 is equivalent to the following theorem. 

Theorem 2. Let the assumptions of Theorem 1 be satisfied; then hm P^^) = 
n-*oo 

= 1 — G ( 1 , 1), where G ( T , /Z) is the bounded solution of the equation 

aG _ _dG TA^ d^ 

дт dfi 2 dfi^ 
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in the region described by т > 0, fi < 1 with the initial condition G(0, fi) = F(ju) 
and boundary condition {dG\dß) (т, 1) = 0. 

Remark 4. Evidently TA^ is the limit of (^„K„(i„T„)/(v^). Theorem 2 also apphes in 
the case with X^ = 0. In this case set lim {SnK^d,jT„)j(vl) = a^ and then our parabolic 
equation is {dGJdx) = ^a^{d^Gldß^'). The region of definition of G and the initial 
boundary conditions will be the same as above. 

Next we shall deal with the expression (6), but we shall formulate our problem 
more generally. Set 

{&) P,{S, X, v(̂ >, v^^\ d, Z Я) = sup P( sup X(T) ^ v('> ; inf х(т) ^ - v̂ ^̂ ) ^) 

where x[t) belong to X{FQ, S, K, d, À) and v^^\ v^^^ are given positive numbers. The 
following definition is analogous to Definition 2. 

Definition 6. Let there be given positive numbers ô, A, K, d, v^^\ v^^^ and a process 
x(t, со). Assume that x{t, со) is defined for all t ^ 0. Define t(co) = min t^^\co) where 
-t^^\œ) assume only the values t^^^ and x{t^^\a>), œ) ^ (v̂ ^̂  - Kd) e^^ or x{t^^\co), œ) ^ 
^ -(v^^^ - Kd)e^^; if such t^^\œ) do not exist put t(œ) = oo. The process x is 
bounded at -v^^\ v̂ ^̂  if x{t, œ) = x(t{œ), со) for t ^ t{œ). The process Xy(i)̂ (2) is 
the process bounded at —v^^\ v^^^ corresponding to x if Xy(i)v(2)(f, со) = x{t(co), со) 
for t ^ t{co), x (̂i)y(2)(f, со) = x{t, со) for t ^ t(co). 

The following modification of Lemma 1 is evident: 

Lemma 17. Let x e X{Fo, 6, K, d, X); then the process Xy(i)y(2) satisfies the relations 
<2)-(4) for -(v<^> - Kd) e'" < n< (v^^^ - Kd) e'". 

The following lemma differs from Lemma 2 only slightly 

Lemma 18. Let x e X(Fo, ô. К, d, Я); then 

F{x,,b{t) г v '̂*; x„,,(t) ^ -v(i>) й P'{ sup X(T) ^ v<̂ >; inf х(т) й -v^^') ^ 

й P{ sup X(T) ^ v(̂ >; inf X(T) ^ -v(^>) < 

< P(x,(.>v(^)(^ '̂0 ^ (v '̂̂  - ^ ^ ^ ' ' ' x,<.>.<2>(?<'̂ >) ^ - (v<i> - Kd) e''), 

w/iere a = v^^^e ^^ + iC(i, b = v̂ ^̂ e '̂ '̂  + Kd, and t^^^ is the maximal t^^^ such 
that t^^^ ^ t. 

The lemmas analogous to Lemmas 3 - 5 will not be formulated explicitly because 
they are very similar to the latter. 

') P(A; B) = P{A u B). 
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Definition 7. X^^^^^^^XFO, S, К^ d, Я) is the class of processes with initial distribution 
FQ which are bounded at -v^^^, v^^\ satisfy (2)-(4) for -(v<̂ >̂ - Kd) e^'^ < fi < 
< (v(2> - Kd) e^' and satisfy p{x{i) e A \ x{f^) = //, x(t̂ ^~^>) = a,_.i, ..., x(0) = 
= Обо) = F{x(t)EA\x{f^) = /i) for all te(ß\ t^^"-'^} and all ß-mesurable A с 
a (— 00, oo). 

Lemmas 6 — 9 need not be modified, and the necessary changes in Lemma 10 
are obvious. The analogue of Lemma 11 shall be formulated only. 

Lemma 19. Let x e X[FQ, ô, K, d, X) and let y be the process bounded at 
-(v^^^ - 3Kd) ê ^ + Kd, (v̂ ^̂  - 3Kd) ê ^ + Kd, corresponding to z. The process z 
is described in Lemma 10. The inequality 

P{ sup X{T) ^ v̂ ^̂ ; inf X(T) й ~~У^^^) й 

й P(y(r(^>) ^ v̂ >̂ - 3Kd; y{t^'^) S "(^^'^ - 3 K ^ ) ) 

holds, where t^^^ S t\ t - f^^ < d. 
Further, we shall introduce the analogue of Definition 5. 

Definition 8. Let there be given positve functions/j,/2, a sequence ^̂ ^̂  < ^^^-^ < ... 
and a process x(^, œ). Assume that the process x has values from E. Denote by ^(œ) 
the minimum of ^^^\a)) where ^\co) assume values ^^^^ only and satisfy x{^^^\œ), œ) ^ 
è fii^^^'Koj)) or x{i^^\co), со) й - / i(^^ 'X^)); if no such f (со) exists put ^{co) = 00. 
The process x is bounded by —fi.fi at ^^^^ if 

x(^, со) = + 00 for С > C(<̂ ) provided that x((^(co), œ) ^ /2((^(co)), 

x(( ,̂ со) = — 00 for ^ > (̂ (co) provided that x((^(co), со) ^ -/^((^(co)) . 

The process z(^, со) is bounded by —/±,/2 at ^̂ '̂  and corresponds to x(( ,̂ œ) (for aa 
arbitrary process x) if z((t', со) = x(^, со) for { ^ ^[œ), 

z(^, со) = + 00 for (̂  > ^{œ) provided that x{^(œ), œ) ^ f2{^{oj)) , 

z(( ,̂ со) = - 00 for ^ > (̂ (co) provided that x(^(co), œ) ^ -/^((^(co)) , 

where (̂ (co) is defined above. 
It is easy to find the functions which describe the absorbing barriers. 

Lemma 20. Let z be the process defined in Lemma 10. Let y be the process bounded 
^^ — v̂ ^̂ , v^^'^ corresponding to z. Denote by v the process which corresponds to y 
according to Lemma 12. Then v is the process bounded by fii^j^fii^) ^t ^^'\ where 

(20Д) /,fâ = ( ^ ^ з K ) v г . /*) = ( i -3^ )V{ . 
Next we must complete the assumptions (7) —(10). 
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K„ô„d„ 

v'P 
Ci / " ? 

> 0 , (5, 

T> 0, 

->0. 

< ^ « 5 

Hypothesis. Let there be given sequences of positive numbers S^, ..., <5,„ ..., K^, . . . 
. . . ,X, , ..., J , , ..., J„, . . . Д 1 , ..., Я„, ..., Ti, ..., r„, ..., v</>,.. vv^,'\.-vv^ 
such that the following conditions are satisfied: 

(11) ± ^ ^ ^ ^ ' 

(12) 

(13) 

(14) 

(15) 

Lemma 13 remains without change but the proof of Lemma 14 is changed con­
siderably. 

Assume we have a finite set of numbers Ĉ "̂  : (̂ ^̂  = 1 < Ĉ ^̂  < ... < Ĉ^̂  = e^^ 
and g^^^ : 0 < g^^^ < g\^^ < ...g^^^ for i = 1, 2. The functions fi{OjJi{^) - see 
Definition 8 - we now define by f^{^) = - gi'"^ for г G (C^̂ \ C^'""'^), / 2 ( 0 = ö'i^ 
for ^eiC^'KC^'^^^y. 

Lemma 21. Let Î;„ be the process defined by (12,1) bounded by —fi.fi ^t ^ll\ If 
the assumptions of Lemma 13 are satisfied, F(l, в) is continuous from the left at 
в = gf\ and the assumptions (?) —(10) are replaced by (U) —(15), then F„(^^, 6) = 
= P{v„(^) ^ 0) converge to F(^, в). The function F{^, 9) is the bounded solution 
of (13,1) in every region Ж^ described by <̂  G (Ĉ "̂\ i^^^^^\ -g^P й 9 ^ g^p, with 
initial condition F{i:^J\ 9) for ~g['~^^ U9 ^ g^J"^^ and F{C^'\ 9) = F{;^^\ ( - 1 ) ' . 
•ö^P~^0 f^^ Öe <(-1)'б^^^~^\ ("-l)Vi-'^>, i = 1,2, and with boundary conditions 

For j = 0 the initial condition is F(l , 9). The convergence of F„ is uniform in any 
region Ж n Yj^i "^here the region Ж is described by 1 + h :^ ^ S H. If F(l, 9) 

i 

is uniformly continuous, then the JF„ converge uniformly in the region ^Жi. 
i 

Proof. We can again restrict ourselves to the first region Жд. Let v„ be the process 
fulfilling (12,1). Let v„ be the process bounded by -f^ = -g[^\ /2 = gf^ at C '̂\ 
corresponding to v^. As the initial distribution of v^ we take F„(l, 9). We can certainly 
assume that F„(l, ~v,^/^) = Oand lim F„(l, 9) = 1 (since (13,1) is linear we could 
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consider F„(l, в) = (F„(l, в) - F„(l, -g\^^))lF„{hl) instead of F„). Denote 7̂„ 
= {KJJv^^^) ê "̂ '̂  7Я . As in [1, Lemma 10] one can prove 

к (21.1) si'Xi, 0) = j ; [F„{i, УдГ + 27/i°' + 2^„ + 0) + 
j = - * 

+ F„(^, 2jg'r + 2(7 - 1) gf' + 2jn„ - 3rj„ - 0) - 2F„(^, 2;0 '̂'> + 
+ (2У - 1) g^"' + 2jr,„)-] - F„{L 2{k + 1) öri°> + (2/c + 1) g'^' + 2{k + 1) ,,„) + 

+ f„(f, 2(fc + 1) 0̂ о> + 2kgf' + 2{k + 1) ri„ - Ъп„ - 9) й Р{-дТ < Ы ^ й д) ^ 
= P(-öi ' " < inf VXT), m йд, sup t;„(T) < 3<°>) ^ *) 

^ i [F„(f, 2iöl,°) + 2y0(i°> + 2in„ + 0) + F„(^, 2;0<°> + 2(; - 1) 0<«> + 
j=-k 

+ 2^„ - 0) - f'„(^, 2Уег̂°> + (27 - 1) д'Г + 27»/„) - f„(^, 2]дГ + 
+ (27 - 1) gf' + 27,?„ - 3^„)] + l=„(̂ , 2(fe + 1) 3i«> + 2(/c + 1) g'^' + 

+ 2(fc + 1) ;,„ + 0) - F„{^, 2{k + 1) âf̂ °> + (2/c + 1) 0i°> + 2(/c + 1) r,„) = 

where F„((̂ , 9) = P(vn{^) ^ Ö). Similarly one obtains 

(21.2) 4f„'(^) = i [F„{L 2]дГ + (27 - l) оГ + 2jn„) + 
j=-k 

+ F„(^, 27̂ °̂> + (27 - 1) дГ + 2Щ„ - гп„)-\ + FXL 2{k + 1) 0i''> + 
+ (2/c + 1) ̂ (o) + 2(/c + ! )»?„ - 3̂ „) + F„{u, 2(/c + 1) g^"^ + (2/c + 1) g[°^ + 

+ 2{k + 1) ;?„) - 2(/c + 1) g P{v„{^) й -9?'} й 2 f F„(^, 27̂ i°> + 

+ (27-l)0i°> + 27;j„)-2fe = sW(O. 

From (21,1) and (21,2) we have 

4Ш, e) + 4f„'(0 й p{v„{i)u 0) ^ s<f)(4 Ö) + sit)(^). 

By Lemma 13, the expressions 4!«(^' ^) ^̂ ^̂  4!n(0 converge to s['\^, 9) and ŝ '̂ ((̂ ) 
uniformly in any region described by 1 + /t ^ (̂  ̂  Я ( lim rj^ = 0) 

si'\L 0) + 4'XO ̂  lim inf F{vXO й 0) è Иш sup P{v„{0 й в) й 
п-^оо и->оо 

usi'KL9) + s^^\i). 
'^) Р(А, В) = Р(А О В). 
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Since 

lim lsi'% в) + si*\i) - 4'% в) - si'\m = О 
к - * 00 

uniformly with respect to 1 g (̂  ^ Я, Ö, the limit lim P(v„{^) й ^) exists and we can 

write 

(21,3) 5Г(^, Ö) = E [F(^, 2jgr + Wr + в) + F{L Ыг' + 

+ 2(i - 1) ̂ f ' - 0)] + F{^, 2(fc +1 ) 0̂ °> + 2kg\°' - 0) - (2/c + l) - a, ^ 

n~*oo 

й i [F{t W^^ + 2jg['>^ + в) + F{^, 2jgi'^ + 2{j - 1) g[°^ - 0)] + 

+ F(^, 2(/c + 1) ^̂ >̂ + 2(/c + 1) off > + Ö) - (2fc + 1) + a, = s*( ,̂ ö), 

where â^ are nonnegative numbers which converge monotonously to zero, and s**, 5* 
00 

are solutions of (13,1). If we take a* = â  + 2^ , Ä = ^ sup F{^, -2l{g^p + 0̂ 2̂ )̂ 
l = k <1,H> 

instead of â , then the sequence s* is monotone decreasing and the limit 5*((̂ , в) = 
= lim st{L в) exists. By (21,3), s** ^ 5* ^ 5*. Since s*(^, 9) - s**(<̂ , Ö) converge 

it-* 00 

to 0 uniformly with respect to ^, 9, the function s*((̂ , 9) is a bounded solution of 
00 

(13,1) with initial condition F(l, Ö). There is (^s*/50) ( ,̂ 9) = Y. Ц^^^1Щ (̂ ^ УОг"^ + 
J = - o o 

+ 2i^f > + 0) ~ (5s*/öö) ((̂ , 2;^f > + 2(7 - 1) g[''^ - 0)], because the series con­
verges uniformly with respect to all ^ ^ 1 + h. On setting 9 = —g^i^ or 9 = g^p 
we obtain the boundary conditions which enter in Lemma 21. From (21,3) we obtain 
s*((J, 9) = lim P(f„((̂ ) ^ 9), and the convergence is uniform with regard to ,̂ Ö, ^ ^ 

n-*oo 

^ 1 + /i, —g^x^ S 9 S 9^P- If ^(1? Ö) is continuous then it is uniformly continuous 
and the sequence s* converges uniformly with regard to ,̂ 9 in the region described 
by ^ ^ 1, -0l«> ^ 0 ^ а'г"'-

We shall also need an auxiliery lemma. 
Lemma 22. Let F(<̂ , Ö) fee the bounded solution of (13,1) in the region described 

by ^ '^ \, —Q -yj^ ^ 9 ^ ^^, with initial condition F(l, 9) and boundary conditions 
{дГ1д9) (4 -Q^^) = (OF139) ( ,̂ Ji) = 0. Assume that {dF\d9) ((̂ , 9) is continuous 
at [(̂ , —Q-sJC) ci^à at [<̂ , л/<̂ ] for <̂  ^ 1. The function F(l, Ö) is non-decreasing, 
non-negative, has a continuous derivative at 9 = —Q and at 9=1 with 
(dF/d0)(l, -Q) = (dF/d0)(l, 1) = 0. The following statements then hold. 
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1) Solutions are uniquely determined in the class of bounded solutions. 
2) Solutions with the properties mentioned above exist and 

F{^, в) - F{^, - e VO = F*{L в) - F*(^, - e V^) + f rV,,(^, r,x,-Q V̂ O X 

X F*(A, - g VA) d l dy ~ f f ГД<̂ , у; А, V>̂ ) F*(A, V^) dl dy 

holds, where F*((^, ö) /s determined by the Poisson formula and Г[^, y; x, y) is 
a Green's function of (13,1) for our region. 

3) Let functions F^[^, 0), F_g(^, 0), F^(^, 6), Fl^(^, 0) be defined as in Theorem 15 
with the following exception. If the function F.[^, 0) was defined in a region of the 
type в ^ x((^), x{C) > 0 then now we shall consider the function F.(^, 9) which is 
defined in the region —Qx{i) ^ Ö g x{C) (Q ^S defined in (H)), and on the new 
boundary 6= —Qx{C) the function F.{^, 6) fulfils a new boundary condition 
•{dFJde)[^, —QxiO) ~ *̂ Then the following inequalities hold: 

F.l^, e) - F_l^, ~e V(è' - «)) й FU^, e) - FÎ„(^, -в V^), 

F:{^, в) - F:{^, -Q^i)u F,{u, в) - Fli, -Q V(^ + s)) for ^^1 + a, 

F.g, 9) - F_,{^, -в) = FlX^, в) - FlX^, -g) , 

F:{^, в) - F ; ( ^ , - e ) = F^u, 0) - Fl^, -Q) for l u ^ u i + a. 

4) There is 

lim \Fl^, 0) - Fl^, -Q V(^ + 6))] = f : ( ^ , 0) - F:{^, -в V(^) , 
£-»•0 + 

lim [F_,(^, 0) - F_X^, -в V(^ - m = F^_X^, 0) - F!„(^, -g V ^ 

uniformly with respect to ̂ , в in the region described by H '^ ^ ^ 1 + a, —Q ^I^ ^ 

5) / / we assume only that F(l , 0) is non-decreasing and continuous at 0 = —Q 
and 0=1, then 

Fij,^,e)-FixL-Q^i)uF:{Le)-F:{^,-e^^), 
lim [ F ; ( ^ , 0) - F ; ( ^ , -Q V O - F^X^, в) + F!„(^, - g V^] = 0 

uniformly in the region described by ^ e (1 + h, H}, —Q ̂ ^ ^ 0 ^ ^^. 

6) / / F ( 1 , 0) is continuous then the expression from 5 converges uniformly to 0 
in the region described by ^e <1, H}, —Q^J^UOS Л/^-
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7) The inequalities 

FlX^, e) - Flli, -Q)^ F{^, в) - F{i, -в V )̂ й 
uF:{Ç,9)-F:{Ç,-e^{l + a)) for ^ e < l , l + a>, 

FlXi, в) - FlX^, -Q^^)u F{L в) - F{i, - e V )̂ й 

й F:{^, 9) - F:{L - e VO for ^ ^ 1 + a 
hold. 

8) F((^, в) is a non-decreasing function of 9 for fixed ^. 

9) There holds F{i, в) - F{^, -Q^0 = J-eV^ ^(^ ' У) ^У^ ^^^^^ ^ (^ ' У) ^^ ̂  ̂ ^^"-
tion o/( l3, l ) with initial condition G(l, 9) = (dF/dö) (1, 9) and boundary conditions 
G{i, -Q ̂ ^) = G(^, VO = Ofori^ 1. 

10) F ( ^ , ^(^) — F((J, — ^Л/(^) f5 a non-increasing function. 

Proof. The proofs of 1) 2) 3) 8) 9) are the same as in Lemma 15. Item 10) is proved 
with the difference that as the auxiUery function we now take F(^, 0), the solution of 
(13,1) with initial condition F{^^, 9) - F(^^, 9) for -g ^^^ ^9 й V^i, F{^u 0) = 
= F(^i, " ^ V^i) föi- ^ ^ - ^ V^i and F(^i, Ö) = F(êi, Vci) for 0 ^ V^i, and 
with boundary conditions {dFJô9) (^, - ^ ^(^2) = {dFlô9){^, ^^2) = 0 for ^ ^ ^1. 
The proof of 4 is now easier than in the case of Lemma 15. The proofs of 7 and 2 are 
also similar to those in Lemma 15. There is a change in the case of item 5 (and hence 
also in the case of item 6). We apply formula (21,1); passing to the limit for n -^ 00 
we obtain that the expression 

F ; ( 1 + a,9)- F ; ( 1 + a,~g V(l + a)) - F : ^ , ( 1 + a, 9) + 

+ Fi,(l + a, ~^V(1 + «)) 
may be estimated by means of F(l + a, ß ̂ {1 + a) + 9) - F(i + a, ß + 9) and 
by one expression Uj, = F(l + a, 2{k + 1) (1 + g) ̂ {1 + a) + Ö) ~ F(l + a, 
2(k + 1) + 2kg — 0), where F corresponds to F(l , 9) by the Poisson formula, ß are 
suitable combinations of j ^ + J2Q {JuJi are integers) and limU^ = 0. We obtain 

a finite number of these new expressions and we can estimate them as in Lemma 15. 
The following lemma must be proved because its proof differs from that of 

Lemma 16. 

Lemma 23. Let v„ be given by (12,1) (where J, ^^^\ v, ô, К, 1 depend on n) and v^ 
is bounded by (20,1) at ^[^\ Assume that the F„(l, 9) converge uniformly to F(l , 9) 
and that F(l, 9) has continuous derivatives at 9 = -•g,9 = 1 and (dF/d0) (1, ~g) = 
= (dF/d0) (1, 1) = 0. Set F,{^, 9) = P{v„{^) ̂  9). Then the functions 

f „ ( ^ , e ) - f „ ( ^ , - ( | ; - 3 ^ ) V ^ ) 
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converge to F(^, в) — F(<̂ , ~Q ^^ ) , where F(^, в) is the bounded solution of (13,l) 
defined in the region decribed by ^ ^ 1, —Q-J^ ^ 9 ^ sj^ with initial condition 
F{U0) and with boundery conditions (^F/^o) ( ,̂ - ^ ^c) = (^F/^ö) (<?, /̂t̂ ) = 0. 
The convergence of 

Ï5 uniform with respect to ,̂ в in the region 1 + /i ^ (J ^ Я, — ^^/^ S ^ S ^Ji-
If F(l, в) is continuous then the convergence is uniform in the region 1 ^ ^ ^ Ну 

Proof. Let us choose the numbers vj > 0, h > 0. By Lemma 22 (5) a number 
a > 0 exists such that 

(23,1) \F:{L в) - F:{^, - e V O - F-ai^' Ö) + F:{^, ~e vol < n 
for (̂  e <1 + h, ну. According to Lem.ma 22 (4) we can choose г > 0 such that 

(23.2) F,{^, в) - F,{^, - ß V(^ + г)) ^ FJi^, в) - Fti^, -Q Ji) + ,7 

FlX^^ 0) - Fiait - e VO ^ f-^it Ö) - F-sit -Q V(? - £)) + T 

Next, let Cfc : Co = 1, C;i = 1 + a + (fc - 1) e/2 for к è 1 

9i'^ •• gi'^ = V(l + a). 9\^^ = ^iU + e) for к ^ Ï ; 
g''\è)--9'^\i) = gi^' for ^e<CbC..i) 

ai^^ •• gi'^ = ^ V(l + a), gi'^ = в ^iCk + e) for k^l; 

g''\0:g''\^) = gi'' for ^e<C.,C..i) 

gi'':gi''=^l,gi'^ = ^<^-el2) for fe ^ 1 ; 

^^^\O:0^^'(O = / / ^ for ^6<CbC.H-0 

!7l'̂  : Ê-̂ .'̂  = Q, g[^^ = e V(C. - e/2) for к ^ I ; 
g'''ii)-9''\i) = gi'' for ^e<4 ,C . .O-

The region Q is the set of points [ĉ , ö] such that — ö̂ ^̂ (̂<̂ ) ̂  Ö ^ 9^^\è)- The region / 
is the set of point [^, 0] such that -g^'^\^) S в й g^^\C)- The process v^ is defined 
in accordance with (12,1) and it is bounded by (20,1) at ^l^'\ The processes v^ and v^ 
are also defined by means of (12,1) but they are bounded by -g^^'\i), g^^\C) or by 
-6̂ *̂>((̂ ), g^^\^) respectively at C^^K The distributions F„, F^, F^, Fj, FQ are defined 
in the same way as in Lemma 16. For sufficiently large n (such that 3K„d„lv[^^ < 
< г/4Я, |(vl̂ > - Qvi^^ - 3K„J„)/v^2)| ^ gel4H), the inequahties 

(23.3) F,̂ (f, в) - Fi{è, -д^^Щ ^ FIL в) ^ F„(6 - / i ( 0 ) 
um.O)-F^{L^g^'\^)). 

lie ' : 
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evidently hold. By Lemma 21 there exists a number n such that 

(23.4) \Fi{^, в) - f „'(̂ , -9^'Щ - F,(^, 0) + Fl^, -é^\C))\ < 1 

\F%Ç, в) - F^{t -д^'Щ - Ч^^ в) + Paii, -д''\т < п -

According to the definition of the regions / , Q we obtain 

(23.5) F_,(^, e) - F„,(^, - ^ V(^ - 0̂) ^ F,{^, 9) - F,(^, -д^'Щ 

^ô(^' Ö) " ^ô(^' ~9^'Ш й F XL 0) - F XL ~Q^\^ + s)) for è ^ \ +a 

Lemma 23 follows immediately from the inequalities (23,1) —(23,5) and Lemma 
22 (7). If F(l , 6) is continuous we apply 6) of Lemma 22 to the inequality (23,1), and 
to the inequality (23,2) we may apply that the equations F^ = F^, F_^ = Fl^^ 
hold for (^6 <1, 1 + a}. 

From the preceding Lemmas we may conclude the following theorems. 

Theorem 3. Let there be given sequences of numbers (5„, K„, v^^\ v^^\ J„, T„, Я„ and 
a sequence of distributions F„(l, 6). Assume that the number sequences satisfy 
(U) —(15) and assume that the distributions F„(l, 0 v̂ ^̂ ) converge uniformly to F{e), 
Let the function F(e) have a continuous derivative at в = —Q and at в = 1 and 
assume that (dF/dö) (l, —Q) = (dF/dö)(l, 1) = 0 hold (we consider now processes 
belonging to X(F„(l, Ö), (5„, X„, J„, Я„). Set Р["^ = P,{ô„, К„, vi'\ v'^\ r/,, T„ Я„). 
Then the limit lim P"^^ exists and the formula 

П - * 00 

lim P?3) = 1 - F{e^'', e'') + F{e^\ -ge'') 
n-^ (X) 

holds, where F[L ^) is the bounded solution of the equation 

d]F_ A^ d^F 
d^ ~ 4 дв^ 

in the region ^ > '\, —Q ^Jä, < в < ^ä, with initial condition F(ö) and with boundary 
conditions {dFJde) {L ~Q^D = {дР\дв) {L ^^) = 0. 

By means of the transformation r = Ig ^jlT, fi = 0\^L G[x, ji) = F((^, в) it is-. 
easy to prove that Theorem 3 is equivalent to the following theorem. 

Theorem 4. Let the conditions of Theorem 3 be satisfied] then lim P3 ' = 1 
П - * 00 

~ G ( 1 , 1) + G(l, —Q), where G(T, JH) is the bounded solution of the equation 

aG ^ ^^dG TA^d^ 
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in the region т > 0 , —Q<ß<l with initial condition G(0, /л) — F(fi) and with 
boundary conditions (^G/^/z) (т, —Q) = (5G/^ / / ) (T, 1) = 0. 

Remark 5. If the limit lim ((5„X„J„T„/(v^^^)^) = a^ exists, then as in the Remark 4, 
и->оо 

we obtain the equation dGJOT = (a^ji) (d^G\dii^), 

II 

In this part we shall deal with the application of the results obtained above. 
These were proved in such a manner that we can proceed in two different ways. First 
we may consider the discrete case when the perturbations are effective only at certain 
instants t^^^ so that x{t^^^ + 0) — x{t^^^) may be different from zero. Secondly we can 
consider the continuous case when the perturbations act in the entire intervals 
it^^\ t^^'^^^) and they are bounded. 

In the discrete case we would need the theory of distributions if we wanted to use 
differential equations of the type (l). Nevertheless we can utilize the fact that in this 
case we may describe the perturbations S by means of the differences x{f^'* + 0, o;) — 
— x{t^^\ (x)). Since at the interior points of <^̂ '̂ \ r̂ ^^^^> the perturbations are not 
effective we may define the solution in the following way. The process x{t, ш) is 
a solution of the equation 

( r ) X = -Ях + 5(f, X, со) 

if x(t, со) is a solution of the equation x = — Ях for almost all fixed œ and for 
t e {t^^\ t^^^^^) and if the distributions of x{f^^ + 0, со) - x{f^\ œ) are prescribed. 

The following assumptions are similar to those in [1]. 

1) The perturbations are in a certain sense small: 

(16) E{\x{t^^^ + 0, со) - x{t^''\ co)| I x{t^''\ œ), ..., x(0, со)) S àd . 

The conditional expectation means that the estimate holds independently of the 
behaviour in the past. (i.e. for t < t^^^) The coefficient d in (16) guarantees that the 
influence of an individual perturbation (that is in one moment t^^^), decreases if the 
density of the points t^^^ in <0, T> increases. 

The assumption that "systematic error" cannot arise we can again write as 

(17) E{x(t^^^ + 0, со) - x(^(^\ со) j x{t^'\ col ..., x(0, œ)) = 0 . 

The last condition has the same meaning as that in [ l ] 

(18) P(|x(^(^> + 0, со) - x{t^^\ co)| > Kd I x{t^'\ œ)„.., x(0, со)) = 0 . 
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By a slight modification we can easily prove that the conditions (2) — (4) follow from 
(16)-(18). 

Assume that we have a sequence of differential equations (l). If the assumptions 
(16) —(18) are satisfied then Theorems 1 — 4 hold for solutions of (1). 

The continuous case. First we must assume that: 

S[t, X, со) is a random variable on Q for any t, x. 
S(t, X, со) satisfies Carathéodory's conditions for almost all со. 
S{t, X, œ) is mesurable in E x Q for every x. 

These conditions are suffisant for the existence of solutions of equation (Г). 
Consider now the simplest case, i.e. that the perturbations S{t, x, со) depend only on со 

and on the intervals it^^\ fi^^^). Set 5;,(ш) = S{u x, со) for t e <^t^^\ t^^^^^). Sj,{co) are 
now random variables. Then it is natural to require the following conditions 

(19) E{\S,{co)\) ^ Ô , E{S,{co)) = 0, \S,{co)\uK, 

If we add the assumption that the random variables 8^{со), /с = — 1, 0, 1 , . . . are 
independent (S'_i(co) is the random variable x(0, со)), we may derive the conditions 
(2) —(4) from (19) ane Theorems 1—4 hold for solutions of (1). 

The conditions are easily formulated, too, if S depends only on t, со. In this case 
we shall assume that 

(20) E{\S(t, co)\) й Ö , E{S{t, ш)) = 0 , \S(t, œ)\ ^ К . 

Denote by Ĵ ^̂ ^ the least a-field which corresponds to random variables S{T, СО), 
where т is a number from {t^^\ fi^^^); J^^~^^ is the least cr-field which corresponds 

и 

to x(0, со). Now we shall assume that the cr-fields are independent (i.e. P(f] Ai) = 

= nP(^,)if^,e#'<^>). 
It is possible to investigate the general case similarly to that in [1]. 
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Резюме 

ОБ ОДНОРОДНОМ ЛИНЕЙНОМ ДИФФЕРЕНЦИАЛЬНОМ 
УРАВНЕНИИ СО СЛУЧАЙНЫМИ ВОЗМУЩЕНИЯМИ 

ИБО ВРКОЧ, (Ivo Vrkoc), Прага 

В работе находятся предельное выражения для 

sup Р( sup х„{т, œ) ^ v„) , sup Р{ sup |X„(T, œ)\ ^ v„) , 
Xn <0 , r „> Xn < 0 , r „ > 

где P( sup X„(T, СО) ^ v„), P( sup |х„(т, œ)\ ^ v„) значат вероятности с которыми 
<0,Гп> <0,Г„> 

процесс х„ или |х„| переходит по крайной мере один раз границу v„ в итервале 
<0, Г„>, и х„ пробегает группу случайных процессов X(F„, S.^, К„, d„, 1„). В конце 
работы используются эти результаты для дифференциальных уравнений 
X = — А„х + 5'„(f, х, со), причем S'„(/, х, со) случайный процесс, который выра­
жает возмуицения. Приведены условия при которых можно здесь использовать 
теоремы 1. — 4. 
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