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Yexoc10BauKuii MaTeMaTuieckuit xkypuaa, 1. 16 (91) 1966, Ilpara

ON HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS
WITH RANDOM PERTURBATIONS

Ivo VRKOC, Praha
(Received April 1, 1965)

Let there be given a sequence of differential equations
(]) X = _;“nx + S"(t, X, wn) s

a sequence of initial conditions x,(0, w,), a sequence of numbers v,, a sequence of
intervals <0, 7,> and a sequence of (,, #,, P,). The S, is a stochastic process
defined for [t, x, w,] € €0, ) x (=00, ©) x Q,, and describes random perturba-
tions. Finally x is a scalar variable, 4, are positive numbers. We shall investigate two
different kinds of assumptions concerning S,. Firstly, we may assume that the
perturbations act only at discrete instants t*, causing discontinuities of the solution;
secondly, they may act on the entire intervals (®, #**1) being bounded there
however a mixed case may also be considered. For the sake of simplicity we shall
assume that these instants t{ are regularly distributed, i.e. there exist numbers
d, > 0 such that 1 = kd, (k are nonnegative integers). The assumptions on S, are
given more precisely in § 2: in the discrete case in (16) to (18), and in the continuous
case in (19) or (20) together with a further assumption. However, these assumptions
do not ensure the uniqueness of the process S, nor of the solutions x.

We shall deal with the expressions sup P( sup x,(r, ®,) = v,) and

Xn(t,0n)  1€(0,Tn)

sup P( sup |x(t, w,)| = v,); here x,(t, ®,) is a solution of the n-th differential
Xn(t,0n) 1€{0,Ty)

equation of (1) with the given initial condition x,(0, w,). These expressions mean the
maximal probability that the solutions x,(t, ®,) (not uniquely determined by its
initial condition) exceed at least once the bounds x = v, in the interval <0, T,). If
the assumptions (7) to (10) are satisfied, the limits of these expressions exist for n — oo
and it is possible to determine them in terms of solutions of a parabolic differential
equation (see Theorem 1 or 2). The assumptions (7) to (10) imply that the density of
the points ¢ on the considered intervals <0, T, is sufficiently large for large n.
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In the first part of this paper, in lemmas 1 to 11 as long as we look for the process

V.(t, ®,), which gives the maximum at
sup P( sup x,(t,,) =v,), sup P( sup Ix (r, )| 2
Xn(t,0n) 1€€0,Tn) Xn(t,on) €

we proceed similarly as in [1] and we do not use the subscript n. We shall not give
proofs of Lemmas 1—9 because they are similar to those in [1]. Lemmas 10 and 11
will be proved because the difference in method is significant. The remaining portions
that is the determination of the limit of the expression P sup y,(z, ®,) = v,) is quite
different from that in [1]. X0,Tw>

We shall employ the following notation: Let x,(w), ..., x,(w) be random variables
on a common space (Q, Z, P) then conditional distributions [2] exist

F(Ay |2, .. ) = P(xy(00) £ 24 | x5(0) = 45, .., x,(@) = 4,) .
We shall use the conditional expectation

E(o(x0))|x2 = 220 o0 %o = 4) = [0(A1) 43, F(21 | 225 s 4,)

The problem is formulated and solved as in [1], first without using the concept of
a differential equation, and only in a conclusion — see § 2 — the results are applied
to the differential equation (1).

The conditions (2) to (4) are so chosen that solutions of (1) fulfil (2) to (4) if S
fulfils the assumptions of § 2 (for example (16) to (18) or (19) or (20)).

Definition 1. Let numbers d > 0, 5 > 0, K > 0, 2 > 0 and a distribution Fy(6) be
given. The class of processes x(t, w) which are defined for all t = 0 (but not necessarily
on the same Q) and which fulfil the following conditions P(x(0, w) < 0) = F(0),

(2 E[x(1** D, w) — ue”“l x(t®, w) = pu,
x(t* Y, 0) = o _q, ..., x(0, 0) = 9] =0,

o) B, 0) = e X, 0) = 1
(%D, 0) = o g, -, X(0, ) = o] £ 0d,

4) P[|x(t, w) — ﬂe"(‘_'(k))| > K(t — t("’)lx(t("), ) =u,

x(l(k_l), w) = Og—q5eees x(O, w) = ao] =0

for all t:¢® <t < ¢**Y, (1Y = kd) will be denoted by X(F,,d,K,d, 1) (or
briefly X).
As mentioned above, we shall be concerned with estimating the expressions

(5) P, K,v,d, 1,2) = sup P( sup x(r, w) = v)
x(t,w) 7€0,t)
(6) P,(6,K,v,d, t,2) = sup P( sup IX(T o) =
’ x(t,0) 10
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where x(t, @) is arbitrary process belonging to X(Fo, 8, K, d, 2) (P(Q) = inf P(A),
A > Q, A are mesurable). 4

The meaning of (2), (3), (4), and similarly of (16), (17), (18) or (19) or (20) of § 2,
is as follows: (2) — random perturbantions do not cause any “systematic error”,
(3) — random perturbations are small in a certain sense, (3) — this condition has the
same meaning as that in [1] If condition (3) were not satisfied, a “systematic error’
would arise and the results would be weaker. The following definition of bounded
processes differs only slight by from that in [1].

Definition 2. Let positive numbers J, 4, K, d, v and a process x(t, w) be given.
Assume that x(¢, ) is defined for all # > 0. Define {(w) = min 1(w) if x(1"(w), w)
= (v — Kd) €**(values of 1(w) are only V). Or if such () do not exist set #(w) =
= o0. The process x(t, w) is bounded at v if x(t, ) = x(t(w), w) for t = #(w). The
process x,(t, w) will be termed the process bounded at v corresponding to x(t, w) if
x,(t, ) = x(t(w), w) for t = H(w), x,(t, ) = x(t, w) for t < ().

Remark 1. The inequality (v, — K,d,)exp {4,d,} < v, must be fulfilled for large n
according to (7) to (10), and thus we can assume that (v — Kd) e* < v. By (3), (4)
the inequality 6 > K cannot be satisfied. The meaning of the expression (v — Kd) e*
in Definition 2 is obvious from the last inequality of Lemma 2.

The following lemma differs slightly from [1, Lemma 1] but the method of the
proof is similar.

Lemma 1. Let x(t, )€ X(Fo, 6, K, d, 2); then x(t, ) satisfies (2) to (4) for
p<(v— Kd)e.
The change of the definition of a bounded process influences Lemma 2, too.

Lemma 2. Let x € X(Fy, 6, K, d, A); then

P(xve'“+Kd(t’ C0) g V) é P—( Sup X(‘L’, CO) g V) é P( sup x(T’ w) g V) é
0=sz=t 0=t

< P(x,(i%, ) = (v — Kd) )

where 1% is the greatest 1% such that t® < ¢ (P~(Q) = sup P(A), A = Q, 4 are
measurable). 4

The following three Lemmas remain unchanged.

Lemma 3. The expression P(x,(t, w) = (v~ Kd) e*) is a non-increasing function
of v for fixed t and for fixed x(t, w) € X(F,, 8, K, d, 2).

Lemma 4. The expression P(x,(t*, w) = (v — Kd) e™) is a non-decreasing
function of k for fixed v and for fixed x(t, ) e X(F,, 5, K, d, 2).

Let the numbers K, d, A and the distribution F, be fixed. Denote {(0) =
= sup P(x,(t, ) 2 (v — Kd) €*) for x(t, w) € X(F,, 0, K, d, 1).
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Lemma 5. The function {(0) is non-decreasing.

As Lemma 1 holds in form weaker than in [1] we cannot use the principle of
reflection, and we must introduce the following definition which slightly differs from
that in [1].

Definition 3. X*(F,, 6, K, d, 1) is the class of processes with initial distribution F, ')
which are bounded at v, satisfy (2) to (4) for 4 < (v — Kd) €*, and also

P(x(t)e A| x(t®) = p, x(1*7 ) = oy, ..., x(0) = ) =
= P(x(1) e 4| x(1®) = p)

for all t e (t®, t*+ % and for all sets 4 which are B-mesurable on (— o0, o).

The following Lemma 6 is quite similar to that in [1], and now the Lemmas 7, 8
hold for the class X".

Lemma 6. Let x(t, w) € X(Fy, 8, K, d, 1); then there exists a process x*(t, ¢) such
that x*(t, 0) € X*(Fo, 6, K, d, 1) (x* is not necesserily defined on the same Q), and

(6,1) P(x*¥(1%* D) e A|x*(1®) = p) = P, (x(1** D) e A x(1®) = p)
holds for all t e (1%, {** V) and for all sets A which are B-mesurable on (— o0, o).

Remark 2. If x € X, we can construct the bounded process x, at v corresponding
to x. According to Lemma 6 we may construct the process x* which corresponds
to x,. (The condition x € X is necessery only for the existence of conditional distribu-
tions.) According to (6,1) x* € X" is satisfied, and for every nonnegative integer
P(x*(9) < 0) = P(x(1*) < 0). .

Definition 4. Let a, b be nonnegative integers, a < b. Denote
94(0) = sup E(o(x(1”) | x(1) = 0),

where x belongs to X*(F,, 3, K, d, 2). The expression ¢5(0) also depends on v, but -
this will not be emphasised because it is not important.

Lemma 7. Let a, b be nonnegative integers, a < b, and let ¢(0), y(0) be B-
mesurable functions; if (0) < y(0) then ¢5(0) < y(0).

Lemma 8. Let a, b, ¢ be nonnegative integers, a < b < ¢, and let ¢(0), y(0) be
B-mesurable functions; if ¢5(0) < y(0) then ¢(0) < y2(0).
The following Lemma 9 is a modification of that in [1].

Y ie. P(x(0) £ 0) = Fy(0).
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Lemma 9. Let ¢(0) be a convex function; then each ¢}*(0) is convex for 0 <
< (v — Kd) €™, and the relation

(9,1) ok '(0) = E(@(x*(t* V) | x*(1*%) = 0) for 0 < (v — Kd) e
is satisfied, where x* is the process belonging to X"(FO, J, K, d, /1) for which
RAC |6) = F(0,1 — Oie™*). The function F(u) is defined by
(9,2) F(u)=0 for u< —Kd, Flu)=1 for u=Kd,

F(u) = 6/(2K) for —Kd <u <0, F(u)=1—6/(2K) for 0 <u < Kd.
The necessary modifications of Lemmas 10 and 11 are more essential and therefore

they will be proved in detail.

Lemma 10. Let ¢(0) satisfy: 0 < o(0) < 1, ¢(0) =1 for 6 =z v — Kd, and
be ¢(0) convex in the region 0 < v ~ Kd (v is a positive number). Let ¢*(0) be
defined by ¢*(0) = ¢(0) for 0 ¢ (v — 3Kd — &, v — Kd) and

(10,1) e*0) =1 for 6 =v—3Kd.

©*(0) is linear in (v — 3Kd — &, v — 3Kdy. The process y is bounded at
{v—3Kd) e * + Kd corresponding to z€ X(F,, 6,K, d, 1), P(z(1*) + 0) = pe™* +
+ uKdIz(t"") =p)=1—2p+ |u|(3p — 1) where p = min (6K, 1)/2, the para-

meter u may equal only —1,0,1, and z(t) is a solution of z = —Jiz for all
other t.

Then the inequality
(10.2) E(p(x(1™)) = E(o*(»(t™)))

holds for each xeX"(FO, 0, K, d, )t) arbitrary ¢ > 0 and arbitrary nonnegative
integer n.

Proof. According to the definition of z the equations
(10,3) : P(z(1* D) = e~ — Kdlz(t"") =p)=p
P(z(t** D) = pe™* + Kd | z(1*®) = p) = p
P(z(1** D) = ,ue‘“lz(t("’) =u)=1-2p
P(z(0) < 0) = P(x(0) < 0).
hold. Obviously
(10.4) 0= j o) d,F(u|0) < 1.

Let V(0) = af + b and x e X(F,, 3, K, d, 4); then
(10,5) E(V(x(t** D)) | x(1®) = 0) = afe™* + b .
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Equation (10,5) also holds for the processes x € X", for 0 < (v — Kd) e*, whose
distributions satisfy

(10,6) F(ujo) =0 for p<6e * — Kd
F(u]o) =1 for u=0e ™ 4+ Kd
F(e]0) = §/(2K) for 0e™* — Kd < p < fe™*

F(”|9)= 1 —5/(2K) for O™ < < e ™ + Kd .

Next we shall prove the following statement:
Let ¢(6) be convex for § < v — Kd, linear in (v — 3Kd, v — Kdy and ¢(0) = 1
for & = v — Kd, then every process for which

i '(0) = E(p(y(1* ") | »(:) = 0)

is bounded at v. The distributions of these processes satisfy (10,6) for 6 <
< (v — 2Kd) e,

(10,7)  F(u]0) =0 for p<0e ™, 0e{(v— 2Kd)e™, (v — Kd) &)
F(ulB) =1 for p=0e* 0e(v— 2Kd)e*, (v — Kd) ey

@t1(0) is convex for 0 < (v — Kd) ™.

Let x(0) = ¢(0) for 0 < v — Kd, x(0) linear for 6 = v — 3Kd. Obviously ¢(0) =
< x(6). By Lemma 7 ¢f*'(0) < xi"'(6) and by Lemma 8 (since x(0) is convex)
x6+1(0) = [x(n) dF (/z | 6). where F (1]0) is a conditional distribution fulfilling (10,6)
for 8 < (v — Kd) e* of a process which is bounded at v. We have obtained that

74¥1(0) is also convex in 0 < (v — Kd)e*. By (10,5) the equation yi*'(0) =
= [x(w) dF(MIG) holds, where F(u|6) satisfies (10,6) or (10,7) respectively and
moreover F(u| 0)is a conditional distribution of a process bounded at v. The process x
which is defined by (10,7) and for which x(tf*) = 6 < (v — Kd) * cannot exceed
the bounds x = v — Kd at t**" and hence ¢} '(0) = zi*'(6) for 6 < (v — Kd) e*.
(Note that ¢ # y mayholdfor > v — Kd.) As(0) < 1,¢(0) = 1for6 = v — Kd,
the equation @} *'(0) = [o(u) dF(u]6) also holds for 6 = (v — Kd) e**. Now start
with the proof of Lemma 10. We defin¢ the function "y by "y(0) = ¢(6) for 0 ¢

¢ (v — 3Kd, v — Kd), ")(0) is linear in {v — 3Kd, v — Kd). Since (p(0) is convex in
0 < v — Kd, we have

(10,8) o(0) < "(0)
Since ¢*(0) = 1 for = v — 3Kd, we obtain
(10,9) "W(0) < ¢*(0)
By Lemma 7 we have '

(10,10) o ona(0) S y(6) -
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According to the statement proved above and (10,9),
(10.11) w4@5W@ﬁmm§ﬁwmmwx

where F(u]0) is conditional distribution fulfilling (10,6) and (10,7) of & process

bounded at v. Set g_(0) = fo*(u) d,F(n] 0), where F(u] 0) 1 2 congitional distribu-
tion fulfilling (10,6) of a process bounded at (v — 3Kd) €™ + g4 According to
{10,1) we have

(10,12) ¢or-1(0)=1 for 62v—3Kd.
According to (10,4), (10,1) and (10,11) the inequality
(10.13) "Wr-1(0) = @7-4(0)

nn

holds. By the statement proved above, "y, _,(0) is convex for 0 < (v — Kd) ™, and
by (10,4) "2 _1(6) < 1. We can now define the function "~ "¥/(60) thys:

"I(0) = "Wi-4(0) for 0¢(v — 3Kd, (v — Kd) ety
"ly(6) = 1 for 6e (v — Kd, (v — Kd) e?y

"=1y(0) is linear in {v — 3Kd, v — Kd). Obviously "~ 'y(0) > "y"_,(6), and by
(10,10) the inequality
(10,14) Ph-1(6) = "7 'y(0)

holds. According to (10,12), (10,13) and (10,4) we have "~ '¥/(0) < o*_,(0).
Now we proceed by induction. Let there exist functions ¥, @} such that

(10,15) AOERTOR

(10,16) “W(O) < @F(0), 9F(0) =1 for 0= v —3Kd,
(10,17) %y(0) is convex for 0 < v — Kd,
(10,18) k(0) is linear in (v — 3Kd, v — Kd) ,
(10,19) YO) < 1, Bp(0) =1 for 0= v— Kd.

By Lemma 8 we have

(1020) oA0) S UE0).

By the statement, (10,17), (10,18) and (10,19), ¥/ _,(0) is convex for 0 < (v — Kd) e*¢
and the inequality “yi_,(0) = [*y(u) dF(n]6) < [ (n) dF(1]6) holds, where
F(u ¢ s aconditional distribution fulfilling (10,6) and (10,7) of a process bounded
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at v. The last inequality holds according to (10,16). By (10,4) and (10,16) we obtain
Joi(w) dF(i | 0) < foif(w) dF (1] 0) = @i 1(w) and

(10,21) “Wi-1(0) £ 9i-4(0) -

Set *'y(0) = My ,(0) for 0¢(v—3Kd, (v— Kd)e™), *"'y(0) =1 for Oe
e{v — Kd, (v — Kd) "y, *"'y(0) is linear in {v — 3Kd, v — Kd). Since *y_,(0)
is convex for 0 < (v — Kd)e™, we obtain *y_,(0) < *~'y(0). By (10,20) the
inequality (10,15) holds also for k — 1. By (10,21) and according to ¢;_,(0) = 1
for 8 = v — 3Kd, the relations (10,16) hold also for k — 1. By the statement proved
above, (10,17) is true. According to definition of the function *~'y(6) we obtain
(10,18). According to (10,4) and the definition of F(/‘IO) we conclude (10,19).

From (10,15) and (10,16) we have
(10,22) @4(0) < @i(0) for every k.

The function ¢} (6) is obtained from ¢, ,(0) by means of
(10.23)  @(0) = f(/)iﬁ 1(0) dF(u] 0) = E(@i s (0(** ) | y(1®) = 0)

where y is the process described in Lemma 10. We shall prove that

(10,24) @i (0) = E(@*(y(1™) | y(1®) = 0).
Obviously the relation
(1025 E(* () | oY) = ) = E[B(p((™) | o).

W=D (V) = 6] = E[E(* (7t ) | y(1®) | y(t V) = 6]
holds since y € X*. By (10,24) we obtain the relation
(10,26) E(o*(y(t™, o)) | y(1®, w)) = 0 (y(1®, w))

almost everywhere. If apply (10,26) in (10,25) we obtain E(p*(y(t™)) | y(1*~") =
= 0) = ¢;_(0) by means of (10,23). We have proved (10,24) for all k. According to
the definition of ¢§(6) and (10,22) and (10,24), we obtain E(¢(x(1™)) | x(0) = 0) <
< 0§(0) = ¢5(0) < E(o*(y(1™)) | »(0) = 6). Then (10,2) is easily proved.

Previous lemmas yield

Lemma 11. Let xe X(F,, 6,K,d, ) and y be the process bounded at
(v — 3Kd) ¢* + Kd corresponding to the process z which is described in Lemma 10.
The inequality
(11,1) P( sup x(t, w) = v) £ P(y(i®, w) = v — 3Kd)

0

stst

holds, where i® < 1, t — i® < d.
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Proof. Choose a sequence of positive numbers ¢,, — 0 (for m — o0) and a sequence
of functions ¢,,(0) such that ¢,(0) is convex for 0 < v — Kd, ¢,(0) = 1 for 0 =
= v — Kd, ¢,(0) - ¢(0) which is defined by ¢(0) = 0 for 0 < v — Kd, ¢(0) =
=1 for 6 = v — Kd. The functions ¢}(0) (see Lemma 10, ¢, — 0) converge to
a function ¢*(0). The function ¢* fulfils ¢*(0) = 0 for § < v — 3Kd, ¢*(0) = 1
for 0 = v — 3Kd. For arbitrary x € X choose x, — see Definition 2. According to
Lemma 2 we have
(11,2) P( sup x(1, ) = v) < P(x,(i®) = (v — Kd) e*)

0=z=t

According to Remark 2 we construct x* € X" for the process x, so that the inequality
(11,3) P(x,(i%) =z (v — Kd) &) < P(x*(i?) 2 v — Kd)

holds. As the functions ¢,,(6) coverge to ¢(0), we have

(11.4) E(@n(x*(1V)) = E(o(x*(i"))) = P(x*(i") = v — Kd)
Since the functions ¢@(0) converge to ¢*(0) we have, similarly,

(19 HHO0) ~ B O0) = POE) = v — 3Kd)
By Lemma 10

(11,6) E(en(x*(1))) = E(on(»(i)))

The inequalities (11,2)—(11,6) imply (11,1).

We have obtaine the process y, and by means of this process we are able to estimate
(5)- In the case that y(0, ) = y, is a number (and not a random variable) we can
conceive this process in the following way. Consider a point A. For t < 0, A lies
at y,. For 0 <t < d the point 4 moves in accordance to the differential equation

_ X = —Ax. At the instant t = d the point 4 moves to a distance Kd to the right or
left with the same probability 6/(2K) or it remains at the same position with proba-
bility 1 — §/K. In the time interval d < t < 2d the movement of A4 is governed by
the differential equation x = —Ax. At the instant ¢ = 2d the whole situation is
repeated. We still have to determine the value of lim P( max y(1{",w) = v,).

n>o  0ISTa/dn
In [1], the modified Lagrange integral theorem was sufficient for this. But now we
must find the distribution as the solution of certain parabolic equation. We shall
introduce three transformations which will transfer the process y to a process v
more convenient for our considerations. Before formulating Lemma 12 we must
modify the definition of processes bounded at v.

Definition 5. Let there be given a function f(¢), a sequence &® < &M < | and
a process x(¢, w). We assume that the process x(¢, w) has values from E 2).

2) E arises from (—o0, ) by adding + 0.
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The process x(¢, ) is bounded by f(£) at &7 if x(¢, @) = oo for & = &(w), where
(o) is the minimum of &M(w) : x(¢(w), ®) 2 f(E)(w)) and the value of {(w) are
D only. If no such (o) exists we put &(w) = co. The process z(¢, w) is bounded
by f(¢) at & and corresponds to x(&, w) (for an arbitrary process x) if z(¢, w) =
= x(&, o) for & £ &(w), z(¢, w) = oo for & > &(w), where &(w) is defined above.

Lemma 12. The transformation y = e~ *'y transfers the process y to a process y
P(y(t0+ D) = 9(¢D) + uKdeH* "+ I y(t?), ..., 7(0)) = 1 — 6/K + |u| (35/(2K) — 1),
where the parameter u may equal only —1, 0, 1. The absorbing barrier is described
by y = (v — 3Kd) €. The transformation & = **', &0 = 23 §(ED) = (M)
transfers the process y(t) to a process (&)

POETD) = 7E0) + ukde () 7)., 7)) =
=1- /K + |u| (35/(2K) — 1),

where againu = —1,0, 1. The absorbing barrier is described by § = (v — 3Kd) /¢
The transformation § = vv transfers the process ¥ to a process v

(12,1) PO(ED) = oe®) + u K9 g (e |u(z), ..., o(e®) =
v
=1- /K + |u| 35/2K — 1),
where the parameter may equal only —1,0, 1. The absorbing barrier is described
by

(12,2) v = <1 - Xg) JE-

vThe initial condition is
{(12,3) P(v(1) < 0) = P(»(0) = v0).

Consider now the processes v,(, w); these processes are defined by (12,1), with
5, K, d, v, A, &9 replaced by 6,, K,, d,, Va» Ay E. If the processes v, are not
bounded by any f we shall prove that under certain conditions the distributions
F, (& 0) = P(v,(¢) < 0) converge to a solution of a certain parabolic equation.

Hypothesis. Let sequences of real positive numbers dy, ..., 0, ..., Ky, ..., K, ...}
Aiyeeoydpyeois Ay vy Aoy Tyy ooy Toge ity Vi vy Vpy - satisfy

K,0,d
! 7 —= ad A2 ) 5n § Kn
0 e
(8) LT, > T>0
©) Ad, — 0
(10) Kdy .

Vn
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Remark 3. By (8), (9) we have T,/d, — co. If we assume that § and K are independent
of n (as in[1]) then we the assumptions (7)—(10) reduceto § < K, d,/(2,v3) = A*|(6K),
2T, = T, A,d, — 0 (or T,/d, » o). By Lemma 12 we have &V e <1, e*").

Lemma 13. Let v, be defined by (12,1) (where instead of 5, K, v, d, &7, A we put
Oy Koy Vi oy EV, 4,). Let the initial distributions F,(1,0) converge uniformly to
a distribution F(1,0). If (7)—(10) are satisfied then the distributions F,(Z,0) =
= P(v,(¢) = 0) converge to the bounded solution of the parabolic equation

OF  A? O°F

13,1 OF _A" O
(13.) 0 4 00*

which has initial condition F(1, 0) and is given by Poisson formula [3]

F(¢, 0)——— {— = x) }F(l x) dx .
AY[R(E = 1] - A -
This covergence is uniform in each region ¢€ {1 + h, H), 0; h >0, H > 1+ h.
If F(1,0) is uniformly continuous then F,(, 0) converge uniformly to F(&, 0) in
the region e {1, H),0.

Proof. Choose a positive number ¢. Observe that each bounded solution of (13,1)
has uniformly bounded partial derivatives 0*F[0&?, 0°F[00%, 6*°F[06° in each region
el + h, Hy, 0. (A simple consequence of the Poisson formula.) If F(1,6) is
aniformly continuous then F(1 + &, 0) converges uniformly to F(1, 8) for ¢ > 0+,
this follows from the Poisson formula.

First we shall assume that the function F(1, 6) is uniformly continuous. Let s be
the least superscript satisfying £ = 1 + ¢ (s depends on'n but we do not indicate
this). We shall prove that the value

(132) P&, 0) = F(&52, 0) — F,(27.0)

converges to zero. To obtain this we shall estimate the expression (in the following
two formulae we shall not indicate the dependence on n)

(g0, 0) = F(E+D, 0) — (é"’ o+ 5 \/(6(")>
_mewQ—g) (00 - “«&ﬁ

(')F 1 0*F
— (i) (i+1) _ gD -
o -

(C* 9) (é(wl) é(i))l _
;jof (60, 0) K92 2oz - L o, e*)K 40 iz

1 0° F(é(') 0**)K d*s

3/14(5(1'))3/2 ,
12 00°
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where

C(i) < & < é(tﬂ) 0 < 0% <0 + et \/(é(')) 0 — —= oM \/(g(z)) < 0** < 0.

Dividing the equation by E0*1 — &9 and considering that F is a solution of (13,1),
we obtain

o(E0,0) 1%

E(i+1) _ é(l) 4 692

1 K2d?s

- <603 (5(1) *) _ (f(') 0**)) =7 g3 \/(f(.)) + 0(,1(1)

By (7)—(10), & < €™ - 2T for n — oo and since the partial derivatives are
bounded, we have

Ko
v

(&, )(Az— e> T (600 80 a -

o (f(’)
4¢2,d,

Let us denote f{" = max |B™(ED, 0)], af™ = max |oc(")(€(” 0)]. By (13,2) we obtain

Ut < o) 4 g and furthermore pY*Y) < ﬂ(‘) + Za(') T,/d, is the greatest

_| afe,0)

=,€(,+1)_€m -0 for n—> oo.

(13,3)

l s
value of j (that is the number of instants at which perturbations act). Hence
() ) 4 i) . _ T,
(13,4) B” = Ba Lo max o for s<j<
n iZs dn

We may estimate the last term of (13,4) T,/d, max of” < 2Te*” max o{”[(£74,d,),

izs izs

and by (13,3) this term converges uniformly to 0 for n — oo. Since B,(&¢, 0) =
= F(&, 0) — F, (&5, 0) = F(EY, 0) — F,(1, 0) and since F(E, 6) converge uni-
formly to F(1, 6) for e — 0, we obtain that B converges uniformly to 0 for n — oo,
¢ - 0. By (13,2) ‘
(1.9)  FE0) — FE0,0) = BEH, 0) — [FE™, ) — FED, 0]
Since £{'*®) — & < 2¢e?T (as for large n there is &) < 1 + 2¢), we have &{'*® —
— &P >0 for e > 0, n - oo, and the difference F('), ) — F(E(”, 0) converges
uniformly to 0. Let & > 1 be given. We shall choose least £ with & > ¢ Then
&P — & holds, and by (12,1) we have |F,(¢”, 0) — F,(¢, 60)] - 0 uniformly with
respect to 6. By (13,5) F,(¢, 0) converges uniformly to the solution of (13,1) described
in Lemma 13.

We have assumed that the function F(1, 6) is uniformly continuous. For arbitrary

81 > 0 and for an arbitrary distribution F(1, 0) we can find distributions F,(1, 0) and
F,(1, 0) such that

(13,6) COFy(1,0) — Fy(1,0) < g
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except of finite number of regions (the number of these regions is at most [2/e, ], [x]
stands for the greatest integer in x) and the Lebesgue measure of each is less than }.
We can assume that

(13,7) Fy(1,0) — F(1,0) > &,/4 or Fy(1,0) =1
F(1,60) — Fy(1,0) > &,/4 or Fy(1,0)=0.

Denote by v! the process defined by (12,1) (8 = §,,, ...) with initial condition F,(1, 0);
v{?) is defined in the same manner as v{"’ but with initial condition F,(1, 6). Put

FO(E 0) = P(oV(8) < 0), FP(E, 0) = PP(8) < 6).
By (13,7), the inequality F{"(&, 0) < F,(&, 0) < F$(&, 0) holds for large n. Passing
to the limit for n — oo we obtain

(13,8) . Fy(& 0) = lim F{(¢, 0) < F*(&, 0) < F**(&,0) <

< lim F§(&, 0) = F,(¢&, 0),

n— oo

where
F*(&,0) = liminf F,(&, 0), F**(& 0) = limsup F,(¢, 0) ;

these F,(¢, 0), F,(&, 0) exist because Fy(1,0), F,(1,0) are uniformly continuous.
By (13,7) and the Poisson formula the inequality

(13,9) Fi(£,0) < F(&,0) < Fy(¢, 0)
holds, and by (13,6) and the Poisson formula again,
(13,10) Fy(&,0) — Fi(,0) < &,(1 + y(2)).

The function y(¢) is monotone decreasing. By (13,8), (13,9) and (13,10) we have
F*(&,0) = F**(&, 0) = F(¢, 0).

Now consider the case when v is a bounded process (by certain f at certain &),
We choose the absorbing barrier in a simpler way than in (12,2) in order to be
able to apply the principle of reflection. Assume we have a finite set of numbers.
(@1 =00 <M< <@ =¢T and g@: 0 < g < g < ... <g@ Now
define the function f — see Definition 5 — by f(0) = g” for ((?, (0.

Lemma 14. Let v, be the process defined by (12,1), bounded by f at {". If the
assumptions of Lemma 13 are satisfied, then F,(&, 0) converge to F(&,0). The
function F is the bounded solution of (13,1) in the region & € (1, ("), 0 < g'” with
initial condition F(1, 0) for 0 < g® and with boundary condition (0F[00) (£, ) =
= 0 for E€ {1, (™). In the region #; : & ({9, (DY, 0 < g, F is the bounded
solution of (13,1) with initial condition F({?, 0) for 6 < g~ Y, F({"”, 6) is constant
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for 0e{g"~ ", ¢, and with boundary condition (0F[d0) (&, g7) =0 for &e
e (W, (DY The convergence of the F, is uniform in each region # o JH;
where A is described by &e <1+ h, H), 0. If F(1,0) is uniformly contihuous
then the F,(&, 0) converge uniformly in the region U ;.

Proof. Without loss of generality we may restrict ourselves to the first region # .
Let , be the process fulfilling (12,1) (the numbers 6, 4, v, K, d depend on n). Let v,
be the process bounded by f(0) = g/ at (" corresponding to #,. As the initial
distribution of v, we can take F,(1, 0) defined thus: F,(1, 6) = F,(1, 0) for 6 < ¢,
F,(1,0) =1, for 6 = g'9, where F,(1,0) is initial distribution of #, and [, =

= lim F,(1,0). Set F,(¢ 0) = P(5,(¢) < 0), F,(& 0) = P(v,(¢) < 0). It is easily

0-g(0) —

proved that

(141)  F&0) + F, (6,299 — 0 + Koo gtasiy 5 p e 0) 2

v,

= F (& 0) + F (£, 29 — 0 — K., elldntt) — I, for 0= g.

)
Vi

Since both the left and right sides of (14,1) converge to the solution of (13,1) (taking
(1/1,) F, instead of F,), we obtain that F,(¢, 6) converge to the solution of (13,1).

The processes v, determined by Lemma 12 are bounded by functions which con-
verge to /& for n — oo (see (12,2)). Before considering the function (12,2) we shall
formulate certain results of the theory of differential equations which we shall need
later.

Lemma 15. Let F(, 0) be the bounded solution of (13,1) in the region & = 1,
0 < /¢, with initial condition F(1, 0) and with boundary condition (0F|00) (&, /&) =
= 0 for & = 1. Assume that (0F|00) (&, 0) is continuous at [&, \JE] for & = 1, the
initial function has continuous derivative at 0 = 1 and (dF[d0) (1, 1) = 0, F(1, )
is nondecreasing, lim F(1, ) = 0. Then the following statements hold.

60— -

1) Solutions are uniquely determined in the class of bounded solutions.

2) The solutions with the properties mentioned above exist and
o e
F(&, 0) = F*(&,0) — J J T(& 7 y,\/y) Fo(y, /y) dy dy
—ood 1

holds, where F*(¢,0) is determined by the Poisson formula and I'(Z,0;x, y) is
Green’s function of (13,1) for our region.
0F* or

FXe, 0 =2, r,=".
(¢.9) 20 Y



3) Let a, ¢ be positive 0 < 2¢ < a. Define F,(&, 0) thus F(&, 0) is the bounded
solution of (13,1) for £€ (1,1 + a), 0 < /(1 + a), with initial condition F (1, 0) =
= F(1,0) for 0 <1, F(1,0) = F(1,1) for 0 = 1, and with boundary condition
(0F,J00)[&, J(1 + a)] = 0. In the region ¢ =1+ a, 0 = . /(¢+¢), F, is the
bounded solution of (13,1) with initial condition F(1 + a,0) = F(1 + a, /(1 + a))
for 0 21+ a, and with boundary condition (0F /00) (¢, /(£ + €)) =0 for ¢ =1 + a.
Let Ff (&, 0) be the continuous function defined by F; (&, 0) = F,(&, 0) in the region
e, 1 +ad, 0 < /(1 + a). In the region & 2 1 + a,0 < /¢ F, is the boun-
ded solution of (13,1) with the same initial conditions as F, but with boundary
condition (0F, [00) (&, /&) = 0. We shall also need a function F_ (¢, 0) defined as
the solution of (13,1) in the region {e€<{1,1 + a), 0 < 1, with initial condition
F(1,0) and with boundary condition (OF _,[00) (&, 1) = 0. Further F_,(¢,0) is
bounded solution of (13,1) in the region & 21+ a, 0 < /(¢ — ¢) with initial
condition F_,(1 + a,0) = F_[1 + a, 1) for 06 2 1 and with boundary condition
(0F _,[00) (&, /(& — €)) = O for & = 1 + a. FX (&, 0) is defined in the same manner
as F_, with only the difference that for & = 1 + a the region of definition is
described by 0 < \/& and the boundary condition is (0FX,[00) (&, /&) = 0. Let
F(&, 0) be the bounded solution of (13,1) with initial condition F(1, 0) and boundary
condition (0F[00) (&, /&) = 0. The region of definition is described by & = 1,
0 < /& Then the inequalities

F_(&0) = FL(80), F/(£0)<F(0)
hold for & = 1.
4) There is lim F (&, 0) = F, (&, 0), lim F_(&, 0) = FX (& 0). The convergence
is uniform wit;:;(*);pect to &, 0 jn the ;;g(;;n described by H=Z (2 1+ a,0 < \,/c“.
5) There is lim [F; (&, 0) — FX (& 0)] = 0. The convergence is uniform in any
region descril;;d(vay tedl +h, Hy, 0 £ \/C with arbitrary h >0, 1 + h < H.

6) If F(1, 0) is continuous then F} — FZ_ converges uniformly to 0 in the region
Hzéz1,0< &

7) Thereis FZ (&, 0) < F(&, 0) < F (¢, 0).
]fF(l, 0) has a continuous derivation, then

8) F(&, 0) is non-decreasing with respect to 0 for fixed &,
9) lim F(&, 0) = 0 uniformly with respect to all ¢,

0> — o .
10) F(&,0) = [%, G(&, y) dy, where G(&, 0) is the solution of (13,1) with initial
condition G(1,0) = (0F[00) (1,0) and with boundary condition G(&, /&) =0
for &= 1.

11) F(& \/€) is a non-increasing function of &.
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Proof. If two solutions F,, F, exist, then for almost all § < 1 — 7, F(l, 6)=0
with F = F; — F, (Fy, F, are continuous at = 1, t > 0). Since these solutions are
bounded we obtain F(1,0) = 0 for all 6 < 1. For F the boundary condition
(0F[a6) (£, \/¢) = 0 also holds. By the Theorem 3 in [4] we obtain F = 0.

8) If we realize that (9F/[00) (&, 0) is also the solution of (13,1) we can easily prove
item 8. On comparing the solution F with the solution defined on the region described
by ¢ = 1, 0 £ 1, we obtain item 9; and also that there exists a constant K such that

lim eX” F(¢, 0) = 0 uniformly with respect to all ¢ provided that F(1,0) =0

0>+ —

for sufficiently small 6. Using this remark we can easily prove items 10; and also 2)
because [§ I'4(&, 0; y, \/y) Fi(v, /y) dy is a solution of (13,1) which is equal to zero
for & = 1.

Proof of 11. Take 1 £ &, < &,, denote by ﬁ(é, 0) the solution of (13,1) which
satisfies F(&y, 0) = F(&;, 0) for 0 < /&, F(&y, 0) = F(&,, /&) for 0e (&1, /&),
(0F[00) (¢, J&2) = 0. By Lemma 14, F is the limit of distributions of processes
bounded by 1 (at {(?). Then the inequality F(&,, /&) < F(&y, \/¢;) must hold and
also F(&,, &) < F(&5, /&) £ F(é1, &) = F(¢1,(/€1). To prove Item 3 we
consider the partial derivative 0F/00 again. Proof of 4. Set G (&, 0) = (0F,/d0) (¢, 0),
G, (& 0) = (0F } [00) (¢, 0). First we shall show that the G, converge to G . Consider
the auxiliary function G(¢, 0) = G,(¢ — &, 0). Then G, is a solution of (13,1) with
the condition Ge(é, J&) = 0for & =1 + a + & By the maximum principle,

G (6 0) = G(&,0)] =[G4 (5, 0) — G& + & 0)| <
S|GH(E 0) — Gf(E+20) + |G (& + &0) — G(¢ + 8 0) <
S|G(E0) — G (¢ + & 0) + S;lp |GS(1 + a +¢0)— G (1 +a,0).

The last term can be estimate by 2Me, where M = sup (0°F,"[06°) (1 + a, 0). The
0

term |G; (&, 0) — G (¢ + &, 0)| converges to 0 (with & — 0) because the function G\
is continuous. As G,(¢, 0) converges to G, (&, 0) monotonously, we obtain that
lim F(&, 0) = F(£,0), lim F,(&, /(£ + €)) = Ff(& /¢) for fixed & 0 (see 10).
-0+ =0+

By 11, the function F,(&, \/¢) is non-increasing. Using the continuity of F, (&, \/¢),
the statement to follow and the maximum principle, we see that the functions F,(&, 6)
converge .uniformly to F (é, 6) in the region mentioned above.

Statement. Let there be given sequence of non-increasing functions f,(x) with

Fu%) = fo(x) or (fi(x) < fo(x)) for n > 0, lim f,(x) = fo(x) for each xe {a,b),

—o0 < a < b < o and let the function fo(x) be continuous. Then the functions
f(x) converge uniformly to fo(x) on {a, b).
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Proof of 5. First we shall prove lim [F, (1 + a,0) — FZ(1 + a,0)] = 0 uni-

a0+

formly with respect to 6 < 1. Setting a* = aA?, we have

Ff(1+a,0)—FI(1+a,0)=

[ F(1y) e [exp {_ (iz_uﬂ} e {_ (z—g*—y)ZH 4 —

1
—2\/nJ_w a*

- L 0) — F(1,x + 2 — 0)) g
=7 , —0)— F(1,x + 2 — 0)) — exp — e
Y — 0

Ja*

for 6 < 1, where v(a) = /(1 + a) — 1. We write the function F(1, ) as the sum of
the continuous part F and of functions of discontinuities F i(l, 9): Let the i-th
discontinuity be at the point h; (there are only countably many such points) and
w; = F(1,h) — F(1, h; — 0). Then F(1,0)=0 for 0 <h, F{(1,0)=w; for
0 = h. We obtain Fl + a,0) — F_(1 + a,0) = (12 /n) [2, [F(l x+ 2+

+ 2W(a) — 0) — F(1, x + 2 — 0)] (1/\/a*) exp (— x*[a*)} dx + z (12 =) .

J2[FAL, x + 2+ 2v(a) — 0) — F(1, x + 2 — 0)] (1/\/a*) exp {— (x [a*)} dx.
The first expression obviously converges to 0 for a — 0, uniformly with respect to 6.

For the remaining expressions we obtain the estimate

1 z hi+0-2 x2
— —— exp dx =
2\/” Jh.v—zv(a)w 2 \/a* { }

1 (hi+0—2)//a*

2

= Zj wexp {—y*}dy £
2 \/TL [(hi+6—2)/Ja*]—2(v(a)/Va*)

1 n+(v(a)/Ja*) N 5
< zj wi(a)exp (=17} dy,
2 \/ n n—(v(a)/Va*)

where wy(a) is the sum of those w; for which

hi+0—-2 o) hit0-2
\/a* \/a* \/a*
a a a

wo(a) is the sum of the remaining w;. Since ) w; < 1 we obtain that Y wi¥(a) < 1,
and thus estimate the above expression by

n+(v(a)/Va*)
3 j exp (~y?) dy .
n—(v(a)/Ja*%)

) A(m,n+1)+0 for n>0,

1
2 /n
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This last expression converges to 0 for a — 0 because v(a) ~ ta = a*/2A%. Further,

for 0 in (1,1 + v(a)), the function F*, (1 + a, 0) is constant, and evidently

|[FX(1 4+ a,1) = FX,(1,1)] > 0 for a - 0. As F(1,6) is continuous at 6 = 1 we

obtain that |F,(1+ a, /(1 + a)) — F(1,1)| > 0, for a — 0. Evidently the inequalities

Ff(l4+a 1)< F;(1 +a,0)<Ff(1 +a, /(1 + a)) hold for 1 <60 < ./(1 + a).

We have proved that lim |F, (1 + a, 0) — FX (1 + a, 0)| = 0. Item 5 follows from
a—0

Theorem 3 in [4].

6) If F(l, 9) is continuous, the functions F; in the estimates introduced above are
all zero. The expression for the remainder converges uniformly to zero.

7) 1f (0F|06) (1, 0) is continuous for all @ we shall prove 7 by means of 10. If not,
we can approximate all F* by functions which have continuous derivatives. Substitute
F* into the formula in 2; the statement of 7 is then obtained by passing to the limit.

Now, we shall consider the case when the absorbing barrier is given by (12,2).

Lemma 16. Let v, be given by (12,1) (where d, &9, v, 6, K depend on n) and v, is
bounded by (12,2) at EP. Assume that F,(1,0) converge uniformly to F(1, 0),
(dF|d0) (1. 6) is continuous at 0 =1 and (dF[d6)(1,1) = 0. Then F,¢,0) =
= P(v,(&) < 0) converge to the bounded solution F(&, 0) of (13,1) which is defined
in the region described by ¢ 2 1, 0 < \/5, satisfies the intial condition F(l, 0) and
the boundary condition (0F[00) (é, J&) = 0 for & = 1. This convergence is uniform
in any region described by E e {1 + h, H), 0 < \/f withh > 0,1 + h < H.If F(1, 0)
is uniformly continuous then the convergence is uniform in the region described
byHz &2 1,0 < /&

Proof. Take any n > 0, h > 0. By Lemma 15 (5), we can choose a number a > 0
such that

(16,1) [FF(E, 0) — FI(¢,0) <n for &edl+ h H),

where F,, F* were defined in Lemma 15 (3). By Lemma 15(3), F;, < F,,F_, < F* .
The proof of the inequality F_, < Ff_ is the same as that of the previous inequality.
Obviously F_,(1 + a,0) = FX (1 + a,0); F(1 + a,0) = F(1 + a, 6). By Lemma

15 (4), we can choose ¢ > 0 such that
(16,2) F,<F/+n, Ff,<F_ ,+1n.

Let us define the following regions: Choose {,: (o = 1, {, =1+ a + (k — 1)¢/2
for k=21 and g{”, i =1,2:95" = J(1 + a), g = J(lc + ¢); 95 =1, g¥ =
= /(¢ — ¢/2) for k = 1. Denote by Q the set of points [£, 6] with & e <({;, (i y),
E<H, 0= g Let Fy be the continuous function which is the solution of (13,1)
in any region described by & e <{{y, (1), 0 < g§’, with initial conditions F(,, 0)
for 0 < gV, Fo(l» 0) = Fo(ls gi7;) for 0 e (952, g") with boundary condition
(0Fo[a0) (&, g’) = 0 for &€l (4+q) and with initial condition F(l,6) =
= F(1,0) for 0 <1, Fy(1,0) = F(1,1) for 0e(1,gy") for k = 0. Denote by I
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the set of points [&, 0] with el {vy), E < H, 0= g, We shall define
a function Fl(é, 0) in I similarly as F, in Q. In any region described by & e {(;, Cest)s
0 £ g, Fi(&, 0) s the solution of (13,1) with initial conditions F(Cy, 0) for 0 £ g(*,,
Fy(G 0) = Fi(Ci 982, ) for 0e(gf?;, gi>). with boundary condition (0F,/260)(¢, gi”)= 0
and with initial condition Fy(1, 0) = F(1, 0) for 0 < 1, k = 0. By Lemma 15 (11,7),
the inequality

(16,3) F_(6,0) < F\(&0) S FL(80) < F(&0) = F/(6,0) <
S Fol& 0) < Fi(&,0)

holds, where F(¢, 0) is defined in Lemma 15 (3). Define F,(¢, 0) = P(v,(¢) < 0),
where v, is the process defined by (12,1), bounded by (12,2) at &”. F(&, 0) =
= P(v2(¢) < 0), where v2 is defined by (12,1) and it is the process bounded by g("(¢)
at () and gV(&) = g{ for & € ({, {y44)- Define F)(&, 0) = P(v)(¢) < 0) similarly,
where v, is defined by (12,1) and it is the process bounded by g®(¢) at { and

g(z)(é) = g® for & € (L, {x+1)- For large n, the inequalities
(16:4) Fi(&0) < F,(&0) < FX(£.0)

hold (n must be large than K,d,[v, < ¢/4H). We can choose n, for n > 0 and h > 0
by Lemma 14 such that

(16.5) [Fu& 0) = Fi(& 0)f <n [FAE 0) = Fo(&,0) <n

hold for n = n, in the regions described by e {1 + h, H), [f, 0]el or by ¢e
e{l + h,Hy, [& 0]€Q respectively. We shall conclude Lemma 16 from the
inequalities (16,1)—(16,5). If F(1, 0) is uniformly continuous, then by Lemma 15
the inequalities (16,1)—(16,5) hold uniformly with respect to all H = & = 1.

Now we have everything prepared for the formulation of the following theorem.

Theorem 1. Let there be given sequences of numbers 9,,K,, v,, d,, T,, A, and
a sequence of distributions F,,(l, 0). Assume that the number sequences satisfy
(7)—(10), and that the functions F,(1,0v,) converge uniformly to F(0). Let the
function F(0) have a continuous derivative at 6 = 1 and (dF[d6)(1,1) = 0. Set
P = P((5,, Ky, vy, dys T,y 4,) (see (5) and note that we consider processes belonging
to X(F,(1,0),6,, K,, d,, A,)-

Then the limit lim P exists and

n—oo

lim P{Y = 1 — F(e*", "),

n— oo

where F(¢, 9) is the bounded solution of the equation

OF _A*0°F

o 4 0%
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in the region described by & > 1, 0 < /& with the initial condition F(0) and with
the boundary condition (0F|30) (£, /&) = 0.

Proof. By Lemma 11 we obtain

v

(L.1) P( sup x,(t,») = v,) < Pp(i%) 2 v, - 3K,d,).
0 T,

St=Tn

Let the process v, corresponds to the process y, (see 12,1). Then the process v, is
bounded by (12,2) at & and its initial distribution fulfils (12,3). Evidently

(L2) P(y,(i%) < v, — 3K,d,) = P(v,(exp {24,i{"}) < (1 - M) exp {4,i%} .
v'l
Put F,(&, 0) = P(v,(¢) < 6). By Lemma 16, the functions F,(&, 6) converge to the
function F(¢, 0) described in Theorem 1. By (I,1), (I,2) and (7)—(10) (the assumptions
(7)—(10) remain valid if we substitude i{"’ for T, because 0 < T, — i < d,) we
obtain that
(13) ‘ lim sup P{" < 1 — F(e?T, e").
° . n— o

Conversely, by Lemma 2 we have
(L,4) sup P7( sup x,(t,w) 2 v,) = P(yX(T,) = v,),

0StSTh
where the processes x, belong to X(F,(1, 0), 8,, K,, d,, 4,) and y; is the process
bounded at v,e”*“ + K,d, corresponding to z,, and z, is defined in Lemma 10
with initial distribution F,(1, 0). (Now 8, K, v, d, &, A depend on n). Let v} be the
process which corresponds to y) according to Lemma 12; it is the process bounded
by (12,2) at &”. Then the following equation

(L,5) P(y;(T,) < v,) = P(vy(exp {24,T,}) < exp {4,1,})

holds. Set Fy(¢, 0) = P(vy(£) < 6). By Lemma 16, the functions F} converge to the
function F(¢, 6). By means of (I,4), (I,5) and (7)—(10) we obtain

(L,6) lim inf P{Y > 1 — F(e27, 7).

The theorem follows from the inequalities (I,3) and (L6).

By means of the transformation t = Ig &/2T, pu = 0/\/¢, G(z, n) = F(&, 0) it is
easily seen that Theorem 1 is equivalent to the following theorem.

Theorem 2. Let the assumptions of Theorem 1 be satisfied; then lim PM =
n- o
=1 — G(1, 1), where G(z, p) is the bounded solution of the equation
oG 0G TA* 0°G

ax Mo T 2 o
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in the region described by t© > 0, u < 1 with the initial condition G(0, p) = F(y)
and boundary condition (0G[op) (z, 1) = 0.

Remark 4. Evidently TA? is the limit of (,K,d,T,)/(v7). Theorem 2 also applies in
the case with 4, = 0. In this case set lim (6,K,d,T,)/(v) = a* and then our parabolic
equation is (0G/dt) = 1a*(0°G[ou®). The region of definition of G and the initial
boundary conditions will be the same as above.

Next we shall deal with the expression (6), but we shall formulate our problem
more generally. Set

(6") P30, K, vV, v, d, T, 2) = sup P( sup x(z) =2 v®; inf x(r) £ — V)3
x 05t=sT 0=t=T

where x(t) belong to X(Fo, 6, K, d, A) and ("), y® are given positive numbers. The
following definition is analogous to Definition 2.

Definition 6. Let there be given positive numbers 8, 4, K, d, vV, v®) and a process
x(t, ). Assume that x(1, ) is defined for all ¢ > 0. Define #(w) = min t*)(w) where
1*Y(w) assume only the values 1V and x(1®(w), w) = (V® — Kd) e or x(1*(w), ») <
< — (VY — Kd) e if such t*(w) do not exist put #(w) = co. The process x is
bounded at —vV, v if x(t, w) = x(H(w), ®) for t = H(w). The process x,wyw is
the process bounded at —v'", v*) corresponding to x if x,w,o(t, @) = x(t(w), ®)
for t 2 (o), x,wyo(t, w) = x(t, w) for t < t(w).

The following modification of Lemma 1 is evident:

Lemma 17. Let x € X(F,, 6, K, d, A); then the proces.s X,y Satisfies the relations
(2)—(4) for —(v" — Kd) e* < p < (V® — Kd) e*.
The following lemma differs from Lemma 2 only slightly

Lemma 18. Let x € X(F,, 6, K, d, A); then

P(x,4(t) Z v®; x,(1) £ —v®) < P~('sup x(r) = v¥; inf x(r) £ —vV) <
)

Stst 0<t<t

< P( sup x(z) = v?; inf x(z) < —v) <
0st=<t 0<tst

P(xv(x)v(z)(i(k)) = (V(z) - Kd) eld; Xv(l)v(z)(i(k)) é - (V(l) — Kd) eld) )

1A

where a = vDe ™ + Kd, b = vPe ™ + Kd, and i® is the maximal t% such
that t® < t.

The lemmas analogous to Lemmas 3—5 will not be formulated explicitly because
they are very similar to the latter.

3) P(4; B)y= P(4 U B).
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Definition 7. X*"Y”(F,, 3, K, d, 1) is the class of processes with initial distribution
F, which are bounded at —v(") v, satisfy (2)—(4) for —(v" — Kd)e* < p <
< (v® — Kd) e and satisfy P(x(1)e A]x(t®) = u, x(1% V) = o,_y, ..., x(0) =
=1,) = P(x(f)e Alx(t(’”) = y) for all re (1™, 1**D% and all B-mesurable 4 =
< (=0, ).

Lemmas 6—9 need not be modified, and the necessary changes in Lemma 10
are obvious. The analogue of Lemma 11 shall be formulated only.

Lemma 19. Let x € X(Fo, §,K, d, ) and let y be the process bounded at
—(v" = 3Kd) e* + Kd, (V* — 3Kd) e* + Kd, corresponding to z. The process z
is described in Lemma 10. The inequality

P( sup x(t) 2 v®; inf x(1) £ =) <

0<t=t 0=t=t
< P(y(i%) 2 v — 3Kd; y(i®) < — (" — 3Kd))
holds, where 1) < t, t — §® < d.

Further, we shall introduce the analogue of Definition 5.

Definition 8. Let there be given positve functions f;, f,, a sequence & < &1 < .
and a process x(&, w). Assume that the process x has values from E. Denote by &(w)
the minimum of é®(w) where &(w) assume values & only and satisfy x(¢¥(w), w) =
= £,(E%(w)) or x(¢®(w), ) £ —f1(E¥(@)); if no such E(w) exists put &(w) = oo.
The process x is bounded by —f1, f> at E® if

x(¢ w) =+ for &> &w) provided that x(&(w), w) =z f,(¢(w)),
x(¢, w)= —oo for &> &w) provided that x(&(w), ) £ —f1(&(w)).

The process z(&, ) is bounded by —f;, f, at £ and corresponds to x(&, ) (for an
arbitrary process x) if z(¢, w) = x(¢, o) for & £ ¢(w),

Z2(¢, ) = +oo for &> &(w) provided that x(¢(w), ) = fA(é(w)),
2(é, ) = —o for &> &w) provided that x(¢(w), w) £ —f,(&(w)),

where &(w) is defined above.
It is easy to find the functions which describe the absorbing barriers.

Lemma 20. Let z be the process defined in Lemma 10. Let y be the process bounded
at —v @ corresponding to z. Denote by v the process which corresponds to y
according to Lemma 12. Then v is the process bounded by f1(£), f2(¢) at &9, where

yH K

d\ . Kd
0 5= (-3 A= (13 5V
Next we must complete the assumptions (7)—(10).
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Hypothesis. Let there be given sequences of positive numbers y, .- Oy .., K, -
(2 2
s Koy s iy ooy oy ooy Ay ey Ao ey Tyy ey T oy VD, L 0DV . v
such that the following conditions are satisfied:

(11) I SN

w0,

K,0,d, .
(12) m—)AZ>O, 5"§1\",
(13) T, > T>0,
(14) Ad, = 0,
K"d"

(15) \'(2)- - 0.

Lemma 13 remains without change but the proof of Lemma 14 is changed con-

siderably.

Assume we have a finite set of numbers {® : (O = | < () < ... < (@ = 2T

and ¢ :0 < g» < g < ... g% for i = 1,2. The functions f,(&), f,() — see
Definition 8 — we now define by f,(¢) = — g% for &e (P, (D), f,(¢) = g8

for &e (@, 0+,

It

Lemma 21. Let v, be the process defined by (12,1) bounded by —f, f, at &, If
the assumptions of Lemma 13 are satisfied, F(l, 0) is continuous from the left at
0 = g%, and the assumptions (7)—(10) are replaced by (11)—(15), then F,(Z, 0) =
= P(v,(¢) < 0) converge to F(&,0). The function F(E,0) is the bounded solution
of (13,1) in every region #; described by & e ((, (U*Dy, —g) <0 < g%, with
initial condition F({), 0) for —g¥™" <0 < g¥~" and F({, 0) = F({V, (—1)".
gD for e ((—~1)g¥™V, (=1)gy, i = 1,2, and with boundary conditions

oF ; oF .
(&, __g(J) = — (& Gy = Q.
20 ( 1 ) 69( 93 )
For j = 0 the initial condition is F(l, 0). The convergence of F, is uniform in any

region # Ny H; where the region H# is described by 1 + h < & < H. If F(1, 0)

is uniformly continuous, then the F, converge uniformly in the region y S ;.
i

Proof. We can again restrict ourselves to the first region #,. Let #, be the process
fulfilling (12,1). Let v, be the process bounded by —f, = —g'®, f, = ¢ at (@,
corresponding to #,. As the initial distribution of &, we take F,(1, 6). We can certainly
assume that F,(1, —v{") = Oand limz)F,,(l, 6) = 1(since (13,1) is linear we could

0-v,
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consider F,(1, 0) = (F,(1, 0) — F,(1, —g{®))/F,(1, 1) instead of F,). Denote 7,
= (K,d,/v{?) &" /H. As in [1, Lemma 10] one can prove

Il

(21.1) skl 0) = Z [F (& 2/ + 2ig$® + 2jn, + 0) +

+ F(& 29 + 2(/ = 1)g$” + 2jn, — 3n, — 0) — 2F,(¢, 299 +
+ (2 = 1) g + 2in,)] — F (& 2(k + 1) g8 + 2k + 1) g + 2(k + 1)n,) +
+ F(&2(k + 1) g + 2kg$® + 2(k + 1) n, — 31, — 0) < P(—g'? < v,(¢) £ 0) =
= P(—g{” < inf §,(7), 5,(¢) £ 0, sup #,(r) < g¥)) =%
1558 158

2 [F (&, 2jg + 2jg{® + 2jn, + 0) + F (&, 2jg®) + 2(j — 1) g+
+ 2jn, — 0) — F(&2ig9 + (2 — 1) g + 2jn,) — F(& 2jg% +
+ (2 = 1) g + 2jn, — 3n,)] + F(& 2(k + 1) g8 + 2(k + 1) g> +
+ 2(k + 1)n, + 0) — F (& 2(k + 1) g + 2k + 1) g@ + 2(k + 1) n,) =
= s2)(&,0),

where F,(¢, 0) = P(8,(¢) < 0). Similarly one obtains

(21,2) Sinl€) = Z [F (é 2ig$” + (2 — 1) ¢ + 2jn,) +

e,
+ F (& 212 + (2 — 1) g% + 2jn, — 3n)] + Fo(&2(k + 1) g2 +
+ 2k + 1) g1 + 2(k + 1) m, — 3n,) + F(& 2(k + 1)9“” +(2k + 1) g +

b2k )0 =26+ 1) S PO S o) £2 3 R0 +
+ (2 = 1) g + 2jn,) — 2k = s{0(é) -
From (21,1) and (21,2) we have
SE 0) + ) = P(2&) = 0) = 52U(E 0) + Q).
By Lemma 13, the expressions si')(¢, 0) and si(¢) converge to s¢(¢, 0) and sg”(¢)

uniformly in any region described by 1 + h < ¢ < H (limn, = 0)

n— oo

sO(E, 0) + s52(¢) < liminf P(v,(¢) < 6) < lim sup P(v,(¢) £ 0) <

< s(& 0) + 5(9) -

4) P(4, B)= P(4 () B).
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Since

m [ 0) + $0(0) — 40(E 0) ] = 0

uniformly with respect to 1 < ¢ < H, 0, the limit lim P(v,(¢) < 0) exists and we can

write

(21,3) si(&0) = Z [F(C 2ig® + 2jg{® + 0) + F(&,2jg% +

+2(j — 1) g - 0)] + F(&2(k + 1) g& + 2kg{® — 0) — (2k + 1) — o, <
< lim P(v,(§) £ 0) <

n-—» oo

Z [F(& 2ig8 + 2ig'® + 0) + F(& 2jgs» + 2(j — 1) ¢ — 0)] +

]-——k

+ F(&2(k + 1) g5 + 2(k + 1) g + 0) — 2k + 1) + o, = 5;(&,0),

where «, are nonnegative numbers which converge monotonously to zero, and s *, s

0

are solutions of (13,1). If we take o = o, + 2B, B = ), sup F(& =21(g> + g2))
1=k <1,H

instead of «,, then the sequence s; is monotone decreasing and the limit s*(¢, 0) =
= lim s5 (&, 0) exists. By (21,3), s;* < s* < s;. Since s57(&, 0) — sp*(&, ) converge

k— o0
to 0 uniformly with respect to &, 0, the function s*(é, 6) is a bounded solution of

(13,1) with nitial condition F(1, 0). Thereis (ds*/00) (¢, 0) = Z [(63,’:‘/00) (&2 +

+ 2jg(” + 0) — (0s5]0) (&, 2ig%> + 2(j — 1) g2 — 0)], because the series con-
verges uniformly with respect to all £ = 1 + h. On setting 0 = —g{» or 6 = g\
we obtain the boundary conditions which enter in Lemma 21. From (21,3) we obtain
s*(¢, ) = lim P(v,(¢) < 0), and the convergence is uniform with regard to &, 0, & =

=1+ h, —-g(o’ < 0 < g™ If F(1, 0) is continuous then it is uniformly continuous
and the sequence s; converges uniformly with regard to &, 0 in the region described
by £21, —g” <0 < g3,

We shall also need an auxiliery lemma.

Lemma 22. Let F(¢, 0) be the bounded solution of (13,1) in the region described
by &2 1, — /& £ 0 < /¢ with initial condition F(1, 0) and boundary conditions
(0F[06) (&, —o \/¢) = (6F/60) (&, /&) = 0. Assume that (0F|00) (&, 0) is continuous
at [&, —0 /&) and at [&, /€] for & 2 1. The function F(1,0) is non-decreasing,
non-negative, has a continuous derivative at 0 = —9 and at 0 =1 with
(dF[d0) (1, —o) = (dF[d0) (1, 1) = 0. The following statements then hold.
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1) Solutions are uniquely determined in the class of bounded solutions.
2) Solutions with the properties mentioned above exist and

F(E, 0) — F(&, —0 /&) = F*(&, 0) — F¥(& —0/8) + f ’ fr,,(c, v h =g J2) x
—oVvEJ 1

0

4
X F¥(h —g JA)didy — J J I(& 73 A J2) F3(, /2) dA dy
1

—ové

holds, where F*(f, 9) is determined by the Poisson formula and F(f,y;x, y) is
a Green’s function of (13,1)for our region.

3) Let functions F (&, 0), F_ (&, 0), F (£, 0), F (&, 0) be defined as in Theorem 15
with the following exception. If the function F.(&, 0) was defined in a region of the
type 0 < x(¢), x(¢) > O then now we shall consider the function F.(&, 0) which is
defined in the region —ox(¢) < 0 < x(&) (¢ is defined in (11)), and on the new
boundary 0 = —oy(&) the function F.(E, 0) fulfils a new boundary condition
(0F[00) (¢, —ox(£)) = 0. Then the following inequalities hold:

F_(£0) = F_ (& —o (& — ) S FI(&0) — FI (& —09),
Fr(80) = Fi(& —e &) S F(&0) = F(& —oJ(E +¢) for £z1+a,
F_(&0) — F_ (& —0) = FL,(&,0) — FL (¢ —0),

FI(E.0) = FF(& —0) = Fi(&.0) — F(& —o) for 1SE<1+a.

4) There is .

lim [F(&. 0) — F(& 0 (€ + )] = FI(&0) = FI(& —2 J2).

=0+

Jim [F_ (£, 0) = F_(& e VE = o)l = FI(&0) = FI(& -0 /9

uniformly with respect to &, 0 in the region described by H> &> 1+ a, —¢ V/f <
<0=.¢

5) If we assume only that F(1, ) is non-decreasing and continuous at 0 = —g
and 0 = 1, then

F*(E,0) — F* (& —0J&) < FI(E 0) — FF (&, —a /¢,
f;rl[FI(é, 0) = Fi(& —0 &) — FI (& 0) + FI (& — /8] =0

uniformly in the region described by e {1 + h, H), —o \JE £ 0 < /¢

6) If F(l, 6) is continuous then the expression from 5 converges uniformly to 0
in the region described by ¢e€ (1, HY, —¢ \/é <0< \/6.
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7) The inequalities

FX (& 0) — F* (¢, —0) < F(£,0) — F(& —0 /&) =
SFf(E0) - Fi(E —oJ( + a)) for tell, 1+ a),

F¥(&,0) — F (& —0J&) < F(& 0) — F(&, —0/¢) <

SFF(E0)— F/(& —o &) for Ez1+a
hold.

8) F(¢, 0) is a non-decreasing function of 0 for fixed &.

9) There holds F(&,0) — F(&, —o /&) = [~ ,ye G(&, ) dy, where G(¢, y) is a solu-
tion of (13,1) with initial condition G(1, 0) = (dF[d0) (1, 0) and boundary conditions
G(& —0/&) = G(& &) =0 for & = 1. .

10) F(&,\/¢) — F(&, —o /&) is a non-increasing function.

Proof. The proofs of 1) 2) 3) 8) 9) are the same as in Lemma 15. Item 10) is proved
with the difference that as the auxiliery function we now take F (é, 9), the solution of
(13,1) with initial condition F(&,, 0) = F(&,, 0) for —¢ /&, < 0 < /&, F(&,, 0) =
= F(&,, —0 /&) for 0 < —o /¢, and F(&,, 0) = F(&,, /&) for 0 = /¢, and
with boundary conditions (0F [00) (¢, —e /&,) = (0F|a0) (&, /&,) = 0 for & = &,.
The proof of 4 is now easier than in the case of Lemma 15. The proofs of 7 and 2 are
also similar to those in Lemma 15. There is a change in the case of item 5 (and hence
also in the case of item 6). We apply formula (21,1); passing to the limit for n — oo
we obtain that the expression

Fi(l 4+ a,0)— FS(1 +a,—¢/(1 +a)—FX (1 +a0)+
+ FI(1+a,—o /(1 + a))

may be estimated by means of F(1 + a, B/(1 + a) + 0) — F(1 + a, B + 0) and
by one expression U, = F(1 +a, 2(k+ 1)(1 + o) /(1 + a) + 0) — F(1 + a,
2(k + 1) + 2ke — 0), where F corresponds to F(1, 0) by the Poisson formula, f are
suitable combinations of j; + j,o (j;,j, are integers) and lim U, = 0. We obtain

k=
a finite number of these new expressions and we can estimate them as in Lemma 15.

The following lemma must be proved because its proof differs from that of
Lemma 16.

Lemma 23. Let v, be given by (12,1) (where d, &7, v, 8, K, A depend on n) and v,
is bounded by (20,1) at &P. Assume that the F,(1, 0) converge uniformly to F(1, 0)
and that F(1, 0) has continuous derivatives at 0 = —g,0 = 1 and (dF[d0) (1, —o) =
= (dF[d0) (1, 1) = 0. Set F,(¢, 0) = P(v,(¢) < 0). Then the functions

& K.d
Rie0) - 1 (5 - (5 - 3 5 ve)
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converge to F(, 0) — F(&, —g /&), where F(¢, 0) is the bounded solution of (13,1)
defined in the region decribed by & = 1, —o /& < 0 < /& with initial condition
F(1,0) and with boundery conditions (0F|00) (&, —o /&) = (0F|e0) (&, /&) = O.
(1) K,d"
v;")

The convergence Of
Vn

is uniform with respect to &, 0 in the region 1 + h < ¢ < H, —9¢ \/C <0 = \/5.
If F(1, 0) is continuous then the convergence is uniform in the region 1 < ¢ < H,
N EYENG

Proof. Let us choose the numbers n > 0, h > 0. By Lemma 22 (5) a number
a > 0 exists such that

(30)  [FIE0) — FI(E —0 /&) ~ 6 0) + Fi(6 —0 )] <n

for & € {1 + h, H). According to Lemma 22 (4) we can choose ¢ > 0 such that

(32)  FA&0)~ Fie —0J(E+9) S FI(E0) - Fi(& ~eyd +n
FI(E0) = FI (& &) S F_ (&, 0) — F_(& —o (¢ —€) +n

Next, let (i o= 1, =1+ a+ (k—1)g2for k = 1

G108 = (1 + ) ol = (G + ) for k1
g(l)(f) lg(l)(f) — g,((“ for ¢&e<{, Ck+l)

668 = 0+ ) o = 0 (G r ) Tor Kz
g(Z)(f) : g(l)(é) =g for &ell, Ck+l)

9P g =1, g = V(G —¢2) for kz1;
gPE) 1 g®(&) = g for el Livr)

996" = 0. 9i = 0 /(L — ¢f2) for kz1;
g®(&) g (e) = gi? for Eed&liry).

The region Q is the set of points [£, 0] such that —g@)(¢) < 0 < g"(¢&). The region I
is the set of point [, 6] such that —g®(¢) < 0 < ¢g©)(&). The process v, is defined
in accordance with (12,1) and it is bounded by (20,1)at &{”. The processes v2 and v,
are also defined by means of (12,1) but they are bounded by —g®(¢), g"(¢) or by
—g (&), g®(€) respectively at {9, The distributions F,, FI, F¢, F, F o are defined
in the same way as in Lemma 16. For sufficiently large n (such that 3K,d,[v(?) <
< gfaH, |(v — ov?) — 3K,d,)[v?| < ge[4H), the inequalities

(23.3) FI(Z,0) — FY(& —g®(8)) < F\(&,0) — F,(&, —£,(¢)) <
SFYe, 0) — FE, —g () .
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evidently hold. By Lemma 21 there exists a number » such that

(234)  [FI&0) = Fi& —g(9) = Fi(& 0) + Fi(& —g™@(9)] < n
[F2(E 0) — FR(E —g@(9) = Fol& 0) + Folé, =g (&) < n-

According to the definition of the regions I, Q we obtain

(235)  F_(&0) = F_ (& —e (€ —¢) £ F\(&0) = F\(& —g"(2))
Fo(&, 0) — Fo(&, —gP(&)) £ F(&,0) — F(& —0/(E+¢) for =1 +a

Lemma 23 follows immediately from the inequalities (23,1)—(23,5) and Lemma
22 (7). If F(1, 0) is continuous we apply 6) of Lemma 22 to the inequality (23,1), and
to the inequality (23,2) we may apply that the equations F, = F,, F_, = F',
hold for £ e {1, 1 + a).

From the preceding Lemmas we may conclude the following theorems.

Theorem 3. Let there be given sequences of numbers d,, K,, v\¥,v», d,, T,, 2, and
a sequence of distributions F,(1,0). Assume that the number sequences satisfy
(11)—(15) and assume that the distributions F,(1, 6 v{*’) converge uniformly to F(6).
Let the function F(0) have a continuous derivative at 0 = —o and at 0 = 1 and
assume that (dF[d0) (1, —¢) = (dF[d0) (1, 1) = O hold (we consider now processes
belonging to X(F,(1,0),0,, K,, d,, 4,). Set P{” = Py(5,, K,, v\, v\*, d,, T, 2,).
Then the limit lim Pg;, exists and the formula

n—ao

lim Py, = 1 — F(e*", e") + F(e*", —ge")

holds, where F(&, 0) is the bounded solution of the equation

OF _A*O°F

o 4 a0
intheregion & > 1, —o (/& < 0 < /& with initial condition F(0) and with boundary
conditions (0F[00) (¢, —o (/&) = (0F|00) (¢, /&) = 0.

By means of the transformation t = 1g 2T, u = 0/\/&, G(x, u) = F(&,0) it is
easy to prove that Theorem 3 is equivalent to the following theorem.

Theorem 4. Let the conditions of Theorem 3 be satisfied; then lim P{” =1 —
n—o

— G(1,1) + G(1, —e), where G(z, ) is the bounded solution of the equation

oG G TA* 3
G _ 006 T4 PG
ot ou 2 ol
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in the region t >0, —o < p < 1 with initial condition G(0, u) = F(u) and with
boundary conditions (0G|o) (x, —¢) = (0G/op) (r, 1) = 0.

Remark 5. If the limit lim (3,K,d,T,/(v{?)?) = a® exists, then as in the Remark 4,

n

we obtain the equation 0G/dt = (a?(2) (0°G[op?).

I

In this part we shall deal with the application of the results obtained above.
These were proved in such a manner that we can proceed in two different ways. First
we may consider the discrete case when the perturbations are effective only at certain
instants 1% so that x(1 + 0) — x(1*’) may be different from zero. Secondly we can
consider the continuous case when the perturbations act in the entire intervals
(1®, (** DY and they are bounded.

In the discrete case we would need the theory of distributions if we wanted to use
differential equations of the type (1). Nevertheless we can utilize the fact that in this
case we may describe the perturbations S by means of the differences x(1® + 0, w) —
— x(1%®, w). Since at the interior points of {t®, ¥+ the perturbations are not
effective we may define the solution in the following way. The process x(t, w) is
a solution of the equation

(1) X = —Ax + S(t, x, »)

if x(t, w) is a solution of the equation X = —Ax for almost all fixed @ and for
te (1%, (**D) and if the distributions of x(t*) + 0, w) — x(1*, w) are prescribed.
The following assumptions are similar to those in [1].

1) The perturbations are in a certain sense small:
(16) E(x(t% + 0, ) — x(t%, )| | X(19, ), ..., x(0, w)) < od .

The conditional expectation means that the estimate holds independently of the
behaviour in the past. (i.e. for t < t*) The coefficient d in (16) guarantees that the
influence of an individual perturbation (that is in one moment %), decreases if the
density of the points t* in <0, T increases.

The assumption that “systematic error” cannot arise we can again write as

(17) E(x(t(") + 0, ) — x(1%, co)l x(t®, w), ..., x(0, w)) = 0.
The last condition has the same meaning as that in [1]
(18) P(|x(1% + 0, 0) — x(1®, w)| > Kd | x(1¥, 0),..., x(0, )) = 0.
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By a slight modification we can easily prove that the conditions (2)—(4) follow from
(16)—(18).

Assume that we have a sequence of differential equations (1). If the assumptions
(16)—(18) are satisfied then Theorems 1—4 hold for solutions of (1).

The continuous case. First we must assume that:

S(t, x, ®) is a random variable on Q for any ¢, x.
S(t, x, w) satisfies Carathéodory’s conditions for almost all w.
S(t, x, w) is mesurable in E x Q for every x.

These conditions are suffisant for the existence of solutions of equation (1').

Consider now the simplest case, i.e. that the perturbations S(t, x, w) depend only on @
and on the intervals {t, {¥* D). Set S,(w) = S(t, x, w) for t € (t®, 1** ). S,(w) are
now random variables. Then it is natural to require the following conditions

(19) E(Sio)) < 6. E(S(@) =0, |sa)| K.

If we add the assumption that the random variables Si(w), k = — 1,0, 1,... are
independent (S_,(w) is the random variable x(0, w)), we may derive the conditions
(2)—(4) from (19) ane Theorems 1 —4 hold for solutions of (1).

The conditions are easily formulated, too, if S depends only on ?, w. In this case
we shall assume that

(20) B(S( o)) <5, E(S(,0) =0, [S(0) K

Denote by #® the least o-field which corresponds to random variables S(r, o),
where  is a number from {1, {**V); Z(~1 i5 the least o-field which corresponds

to x(0, w). Now we shall assume that the o-fields are independent (i.e. P(N 4;) =
n i=1
=[1P(4)if A4, FO).

i=1
It is possible to investigate the general case similarly to that in [1].
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Pe3rome

OB OAHOPOJAHOM JIMHEVMHOM AUPOEPEHIUAJIBHOM
YPABHEHUU CO CJIVUAMHBIMU BO3MVIIEHUAMU

MBO BPKOU, (Ivo Vrkoc), Ilpara

B pa60Te HaxogsaTcs nNpeacibHOC BBIPAXCHUA OIS

sup P( sup x,(t, ) = v,), sup P( sup |x,(t, ®)| = v,),
Xn <0,Tnd Xn <0,Tn>

rae P(sup x,(t, w) = v,), P( sup |x,(t, ®)| = v,) 3Ha4aT BepOSTHOCTI C KOTOPBIMK
0,T, 0,

npoueéc x,,>mm |, nepexomﬁn Mo KpaiHoil Mepe OJuH pa3 IPAHMUIy v, B UTepBaie
<0, T,>, 1 x,, npoberaeT rpymry ciay4aiiHbIX IIPOLECCOB X(F,,, Ons Ky dys /l,,). B xoHue
paboThl MCMOL3YIOTCS OTH PE3yIbTaThl s HudPepeHIUANIOHBIX  yPABHEHUH
X = —2x + S,(t, x, ), npuuem S,(t, X, w) ciyuaiiHpiii MPoOLECC, KOTOPBIA BbIPa-
KaeT BO3MYyLIeHHMA. [IpUBEIeHbI YCIOBUA NPU KOTOPBIX MOXHO 3/1€Ch UCIONB30BATE
TeopeMsl 1.—4.

n
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