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DEPENDENCE OVER MODULES
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1. INTRODUCTION

On the lines of the “‘classical” theory of linear dependence over vector spaces
a satisfactory theory of dependence over abelian groups has been worked out in which
the concept of rank plays a focal role (see R. BAER [1], T. SzeLE [12], V. DraB [2],
[3]). The present paper is devoted to the problem of extending the theory of
dependence over abelian groups to modules (in this way, both dependence over
vector spaces and over abelian groups are studied within the frame of a general
theory); the problem includes, in particular, the question on possibility of introducing
an (invariant) rank of a module. This question has been dealt with in the paper [9]
of L. Fucss; the conditions assigned there to the rings of operators are rather of
“commutative’” character. In the present paper, we apply the theory of GA-
dependence and LA-dependence structures of [4], [5] and [7] and get a theory of
dependence over modules in which the results of [9] are included and generalized. In
order to illustrate the character of our results, let us mention that we establish
a necessary and sufficient condition for an (associative) ring R in order that modules
over R admit a dependence theory similar to that of abelian groups, a necessary and
sufficient condition for R in order that any two maximal independent subsets of an
arbitrary module over R have the same cardinality, etc. (cf. [6])

Here, a brief comment on the definition of the dependence relation over modules
might be useful. Let M be a (left) module over an (associative) ring R. According to
the commonly used definition, an element x € M is said to be dependent on a subset X
of Mif A, ;e R and x;e X for 1 < i < m exists such that

m
1) 0% Ax =) A;x;.
i=1
This is a very natural definition in the case of unitary modules; otherwise, it relates
rather to the behaviour of operators than ot the structure of a module. For, if R
is unitary, (1,1) is equivalent to the fact that the intersection of the submodules
generated by (x) and X, respectively, is non-zero; the latter condition seems to be an
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appropriate expression of what we agree to define as x depends on X in general. In
this sense, the dependence relation over modules is used throughout the paper.
Besides, within our theory, this concept covers also the linear dependence relation
over modules (strong dependence in terminology of [9]) defined similarly to the
above definition — where

Ax =Y Ax; with 2%0
i=1
instead of (1,1) should only be read. Let us remark, however, that our method consists
in translating the study of (general) modules to the study of unitary modules (see § 2).
Finally, let us point out that — following the pattern of § 9 of [4] concerning abelian
groups — dependence relations with respect to given submodules of a module M can
be defined over M.

2. PRELIMINARIES

It is the purpose of this paragraph to summarize some concepts and results on
algebraic dependence structures (cf. [4], [5] and [7]), on rings and modules, as well
as to introduce terminology and notation explored in the present paper.

For a binary relation ¢ between elements x and subsets X of a non-void set S (in
symbols, [x, X] € ¢ or [x, X] ¢ @), we define the subsets S) and S5 of all g-neutral
and all g-singular elements of S as the subsets of the elements x € S such that [x, X | ¢
¢ 0 and [x, X] € ¢ for every X = S, respectively. In what follows, we shall consider
the g-regular part S of 5: S = S, = § \ (S} U S3). Denote by .#, the family of all
o-independent subsets of S, defined in the usual way. The relation g is said to be an
algebraic dependence relation (A-dep. relation) and (S, g) to be an algebraic
dependence structure (A-dep. structure) if the following conditions

(F) [x,X]eo— 3F(F =< X A F finite A [x,F|eo), ‘
(M) XX, A[x,X] €0~ [x, X ]€0
and

(E)) X ¢X AXeF, A[x, X]¢0 A [x, X U(x2)] €0 > [x5, X U(x1)] €0
are satisfied. It is called proper if, moreover,

(D x‘eX—+[x,X]eg

holds. A subset I € £, is called g-canonicin S if

(T,) x¢X AXeS,A[x,Jleg A Vy(yel—>[y,X]eg)-[x,X]eo.
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By a g-canonic region C of S we understand a substed C = S such that every g
independent subset of C is g-canonic in S. A g-canonic region S€ of S is said to be
a g-canonic zone of S, or a strict g-canonic zone of S, if for every x € S there is
a g-canonic subset I = S, or an element y € S€, such that

[x,]]eg, or [x,(y)]ee,

respectively. An A-dep. structure (S, ) is called a GA-dep. structure (a strict
GA-dep. structure) if there exists a g-canonic zone of S (a strict g-canonic zone of S);
(S, o) is called a LA-dep. structure if the entire S is a g-canonic zone of S; then,
o is called a GA-dep. relation or a LA-dep. relation, respectively. Though, in general,
a subset of a GA-dep. structure (S, 0) together with the corresponding relation
induced on the subset by ¢ need not be a GA-dep. structure, a subset of a LA-dep.
structure is, in the sense described above, always a LA-dep. structure — a LA-dep.
substructure of the given LA-dep. structure.

In a GA-dep. structure, there are maximal independent subsets which are canonic.
The cardinalities of any two such maximal canonic subsets are equal (the rank of the
GA-dep. structure); they are no maximal independent subsets of a greater cardinality.
In particular, all maximal independent subsets of an LA-dep. structure are of the
same cardinality.

Let R be an (associative) ring. By the DORROH’s extension R* of R (see [8]) we
understand the ring with identity R* = Z x R of all pairs (m, pt), where m is an
integer and p an element of R, with the operations defined as follows:

(mop) + (n,v)=(m +n, p+v),
(myp).(n,v)=(mn,m xv+nxp+w).

We identify R with the subring of R* of all elements of the form (0, ), u e R; in
fact, R is a two-sided ideal of R*.

Let M be a (left) module over R (briefly, an R-module). By {X} denote the R-
submodule of M generated by a subset X = M. The order (annihilator) of an element
x € M, i.e. the left ideal of R of all u € R such that ux = 0, will be denoted by O(x) or,
more precisely, by Og(x). Defining, for (m, x) € R* and x € M,

(m,u)x:m:xx+ux,

M can be considered also as a unitary (left) R*-module. Then, we have {X}z = {X} .
for every X = M. Thus, the family of all R-submodules of M coincides with the
family of all R*-submodules of M.

In an R-module M, let us define the dependence relation 6 in the following way:

(2,1) [x, X]ed o {x}r n {X} +(0).

The subset of the d-singular elements is void and there is a single d-neutral element
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0 e M. In what follows, speaking about an R-module M as a dependence structure
with respect to § we shall always mean the structure (M \ (0), §). The relation &
induces a relation dg on every subset S of M,

[x,X]eds[x,X]ed for xeS and X < S,

and we can, thus, investigate also the structures (S, ). ') The definition (2,1) of the
relation 6 on M does not depend on whether M is considered as an R-module or as
an R*-module. Hence, any such relation can be investigated as a relation over
a unitary (left) module.

Unless otherwise stated, by an ideal of a ring R we understand always a left ideal.
An ideal L of a ring R is said to be irreducible if, for any two ideals L; 2 Land
L, 2 L, the strict inclusion L, n L, 2 L holds. An ideal L = R is called prime if,
for every ue R \ Land ve R \ L, also uve R \ L. For an ideal L< R and x € R
we define the (right) ideal-quotient L: » of Lby x as the set (left ideal) of all y € R
such that yx e L.

The following lemmas will be found useful in the next paragraphs.

Lemma 2.1 An ideal L of a ring R isirreducible if andonlyif foreveryaeR \ L,
peR \ Lthereare pe R, veR such that

(2,2) (mx o+ pa)—(n x B+ vB)eL and
m x a + pa¢ L for suitable integers m, n.

If R is a ring with identity, then the condition (2,2) is to be read
o —vBeL and poé¢ L.

Proof. Let Lbe irreducible, « ¢ L, f ¢ L. Then the intersection of the ideals {L, a}
and [L, f] contains an element x ¢ L. Thus,

x=A+mxo+pu=24+nxpB+vf with mxa+ uaé¢L.
Hence

(mxoa+pt)—(nxB+vp)=24 —AeL,

as required.
On the other hand, if Lis reducible, then

L=L,nL, with L +L=*1L,.
Take ae L, \ Land fe L, \ L and consider an element
A=(mxoa+pt)—(nxp+vp)eL.
1) There is no danger of confusion in denoting the relation g again simply by 4.
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Then,
mxo+pt=2~1+(nxp+vf)eL nL,=L.

The lemma follows.

Lemma 2.2. If an ideal L of R is irreducible, then every ideal-quotient L: % is
irreducible.

Proof. Let us give an indirect proof based on the previous Lemma 2,1. Assuming
that, for a certain » € R, L: % is reducible, we deduce the existence of o ¢ L : s,
B ¢ L: % such that

(m x a+ pa) —(n x p+vB)eL:x implies m X o + preL:x
for every m,ne Z, u, ve R. Hence, ax ¢ L, fx ¢ L and
(m x (ax) + pax) — (n x (Bx) + vBx)e L implies m x (ax) + pox e L

for every m, n e Z, u, ve R — a contradiction, in view of Lemma 2,1, of irreducibility
of L.

Lemma 2.3. Let M be an R-module and x € M. Then
(i) O(xx) = O(x) : % for every x € R;

(ii) O(x) is a two-sided ideal if and only if O(x) = O(xx) for every x € R;

(i) O(x) is prime if and only if O(x) 2 O(xx) for every x € R \ O(x).

Proof. (i) is trivial. Further, O(x)is two-sided if and only if, for every y € O(x)
and % € R, yx € O(x), i.e. y € O(x) : » = O(xx) holds. Also, O(x) is prime if and only
if, for every x € R \ O(x), y € O(»x), i.e. yx € O(x), implies x € O(x). The proof is
completed.

Lemma2.4. Let L be an ideal of a ring R. Then there exists an R-module M
containing an element x € M of order O(x) = L. If R is a ring with identity, then
there is a unitary R-module M of that property.

Proof. Let ¢ be the identity element of R. Then the coset represented by ¢ in the
R-module of all cosets R mod L establishes the proof. In the general case, consider
the Dorroh’s extension R* of R with the identity ¢*. Every ideal of R is an ideal of R*.
Again, it is easy to check that the order of the coset represented by &¢* in the R-module
of all cosets R*¥ mod Lis L.

Finally, let us introduce some definitions in order to simplify the formulations of
the following paragraphs. :

Definition 2.5. A ring R is said to have property () if for every proper ideal L
of R (i.e. L # R)thereexists x € R \ L such that the ideal-quotient L : x is irreducible.
A ring is said to have property (%) if its family of ideals is (linearly) ordered by
inclusion.
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Definition 2.6. A ring R with identity is said to possess property (G), or (ﬁ), if every
unitary R-module is, with respect to the dependence relation ¢, a GA-dep. structure,
or a LA-dep. structure, respectively. A ring R is said to posses property (G) if every
R-module is a GA-dep. structure.

Remark 2.7. Evidently, there is no ring R such that every R-module is a LA-dep.
structure. For, any abelian group G can be considered as an R-module if yg = 0 is
defined for any » € R and g € G. Then, the family of all R-submodules coincides with
the family of all subgroups and thus, the relation § coincides with the dependence
relation over abelian groups which is, in general, not a LA-dep. relation.

3. DEPENDENCE OVER UNITARY MODULES

Throughout this paragraph, R is always an (associative) ring with identity ¢ and M
a unitary R-module. First, formulate the following basic

Theorem 3.1. Let M be a unitary R-module, xe M, X < M. Then, [x,X| € if
and only if there are x;€ X and A€ R, 2;€ R (1 < i < m) such that

(3,1) 0% Ax =) Ax;.

i=1
With respect to this relation, M is an A-dep. structure; moreover, § is proper and
satisfies (E,) without the restriction X € $5:

(E) [x1, X]¢6 A [x1, X U (x;)] €6 - [x2, X U(x,)]€5.
A subset X of M is 6-independent if and only if{X}R is the direct sum

{X}r =2 {x}r = 2 Rx.
xeX xeX

Also, any subset S = M is, with respect to the relation induced on S by J, an A-dep.

structure (S, 6).

The proof is of a routine nature and is therefore omitted. Now, our intention is to
find some (necessary and sufficient) conditions for R guaranteeing that R-modules or
some of their subsets are GA-dep. or LA-dep. structures; this will enable us to intro-
duce the concept of rank in the theory of modules. We shall often refer to the following
technical lemmas.

Lemma 3.2. Let X be a d-independent subset of M and x € M such that [x, X ] € d.
Then there exist x;€ X and x € R, ;€ R (1 < j < n) such that ‘

(3.2) 0% »xx = lejxj with O(xx) = O(x;x;) for 1<j<n.
=

142



Proof. In view of our assumption, there are x;€ X, A€ R, ;€R (1 £i < m)
such that (3,1) holds; assume, moreover, that 4,x; + 0 for each 1 < i < m. Consider
the set of all ideals O(Z;x;). This is either a single-point set — and, thus, (3,1) is of the
form (3,2) —, or there are iy, i, such that

O(Zixi,) N O(Ai,x1,) # 0.

In the latter case, multiply by an element p of this set-theoretical difference the relation

(3.1):
(3.3) pAx =y phx;;
i=1

here ul; x;, = 0 and pd;,x;, + 0. Hence, since X is d-independent, ulx # 0 and,
furthermore, there are at most m — 1 non-zero members in the sum of the right-hand
side of (3,3). Proceeding in a similar manner one can easily transform (3,1) into an
expression of the form (3,2).

Lemma 3.3. Let C be a subset of M such that the order O(c) of each element
ce Cis an irreducible ideal. Then, C is a -canonic region of any A-dep. structure
(S, 0) with C = S = M. On the other hand, if a subset S = M satisfies the property
that with an arbitrary x € S also 2x € S for every A€ R,?) then the order of every
element of a 5-canonic region C of S is irreducible.

Proof. Evidently, it is sufficient to prove the first part of Lemma 3.3 for S = M
only. Thus, let I = C be a J-independent subset and let

[x,]]1€d A Vy(yel - [y, X]€e?d)

for a certain J-independent subset X < M. Then, by Lemma 3,2, there are y; e I and

x€R,»;eR, ;eR and x;€ X, rjieR(l <jsnl1=Zics m)suchthat

0% xx =Y x;y; with O(xx) = O(x;y))
i=1

and
O#)&j_Vj:ZTjixi for 1§j§n
i=1

Since O(y,) is irreducible, they exist, in view of Lemma 2,1, y; €R, v, € R such that

By%y — Vidg € O(,Vx) and  pyx, ¢ 0()’1) .
Thus,

n
0 % pyxx = ) py%;y;
Jj=1
with  O(uyxx) = O(uy%;y;) for 1 <j<n
2) The proof suggests how this assumption could be weakened.
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and m
0% wpnyr = vidiyy = _Zlvl‘hixi .

i

Proceeding by induction, assume that (for 1 < k < n)

0%+ gy ... pyxx = z#k#k—1 e Hy%5Y
i=1
(3.4) {with O(mepty—y ... py%x) = O(Mfti—1 ... pyx;y;) for 1 <j < n and
0% -y - gy = vidiyy =‘;Vﬂnxi for 1 =1 =k

Applying again Lemma 2,1 to the irreducible ideal O(yy+1), there exist py+1 € R,
V. +1 € R such that

Pt 1l -+ M¥pr1 — Vit 1hi+1 € O(J’k+1) and B P € O(ka) :

It is a routine to check that (3,4) holds for k + 1, and thus for k = n:

n
O F flufty—y oo 17X = ) by g oo B Bylj—1 -+ B1%Y5 =
j=1

ji=

n n m
= Zﬂmun—l M Vidy = zlﬂnﬂn—1 ﬂj+1"j( zl’fjixi) =
i= : i=

j=1
( Hultn—1 --- Hj+1VjVjTji) Xi
1j=1

DM

VR

]

13

ie. [x, X] € d, as required. Consequently, C is a é-canonic region and the proof is
completed.

In order to prove the second part of Lemma 3,3 suppose that there is ¢ in a §-canonic
region C of S = M with a reducible order O(c). Then, by Lemma 2,1, there are
xeR \ O(c), Be R \ O(c) such that

poe — vBe O(c) implies pae O(c) forevery pu,veR.
Thus,
[oc, (c)] €6, [¢,(Bc)]€d and [oc, (Be)] ¢ 6
and since, in accordance with our assumption, ac € S, fce S, C is not a d-canonic
region of S.

As a simple consequence of Lemma 3,3 we get

Theorem 3.4. A subset C of an R-module M is a 5-canonic region of M if and only
if the order of each element of C is an irreducible ideal.

Let us point out that the proof of Lemma 3,3 did not explore the d-independence
of X = M. Due to this fact, we deduce that the relation 0 satisfies a stronger property
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than (T,). In fact, & has also another specific property expressed in Theorem 3,6 which
is a consequence of Theorem 3,4 and the following

Lemma 3.5. Let X be a 6-independent subset of M and x € M such that [x, X] € 6.
If the order of every element of X is irreducible, then there exists an element
x€R \ O(x) such that O(xx) = O(x) : x is irreducible.

Proof. The assertion follows readily from Lemmas 2,2 and 3,2.

Theorem 3.6. If an R-module M is — with respect to 6 — a GA-dep. structure,
then it is a strict GA-dep. structure.
Now, we are ready to state one of the main results of the present paper.

Theorem 3.7. A ring has property (G) if and only if it has property (5).

Proof. This is a consequence of Lemma 2,4. Theorem 3,4, Theorem 3,6 and
Lemma 2,2 on the one hand and Theorem 3,4 on the other.

Corollary 3.8. If a ring R has property (f), then in any R-module

(i) there exists a maximal 5-independent subset of elements whose orders are
irreducible;

(ii) any maximal é-independent subset of non-zero elements whose orders are
irreducible has the same cardinality — the rank r(M) of M;

(iii) the cardinality of any other maximal 6-independent subset of non-zero
elements is less than or equal to t(M).

The following statement is a simple consequence of Corollary 3,8 and Theorem 3,1:

Corollary 3.9. Let M = ZRxa = ZRy,, be two direct decompositions of an

acAd BeB
R-module M into cyclic submodules of irreducible orders. Then, card (4) = card (B).
Theorem 3,4 together with Lemmas 2,4 and 2,1 yield also the following

Theorem 3.10. Let ¥ be a family of ideals of a ring R. If
(i) every ideal of &£ is irreducible, then

(ii) for any R-module M, the subset S = M of all elements of M whose orders
belong to % (and, thus, any subset S = M such that the order O(x) of each element
x € S belong to %, is — with respect to 6 — a LA-dep. structure.

If, moreover, the family & possesses the property that Le ¥ resultsin L: x €&
for every x € R \ L, then (ii) implies (i).

Corollary3.11. A4 ring has property (L) if and only if it has property ().
Proof. For, a ring has property (&) if and only if every its ideal is irreducible.
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Corollary 3.12. Any two maximal 5-independent subsets of non-zero elements of
an arbitrary R-module M have the same cardinality — the rank t(M) of M — if
and only if R possesses property (Z).

As far as the behaviour with respect to dependence is concerned, we have seen that
R-modules resemble in many respects abelian groups. This parallelism can be extended
also in the following way. We intend to define for an irreducible ideal L of a ring R,
or more generally for a family % of irreducible ideals of R, the “L-rank” r, (M), or
the “#Z-rank” r4(M), of an R-module M as the rank of the LA-dep. structure (S, §),
where S is the subset of all x e M such that O(x) = L, or O(x) e, respectively.
Naturally, this concept would be of little importance unless we prove that in any
maximal §-independent subset I of the whole R-module M (specified, possibly, in
a certain way) the subset S N I of I of those elements whose orders are L, or belong
to &, is always a maximal d-independent subset of S and, thus, its cardinality equals
to r (M), or ry(M). The following theorem is a general result in this direction
reflecting the situation in abelian groups. '

Theorem 3.13. Let ¥ be a family of ideals of a ring R. Consider the following
three statements on a subfamily ¥, < %

(") Every Le % such that L: x € %, for a suitable x € R, belongs to Z .

(i”) For every Lye ¥, and x€ R \ L,, there exists A€ R such that Ax ¢ L,
and Ly : (Ax) € Z,.

(ii) Every R-module M satisfies the following condition: Let S, be the subset
of M of all elements whose orders belong to £,. If I is a maximal d-independent
subset of M consisting of elements of orders belonging to %, then S, N I is a maxi-
mal d-independent subset of S,.

In particular, a consequence of (ii) asserts

(ii,) Every single element x of order O(x)e & of an R-module M containing
some elements of orders from %, which forms a maximal -independent subset (x)
of M, belongs to S, (i.e. O(x) € Z,).

Always, (i) together with (i") imply (ii) and, on the other hand, (ii,) implies (i').
If, moreover, every ideal of %, is irreducible and every R-module M possesses
a maximal 6-independent subset consisting of elements whose orders belong to &,
then (ii,) implies also (i"). In this case, S, is — with respect to 5 — a LA-dep.
structure and the conditions (i') and (i") are necessary and sufficient for the legiti-
macy of the following definition of the L|L-rank rg (M) of M :1g,,4(M) is the
cardinality of the set of all elements of orders belonging to %, in a maximal
o-independent subset of M consisting of elements whose orders belong to & .

In particular, if &, = & satisfy all the above requirements and R has, moreover,
property (), then a family & 2 %, of irreducible ideals exists such that, in
every R-module M, the subset of all elements of orders belonging to & is a o-
canonic zone M€ of M possessing the following property: The intersection So 0 I
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of the subset Sy of all elements of M of orders belonging to &, and a maximal
d-independent subset I = M€ of M is a maximal S-independent subset of Sg;
we call the £ o] P-rank simply the % ,-rank and denote it by ry (M).

Proof. First, (ii,) follows from (ii) immediately.

Assume the validity of (i’) and (i") and let S be the subset of an R-module M of all
elements of orders from %, and I be a maximal é-independent subset of M consisting
of elements of orders from .#; throughout this proof, let us call such subsets, for the
sake of brevity, Z-subsets of M. Then, for every x € S, there are, by Lemma 3,2,
x;el, e R and x;€ R (1 £ j < n) such that (3,2) holds. Hence, by (i"), there is
J € R such that '

0 = Axx =y Ax;x; with O(Axx) = O(Ax;x;) for 1<j<n,
=1

and, furthermore, such that O(Axx) = O(x) : (Ax) € &,. By virtue of (i'), we deduce
from O(Ax;x;) = O(x;) : (Ax;) € £, and O(x;) e &£ that O(x;) e Z,, i.e. x;€S for
1 <j < n. Since S N1 is evidently d-independent, (ii) follows.

Now, let us prove that (i’) results from (ii,). Let Le & and L: x € &, for a suitable
% € R. Consider the R-module M = R mod Lof all cosets modulo L; the order of the
coset containing x is evidently L:x e %, and the coset containing ¢ (of order L)
forms a single-point #-subset of M. Thus, in view of (ii,), necessarily Le Z,, as
required.

In order to prove the implication (ii,) — (i), let Ly € %, and x€ R \ L.
If Ly:%e%P, (i") holds for /. = ¢. Otherwise, consider the R-module M, =
= Rmod (L, : ») of all cosets modulo L, : x; M, should possess, according to our
additional assumption, an #-subset and thus, there is an A€ R \ (L0 %), ie.
A% € Ly, such that the order (Ly:x): A = Ly :(Ax) of the coset modulo L : x
containing A belongs to #. Now, since L, is, according to the other additional
assumption, irreducible, the coset modulo L, containing Ax forms an #-subset of
the R-module M, = R mod L, of all cosets modulo L, (its order is L, : (1x) € &).
Meanwhile, the order of the coset containing ¢ is L, € &, and hence, in view of
(iip), Lo : (%) € Z,. Hence, (i”) holds.

The next assertion on S, and the Eo/g-rank of M are simple consequences of
Theorem 3,10 and the preceding part of the present proof.

In order to complete the proof, assume that R possesses, moreover, property (J")
Then, for every Le %, there exists ¥ € R \ Lsuch that L: x is irreducible. Denote
by £ the family consisting of all irreducible ideals of % and of all irreducible ideals L.
such that L= L: % for suitable reducible Le ¥ and ¥ € R \ L. Let M be an R-
module. First, we are going to prove that the subset M of all elements of M of orders
belonging to & is a d-canonic zone of M. In fact, in view of Lemma 3,3, only the
proof of maximality in M is needed. Thus, let 0 % x € M. Since R has property (.#),
thereisxo € R \ O(x)suchthat O(xox) = O(x) : xisirreducible. Write x, = %ox % 0.
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Because of existence of an #-subest of M, there are, by Lemma 3,3, x; € M and
x€R, x;e R (1 £j < n)such that

0% xxo =y, %;x; with O(x;)e# and
=1

O(xx,) = O(x;x;) = O(x;) : %; for 1

lIA
lIA

j=<n.
By Lemma 2,2, O(xx,) = O(x,) : » isirreducible and thus, O(x;) : »; are irreducible.
Let O(x;)befor 1 < j < t reducible and for ¢ + 1 < j < n irreducible ideals. Then,
O(x;x;) for 1 <j < tand O(x;)for t + 1 £ j < n belong to £ and, thus,

C = (%1X1, %2X2y ooy XeXpy X 15 +ees X,)

is a d-independent subset of M. Furthermore, [x, C] € d, as required.

The property of M€ described at the end of our theorem follows from the following
observation: The families %, = Z satisfy the conditions (i’) and (i”). Only (i)
should be checked. Let e # and L:xe %, for a suitable x € R. If Le %, then
evidently Le &£, (by (i') applied to £, < %). Otherwise, L= L: 1 for suitable
reducible Le ¥ and Ae R \ L. From here,

L:(x)=(L:2):x=L:xe%,,

and thus, again by (i') applied to ¥, = £, Le #, contradicting the hypothesis
that all ideals of &, are irreducible.

This completes the proof of Theorem 3,13.

Now, formulate some corollaries of Theorem 3,13.

Corollary 3.14.(FucHs [9]). Thesubset of elements of order (0) in any two maximal
d-independent subsets of an R-module M have the same cardinality if and only if
the ideal (0) = R is irreducible and R is without zero-divisors (i.e. (0) is prime).

Proof. We apply Theorem 3,13 for the family % of all ideals of R and %, con-
sisting of the single zero-ideal (0). The assumption on equal cardinalities of our
corollary implies readily (ii,). Therefore, (i') holds, i.e. every relation L:x = (0)
results in L = (0). This is equivalent to the fact that (0) is irreducible; for, L : % = (0)
means precisely that » & 0 and Ln Rx = (0). Furthermore since .# consists of all
ideals and (0) is irreducible, also (i”) holds, i.e. for every » # 0, /1 € R exists such that
A% % 0 and (0) : (Ax) = (0). This statement is, in the presence of (i'), evidently
equivalent to the fact that R has no (non-trivial) zero-divisors; for, (0) = (0) : (ix) =
= ((0) : %) : A implies (0) : » = (0). The corollary follows.

Consequently, if (0) is an irreducible and prime ideal of R, we can define on the
basis of Corollary 3,14 the r,-rank for R-modules; this question will be treated
shortly in the final remark of this paragraph. We cannot expect a similar result in
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such a strong version for an ideal Ly + (0) of R. Nevertheless, we can either confine
only to some types of rings or to specify in a certain way the family .#; after all,
such is the situation even in abelian groups. Always, Theorem 3,13 represents
a general pattern. Though a number of corollaries could be formulated, we introduce
here only a simple

Corollary 3.15. (cf. [9]) Let £ be a family of two-sided prime ideals of R such
that maximal S-independent subsets of elements of orders belonging to ¥ exist
in any R-module M. Then the subsets of elements of order Ly € % in any two such
maximal o-independent subsets of an R-module M have the same cardinality if
and only if L, is irreducible.

Proof. Theorem 3,13 and Theorem 3,10 yield the statement immediately.

Remark 3.16. Both Theorem 3,10 and Corollary 3,14 relate to the concept of the
linear dependence relation 5, inR-modules M (strong dependence of Fucas [9])
defined in analogy to (3,1) by: For xe M and X = M,

[x, X]€doe xx = 2x;
=1

for certain 0 + x€R, x;€ R and x;e X (1 £ i < m). It is easy to check that the
set of d,-neutral elements is void and that an element x € M is d,-singular if and only
if its order differs from (0). Thus, we consider the (regular) subset M, = M of all
elements of order (0), the conditions (F), (M), (E) and (I) can be easily verified for &,.
Hence, (M, d,) is always an A-dep. structure. Since, for an element x of order (0),
»x % 0is equivalent to » =+ 0, J, is identical with 6 on M. Thus, from this point of
view the relation d, is a derived relation from J:

(i) for x € My, [x, X] €d, if and only if [x, X n M,] € and
ii) for xe M \ M,, |x, X]ed, for every X < M.
( ) 0 [ ] 0 y

Therefore, the study of d, is a part of the theory of ¢. In particular, Theorem 3,10
for & = (0) reads as follows (cf. Kertész [11], Fuchs [9]): If the zero-ideal (0) is
irreducible in R, then, for any R-module M, (Mo, 50) is a LA-dep. structure and
thus, all maximal dy-independent subsets of M have the same cardinality. If,
moreover, (0) is prime in R (i.e. R is without zero-divisors) the converse holds, as
well. Then, however, the strengthened statement of Corollary 3,14 holds. Let us
recall, at this point, that the condition for (O) in R to be irreducible and prime is
necessary and sufficient for the subset of all elements of non-zero orders T in every
R-module M to be a submodule and the quotient module M/T to be torsion-free.
This suggests an alternative way of treating the relation é, within the study of the
relation 9.
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4. DEPENDENCE OVER ARBITRARY MODULES

In the preceding paragraph, necessary and sufficient conditions were established
for a ring R with identity in order that all unitary R-modules become GA-dep. or
LA-dep. structures with respect to the relation d (properties (G) and (L)). As we have
already pointed out (§ 2), there are no rings such that every R-module be a LA-dep.
structure with respect to 6. However, the related question for GA-dep. structures
appears to be non-trivial and is investigated and solved in the present paragraph:
We give here a necessary and sufficient condition for a ring R in order to possess
property (G).

First, we need a generalization of the concept of an ideal-quotient.

Definition 4.1. Let R be a ring, L a (left) ideal of R. By a generalized ideal-quotient
L:{k, »}, for an integer k € Z and an element % € R, we understand the (left) ideal
defined by

ieL:{k,x} ifandonlyif k x A+ AxeL.

Evidently, every ideal-quotient is a generalized ideal-quotient and, on the other
hand, every generalized ideal-quotient in a ring with identity is an ideal-quotient
(for, L: {k,%} = L:(k x & + x)).

Furthermore, for the proof of the main theorem of this paragraph we shall need
a series of lemmas on the relations between the ideals Lof a ring R and the ideals L*
of the Dorroh’s extension R* of R. It turns out that every ideal of R is an ideal of R*
and, of course, if L*is an ideal of R*, then L* n R is an ideal of R.

Lemma 4.2. R is an irreducible (two-sided) ideal of R*.

Proof. Let (m, u) € Lf \ R and (n,v) e L} \ R be two elements of ideals L} 2 R
and L5 2 R of R*. Then, (m, 0) € Lf, (n, 0) € L and, thus, (m, n, 0) e (L} n L%) \ R.

Lemma 4.3. Let L* be an irreducible ideal of R*. Then L= L* n R is an ir-
reducible ideal of R. )

Proof. Suppose, on the contrary, that L = L; n L, for suitable ideals L; and L,
of R such that L § L, and L T L,. Then, the ideals L} and L% of R* generated by
L* L, and L*, L,, respectively, satisfy the relation L{ n L} = L*. For, (m, u) €
€ L} n L% means that

(m, )= (5,27 + 44) =323 + 4),
ie. If =15 and A, =4 + 1, — 1F

with I¥eZ, 2 e L* and A;e L; for i = 1, 2; from here, A, e L, n L, = Land thus,
(m, p)e L*.
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Lemma 4.4, Let L be an ideal of R. If the ideal-quotient L:1 % R for every
teR \ L, then also (L:{k,«x}):0 % R for every keZ, xeR and 6eR \ (L:

{k, #}).
Proof. Since k X o + ox ¢ L,
(L:{k,x}):o=L:(k x o+ 0x)*0,
as required.
Lemma 4.5 Let L be an ideal of R such that L:t + R for every 1€ R \ L. Then,

there exists a uniquely determined ideal L of R* satisfying L R = L and con-
taining any other ideal L¥ of R for which L* n R = L.

Proof. Let us define the subset L of R* as follows: (m, p) € Lif and onlyif m x 1 +
+ Au e Lfor every A € R. Itis a routine to check that Lis a (left) ideal of R*. Moreover,
LA R = L; for, Ln R 2 Lis trivial and the other inclusion holds due to our hypo-
thesis on L(Au € L for every A e Rimplies p € L). Finally, let (n, v) be an element of
an ideal L* of R* for which L* n R = L. Then, (0, 1) (n,v) = (0, n x 4 + Av)e L*,
ie.n x A + Ave Lfor every 2 € R, and thus, (n, v) € L.

Lemma 4.6. Let L be an irreducible ideal of R such that L:t £ R for every
7€ R N\ L. Then the ideal L = R* of Lemma 4,5 is irreducible, too.

Proof. This follows immediately from the fact that L*¥ n R 2 Lfor every ideal L*
of R* such that L* T L.

Lemma 4.7. Let Lbe an ideal of R suchthat L.t + R for every te R \ Land L

be the ideal of R* defined in Lemma 4,5. Then, by Lemma 4,4, the ideal m
of R* is well-defined and equals to the ideal-quotient L: {k, x} in R* for every
keZ and x€R.

— T ——
Proof. Let (m, u)e L: {k, x}; then, m x A + Aue L:{k, x}, i.e.
k(m x 24+ Au) + (m x A + Ap)xe L forevery AeR.
Hence,
mk x 2+ Mk x p+ m x x + ux)e L forevery leR, i.e.
(mhk,m x % + k x p+ pe) = (m, p)(k,x)e L
and, thus,
(m,pwyeL:(kx).

All these implications can be reversed and the lemma follows.
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Now, we are ready to formulate and prove the following

Theorem 4.8. A ring R has property (G) if and only if, for every ideal L R,
there exist

(i) either x e R \ Lsuch that L:x = R,

(ii) or k€ Z and » € R such that L: {k, »} is irreducible and different from R.

In this case, the set of all non-zero elements x of an R-module M such that either

(a) O(x) = R and n x x = 0 only for n =0, or

(b) O(x) = R and p* x x = 0 for a certain power of a prime p, or

(c) O(x) % R is irreducible and there are no ke Z and x € R such that k x x +
+ xx & 0 and O(k x x 4+ xx) = R, forms a (strict) 6-canonic zone of M.

Proof. Our proof will be based on the related Theorem 3,7. The necessity of the
conditions follows quite easily: In view of the.one-to-one correspondence between
R-modules and unitary R*-modules, R* has property (G) and Theorem 3,7 can be
applied: Let L & R be an ideal. If there exists an element t € R \ Lsuch that L: 7 =
= R, we take simply » = 7 and (i) follows. Otherwise, there is, in view of Lemma 4,5,
the uniquely determined ideal L = L of R* of all (m, p) such that m x 4 + Ape L
for every 2 € R. By Theorem 3,7, there exists (k, ») € R* \ Lsuch that L: (k, %) is
irreducible. Hence, by Lemmas 4,4, 4,5, 4,7 and 4,3,

Li{k,x} =L:{kxnR=[L:(kx)]AR=+R
is irreducible.

Now, we are going to prove that the conditions (i) and (ii) are sufficient. Taking
again into account the one-to-one correspondence between R-modules and unitary
R*-modules, we need only to show that R* has property (.#). Thus, let L* & R* be
an ideal of R*. Write L= L* n R. If L = R, then, with every (m, ) € L*, also
(m, 0) € L*. Suppose that L* & R and let ¢ be the least natural number such that
(t, 0) € L*; then (m, 0) € L* if and only if m is a multiple of . If t = pt, with a prime p,
then L* : (15, 0) = L* is a maximal, and thus irreducible, ideal of R*.

Also, if there is an element 1 € R \ Lsatisfying L: 7 = R, i.e.
R< L:(0,7) = L*:(0,7) + R*,
then we conclude, as above, that (#,, 0) exists such that

[L*:(0,7)] : (t5,0) = L*: (0, x 1) + R
is irreducible.

Otherwise (i.e. if L: 7 # R for every € R \ L), the uniquely determined ideal L
of Lemma 4,5 exists with ‘

L=L*"R=LAR and L*c L.
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In the case that L* + L, there is (I, 1) e L \ L* and, by the definition of L,
Rc L*:(L2) + R*;
again, t, € Z exists such that
[L* (1, 2)] : (t, 0) = L* : (o1, ty x 2) + R*

is irreducible. The case L* = Lremains to be considered. Here, we use (ii) and apply
Lemmas 4,6 and 4,7: There are k € Z and » € Rsuch that L : {k, x} % Risirreducible;

hence,
T ———

L:{k,»} = L:(k,x) = L* : (k, x) + R*
is irreducible.

The validity of the second part of Theorem 4,8 can readily be seen if we consider M
as an R*-module and realize that in every non-zero R*-submodule of M generated
by a single element, a non-zero element x satisfying one of the conditions (a), (b), (c)
exists and its order in R¥ is irreducible.

The proof of Theorem 4,8 is completed.

Corollary 4.9. For a ring R with identity all three properties (G), (G) and S are
equivalent.

Proof. This follows immediately from Theorem 4,8, Theorem 3,7 and the fact
thatL:x + Rforxe R \ Land L: {k,x} = L:(k x ¢ + %), where ¢ is the identity
element of R.

5. SOME FINAL REMARKS

In this short final paragraph we intend to point out some classes of rings with
properties (G) and (G) and to give also an example of a commutative ring with
identity which does not possess these properties.

Lemma 5.1. Let the ascending chain condition for left ideals hold in a ring R.
Then R possesses property (5).

Lemma 5.2. Let the descending chain condition for left ideals hold in a ring R.
Then R possesses property (£).%)

Proof of Lemmas 5,1 and 5,2. We give here an indirect proof of both statements:
Assuming that property (#) is not satisfied in R, we shall construct an (infinite)
strictly increasing and decreasing sequences of left ideals in R. Our assumption
yields the existence of a reducible left ideal L of R with the additional property that
L : % is also reducible for every x € R \ L.

3) For a ring R with (a one-sided) identity, Lemma 5,2 follows from Lemma 5,1 (see HOPKINS
[10]).
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We are going to show the existence of two sequences of elements of R:

0y Oy evey Ay oo ANd By, Boyeees Pis - -
such that, for every k,
(5.1) Ol—1...0; R NL and fyoy_,...a0; eR N L
and, moreover, any relation
(5.2) (m X oty oon 0ty + OGOy ... 0y) —

—(n X Budty—y -on 0ty 4+ VB—y ... 0t))EL

with m, n € Z and p, v € R implies
(5.3) M X 0Ol g +.. Oy + HOGOG_{ ... 0 €L.
Since Lis reducible, the existence of «; e R \ Land ; € R \ L with the required
properties follows immediately from Lemma 2,1. Further, proceed by induction;
suppose that up to a certain natural k the sequences of

Olyy Xpyeney O and ﬂl: ﬁ25--‘a ﬁk

with the required properties have been defined. Hence a0, ..., € R N L, and
thus L, = L: (00— ... «) is reducible. Again, in view of Lemma 2,1, we deduce
the existence of o+ 1 € R \ L, and f;+; € R \ L, such that any relation

(m x oy + posq) = (n X Broy + vBiyr) € Ly
with m, n € Z and p, v € R implies
m X oy + Py € Ly,

ie. oy, and P, exist such that oy q0...0; R N L, B0 ...a; RN L
and any relation
(M X gy qOg e Oty + PO 0g) —

—(n X Brsi® - 0y + Vi ... ay) €L
with m, n € Z and y, v € R implies

M X Oy (O oo Oy + UG 410 ... 04 EL,
as required.

Now, for every natural k, consider the following two left ideals of R, generated
by Land the elements indicated:

Ly = {L, By, Ba0tys - s iy --- 01} and Ly = {L, opap_y ... 04} .
Clearly,

Liclic..clfc... and Ly 2L 2...2 L0 2...
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All the inclusions in both sequences are strict. For, suppose, first, that

Li_, = L} for a certain natural k.
Then,

Bidymq ..oy = A+ (ny x By +vify) + ... +
+ (”k—1 X ProgOmzeon 0y F Vo 1Btz ... 061)

with a suitable A e L, i.e.

[Bittimq o0ty — (ny X By 4 Vafy + oo + My x
X Bre1O—g ... 0y + Ve P10 ...Otz)] oy — (”1 X By + vyfy)eL,
and thus, by (5,2) and (5,3) for k = 1, we get n; x By + vif; € L. Using the same

argument (for k = 2), we can see that also n, x f,%; + v2f,0; € L and, by induction,
we get finally

(5,4) Budy—q...a €L,
a contradiction of (5,1).

Similarly, suppose that

Lyy—, = L, for a certain k.
Then,
Bitti—y ooty = A+ (m X a0y .on 0y + HOGOG_ ... 0ty)

with a suitable A e L, i.e.

(m x oo q ..oy + oo _q ... %q) — Py ... 0 € L.
Hence, by (5,2) and (5,3), we get again the contradiction (5,4) of (5,1). The proof is
completed.

From here and Theorem 4,8 we conclude

Theorem 5.3. Every ring in which either the maximum or the minimum condition
for left ideals holds possesses property (G).

As a particular result we get
Corollary 5.4. Every (left) Noetherian ring possesses property (G).
The following is an example of a commutative ring with identity which does not

possess property (G).

Example 5.5. Denote by X the set of all real numbers o such that 0 < « < 1 and «
is not a rational number of the form ¢/2". By an X-interval (t;/2", t,/2"), where
142" < t,/2", we understand the set of all those o eX which, moreover, satisfy
12" < o < 1,[2"; X itself is also an X-interval.
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Consider the family R of all finite (disjoint) set-theoretical unions of X-intervals.
Then, R with respect to addition and multiplication defined by the set-theoretical
symmetric difference and intersection, respectively, is a commutative (Boolean)
ring with identity. Take an element ae R, a + 1 (i.e. a finite set-theoretical union of
X-intervals different from X) and denote by L, the family of all those elements of R
which are subsets of a. We can verify readily that L, + R is a principal ideal of
R : L, = Ra. Moreover, L, is evidently a reducible ideal of R; in fact, it is always an
intersection of two principal ideals different from L,. If b is an arbitrary element of
RN L,thenL,:b=L,,,., + Ris again reducible. Thus, R does not possess the
property (J ) and hence, by Theorem 3,7, does not possess property (GV)
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Pesrome

3ABUCUMOCTH B MOAVJIAX
Bnactumm [Ina6 (Vlastimil Dlab), Ilpara

Cratbs mocBsiiieHa IpobJieMe pacHpOCTPAHEHUST TEOPUM 3aBUCUMOCTU B abeire-
BBIX TpyMIax Ha MOAYIM (TaKUM CHOCOG0M MOXHO 3aBMCHMOCTh B BEKTOPHBIX
MIPOCTPAHCTBAX U B abeNIeBBIX IPYNNax U3yyaTh B paMKax oOlieil Teopum); B npobure-
Me, B YaCTHOCTH, COIOEPKHUTCS BOIIPOC O BO3MOKHOCTH OIPENEJICHUS PAHTa MOAYJIS.
B pabote mpumeHsroTcss pe3ysibTaThl Teopun GA-3aBUcCUMBIX U LA-3aBHCUMBIX
cTpykryp u3 [4], [5]u [7].

Iycts M — (JeBBli) MOIyJIb Haj (aCCOIJ,PIaTPIBHbIM) KouibioM R. MBI ckaxeM,
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YTO 3JIEMEHT X € M 3aBUCHUT OT MOAMHOXecTBa X & M, eclli CyIecTBYIOT 4, 4; € R
ux;eX (1 £i=< m)rak, uto

0+ Ax =) Ax;
i=1

(310 OTHOIIEHHE MBI 0603HAYMM CHUMBOJIOM d). B paboTe mpuseneHo HeoOxoaumoe
M JOCTAaTOYHOE YCIIOBHE, KOTOPOMY IOJIKHO YOOBJIETBOPSATH KOJIBIO R, 4YTOOBI
Kax/plif R-MoayJib ObLT 110 OTHOLICHUIO K 3aBUCHMMOCTH 0 GA-3aBUCUMO# CTPYKTY-
poit (Teopema 3.7 mist ynutapbix u Teopema 4.8 i oOwmMx Moaysiei); B ciyyae
YHHTAPHOTO MOJYJSI 910 CIEAYOLIee YCIOBUE: JUIS JIFOOOTO COOCTBEHHOTO JIEBOTO
uneaia L f RcyurserByetT k € R \ LTak, YTO UAeanoBbId MHOXUTENb L : i sIBJAsIeTCS
uenpusoaumbiM (T.e. u3 Ly 3 L:xu L, 3 L:x Boitekaer L, (YL, T L: k). Utak,
€CJIH 9TO YCJIOBUE BBINOJIHEHO, TO

(i) cywecTByeT MakCUMAaNbHOE §-HE3aBUCMMOE TIOAMHOXKECTBO JIEMEHTOB, MO DS/
KM KOTOPBIX HENPUBOINMBI;

(i) kaxkgoe Takoe MAaKCHMAIbHOE O-He3aBUCHMOE NOIAMHOXECTBO HEHYJIEBBIX
JJIEMEHTOB MMEET OJHY ¥ Ty € MOLIHOCTb — paHr r(M) monyist M,

(iii) MomHOCTH JIFOGOr0 MAaKCHMAJIBHOTO J-HE32BUCHMOTO IIOJMHOXECTBA HEHY-
JIEBBIX 3JIEMeHTOB MeHbLie uiy pasHa r(M) (Crencrsue 3.8). B kadectse ciencTBus
MOJIyYyaeM yTBEPXKIECHHUE, YTO MOLIHOCTh MHOXECTBA CJIATae€MBIX B NPSIMOM pa3Jiio-
KEHHH IPOU3BOJIBHOTO YHUTAPHOTO MOIYJISI M B MUKITMIECKUE TIOAMOIYJIA HETPUBO-
JMMBIX TIOPSIIKOB SIBJISIETCS. MHBapuantoM Monynst M (Crencrsue 3.9).

Kax/piii R-MOJyJIb SIBJISICTCS 110 OTHOIICHHIO K O LA-3aBUCUMOI CTPYKTYpOIf
TOra M TOJBKO TOLJA, KOTJA BCE JIeBBIe Waeaisl Kojba R obpasyror uens (Cruen-
craue 3.11). DT0, CIIe[0BATENLHO, MPEACTABIAET HEOOXOAUMOE M IOCTATOYHOE YCJIO-
BUE IS TOTO, YTOOBI /1Ba JIFOOBIX MAaKCHMAJIBHBIX O-HE3aBUCHMbIX IHOJMHOXECTBA
HEHYJIEBBIX 3JIeMeHTOB (IPOM3BOJIBHOTO) R-Momynst M UMesd Ty ¥e MOLIHOCTH —
paur r(M) monyist M (Ciencraue 3.12).

Teopema 3.13 0600uUIaeT HEKOTOPBIE CBOWCTBA 32BUCUMOCTH B a0SJIeBBIX TpyMmax
Ha Monmyiu. YacTHBIMU CIIEACTBUSMH 3TOM TEOpEMBI, paBHO Kkak Teopemsl 3.10,
CIIy’)aT pe3yJbTaThl, Kacarolliecs JUHEHHOM 3aBUCUMOCTM B R-Momynsx: x € M
3aBHCHT JIMHEHHO oT X S M, ecnu cymectByroT 0 = k, k;e Rux;e X (1 £ i £ m)
Tak, 9To

m
KX =Y KX;
i=1

(Caencreue 3.14, 3ameuanue 3.16.)

B nocniemaeM naparpade moxasaHo, YTo KOJbIA, YOOBIETBOPSIOIIME MaKCUMAIIb-
HOMY WJIM MUHHMAJIBHOMY YCIOBHIO [UIS JICBBIX MCAJIOB (B YACTHOCTH HETEPOBCKHE
KOJIbIA) 00TAMAOT TeM CBOWCTBOM, YTO KO BCSKOMY COOCTBEHHOMY JICBOMY HMIEaILy
L < RcyurectyeT k € R \ LTak, 4o L : k siBisercst HenpusoauMeiM (Teopema 5.3,
Crenctsue 5.4). IIpon3BoIbHOE KOMMYTAaTUBHOE KOJIBILO 3THM CBOMCTBOM He 06a-
naet (IIpumep 5.5).
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