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Чехословацкий математический журнал, т. 16 (91) 1966, Прага 

KRONECKER INDEX IN ABSTRACT DYNAMICAL SYSTEMS, II 

JozEF NAGY, Praha 

(Received February 11, 1965) 

In [6] there was defined the index of a point or of a simple loop in R^', and then 
appHed to the investigation of quahtative properties of critical points of dynamical 
systems in R .̂ Now we will attempt to extend this definition to the case of a local 
dynamical system defined in p-dimensional Euclidean space R̂ . In [6] it was shown 
that the index of the boundary of a Jordan region in R ,̂ under certain suppositions, 
yields considerable information about the behaviour of the dynamical system within 
this domain. Particularly interesting are the cases when this boundary is a closed 
trajectory or transversal. Of course, these results are characteristic for the case p = 2 
and it seems at a first sight that for p > 2 the use of indices would not lead to such 
elegant results. However, it will be shown in the present paper that one may obtain, 
for general p, several interesting results, which are generalisations of results of [6]. 
These include e.g. the theorem on the index of the boundary of an invariant domain 
in R̂ , the theorem on the expression of the index of the boundary of a domain by 
means of the sum of indices of enclosed critical points, etc. The main results of this 
paper are contained in theorems 2.10, 2.12, 2.16, 2.17 and 2.18. 

2.1. Let us recall some notions and notation. We use throughout the notation 
introduced in [6]. The results of paper [6] will be referred to directly; e.g. theorem 
1.17 is theorem 1.17 in [6]. We suppose as known the notions of an Euclidean 
r-dimensional simplex (r-simplex), of a simplicial complex and its subdivision, of 
a simphcial map, of a polyhedron and its triangulation, of an r-chain of the given 
complex (over the group J^Q of integers) and of the corresponding elementary notions 
of algebraic topology (see e.g. [2, I, § 1]). As coefficient group we use only the 
group Ĵ o of integers; this assumption will not be repeated. 

If Я is a triangulation of a polyhedron P, we denote by Су(П) the group of r-chains, 
dj. the boundary operator Су(П) into C^_.i(n); 2^(Л) and Ву(П) denote the groups of 
r-cycles and r-boundaries respectively; Ну{П) denotes the factor group ZXft^JB^ijî) 
(the r-th homology group of the triangulation Я). For a map / of a polyhedron F 
into a polyhedron P^, simphcial with respect to the triangulations Я, Я^ respectively, 
we denote by /#r the homomorphism Cjjl) ~> С^Пх) induced by / . The cor
responding induced homomorphism H^ÇOf) -^ Hr{TIx) we denote by/*r 
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. th homology group, for a continuous map 
For a polyhedron P let HAP) ^^ ' /рл _^ нJp \ induced by / . This twofold 

/ : P - > P i l e t / ^ , b e t h e h o f f l o m o r p h i s m W A ^ ; . / • , , -• лги ch.u 
use of the symbols Д and Я . possibly will not lead to a misunderstanding. We shall 
write U,U д in place of U,f*r, dr whenever the particular value of r is not 
essential. 

2.2. A compact triangulable subset P of the space R̂  will be called an n-pseudo-
manifold (n < p) if at least one its triangulations has the following five properties: 

(i) Я contains at least one и-simplex but no fc-simplex for к > n; 
(ii) for each two n-simplices т, т' of the complex Я there exists a sequence т = 

= Ti, T2,..., T5 == T' of n-simplices of Я such that any two neighbouring n-simplices 

of this sequence have an (n — l)-side in common; 
(iii) each (n — l)-simplex of Я is a side of precisely two w-simplices of Я; 
(iv) each m-simplex (m < n) of Я is a side of at least one n-simplex of Я ; 
(v) the pair (Int P, P), where Int P is a bounded component of R̂  — P, is 

a triangulable pair [3]. 
It may be noted that the notion of a pseudomanifold used in this paper is not 

equivalent with that used in [1] and [2], where the property (v) is not required. 
The set Int P in (v) is determined uniquely, since according to the Jordan-Brouwer 

Theorem [1, X, § 2, theorem IV], every (p — l)-pseudomanifold P in R̂  has two 
complementary domains, of each of which it is the complete frontier, i.e. 

R̂  - P = Int P u Ext P , 

where Int P (the inner domain of P) and Ext P (the outer domain of P) are non-void 
disjoint sets with common frontier P. By definition, the domain Int P is bounded, 
Ext P unbounded. 

An w-pseudomanifold will be called orientable if H„{P) is isomorphic to J^o- An 
orientable n-pseudomanifold will be called oriented if one of the generators of H„{P) 
is declared to be orienting. If Z is an orienting generator of H„(P), than each cycle 
С e Z will be called an orienting cycle of P. 

The simplest example of an n-pseudomanifold in R̂  (being at the same time an 
7i-manifold, i.e. each of its points has a neighbourhood homeomorphic to R„) is 
the fi-dimensional sphere 5" for 0 < n < p. The groups Яо(5'") and Я„(5") are 
isomorphic to J^y, Н^Б"") for 0 < i < n are trivial [3, I, theorem 16.6]. Hence, the 
sphere 5" is an orientable w-pseudomanifold. 

According to [1, X, § 2] for every {p - l)-pseudomanifold P the group Hp_^{P) 
is isomorphic to Уд, hence, every (p — l)-pseudomanifold in R̂  is orientable. 

According to [1, V, § 4.6, (15)] for every p-dimensional polyhedron Q in R̂  the 
group Я„(б) is isomorphic to the direct sum ^ J^o + ^n{Q\ where 7i„(ß) and 

<^n{Q) denote n~th Betti number and n-th torsion group of Q respectively. Hence 

115 



(there follows that Hp^^(lnt P) = 0 for every (p - l)-pseudomanifold in R .̂ Indeed, 
according to [1, XI, §3.12] ^^„^(IntP) is trivial and from the Alexander Duality 
Theorem [1, XI, § 4.1] there follows that 7i^,„i(lnt P) = По{Ех1 P) -- l = 0. 

Definition 2.1. Let P, Q be oriented n-pseudomanifolds, У, Z orienting generators 
of the groups H„{P), HniQ) respectively, f : P -^ Q. The degree of the map f is 
defined as the unique number deg ( /) satisfying the relation/^ 7 = deg ( /) Z. 

The following three propositions are almost trivial: 

(a) deg (/) is an integer. 

' (ß) If fi ^ л then deg ( / 0 = deg (/ , ) . 
(y) On changing the orientation of precisely one of the n-pseudomanifolds P, ß , 

the degree changes sign. 

We shall also need to choose coherent orientations for all unit {p — l)-spheres 
in R .̂ Let Sl~^ be the {p — l)-sphere in R̂  with center 0 and radius 1. Choosing an 
orienting generator of/fp_i(S^~^), we obtain the oriented sphere Sl~^. Now define 
the orienting generator of an arbitrary sphere S^~^ with center a and radius 1 so 
that deg(r) = 1 for the translation t : S^~^ -> S^"^. By the oriented sphere S^~^ 
we mean throughout the sphere S^~^ oriented in this manner. 

2.3. Now we shall introduce the concept of the order of a point with respect to 
a map in R̂ . 

Definition 2.2. Let Sf "^ be an oriented sphere with center in a, тс̂  : R̂  — {a} -> 
~> S^~^ the projection from the point a, P an oriented {p — l)-pseudomanifold, 
Î': P -^ RP — {a}. The order, a){a, /), of a with respect to I is defined as the number 
deg (nj). 

In the following lemmas several properties of the order ш(а, /) will be given, which 
we shall often use later. 

Lemma 2.3. Let P be an oriented [p — l)-pseudomanifold, Z, J ,̂ I2 : P -^ R̂  — {a}. 
Then there hold the following propositions: 

(i) if TtJi c^ nj2 in 5f~^, then co(a, l^) = co(a, I2)? 
(ii) a)(a, I) is an integer; 
(iii) on changing the orientation of P, the order a>{a, T) changes its sign; 
(iv) if a, a' are points in the same component of R̂  — /(P), then co(a, I) = œ(^a\ I). 

(The p r o o f is immediate.) 

Let К be an arbitrary component of the set R̂  — /(P). Proposition (iv) allows one 
to define the order œ(K, I) of the component К as the number œ(a, I), where a is an 
arbitrary point in K. In particular, if l(P) is a (p — l)-pseudomanifold, then 
co(lnt 1{P% I) and û)(Ext /(P), /) are well-defined. 
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Lemma 2.4. Let P be an oriented [p — lypseudomanifold, a e Int P, i : P cz 
cz R̂  — {a}. Then there hold the following propositions: 

(i) co(lntP, /) = Sp, where \8p\ = 1; 
(ii) co(Ext P, i) = 0; or more generally • 
(ii)' if / : P -> K̂  — {0}, К the unbounded component of R̂  — /(P), then 

œ{KJ) = 0. 

(For the proof see [1], chap. XI, § 4, theorem III.) 
In the situation of lemma 2.1, if Sp = 1, then we shall say that the (p — l)-pseudo-

manifold P is positively oriented; the corresponding orienting generator (or cycle) 
will be called a positive orienting generator [cycle); in the opposite case the [p — 1)-
pseudomanifold will be called negatively oriented and we shall speak about a negative 
orienting generator (^cycle). 

Lemma 2.5. Let P be an oriented (p — l)-pseudomanifold, f : R^ ^ R ,̂ a e R ,̂ 
/o : R^ - {a} ^ R^ ~ {/(a)} :/o(x) == / (x ) , / : P - . R̂  - {a}, i : Sr' c= R^ - {a} 
T/ten œ{f{a)jQÎ) = œ{f{a)jQÏ).œ{aJ) and \(^{f{a),foi)\ = l. 

Proof. Let S, Si, Z be orienting generators oîHp_^{Sl~% Hp_^{S^~^l), H^,_i(P) 
respectively, and 7c : R̂  — {a} -^ S^~^, тг̂  : R̂  — {f{a)} -> S'̂ (~) projections. From 
the definition 2.1 there follow (in the (p — l)-st homological groups) 

(nl)^ Z = œ{a, Ï) S , (TCI/OO* ^ = <^(/(^)./oO - î ' (^i/oO* -̂  = ^{f{^)Joi) ^ i -

Define a homotopy /Ï;̂  : /тг/ ^ / in R̂  — {a} as follows: h;^(x) = (1 — X) inl{x) 4-
+ Л(х). Clearly, n^fç^hi is then a homotopy n^f^inl ^n^fol in Sj(~^ ,̂ and hence 
{njçyinî)^ Z = {TIJQI)^ Z . NOW, there is 

<^(/(öf),/oO *̂ i "= (^i/oO* -̂  = (^i/o^'^O* 2: = (TTI/OO* (T^O* ^ = 

= (TÏ^I/OO* Ö^(«. О ̂  = ^ ( ^ ' 0 (^i/oO* -̂  = ^C* '̂ 0 • ^ / W ' / o O S*! , 

and thus finally 

<^(/(«)./OO = ^(/W./oO • to(a, 0 . 

For the proof of the relation |û)(/(a),/oi)| = 1 see [1], chap. XII, § 2, theorem VL 

The lemma 2.5 allows one to assign, to every homeomorphism / : R̂  ^ R ,̂ the 
number Cj- = CO(/(O),/OÏ); the homeomorphism/is said to be orientation preserving 
if ef = 1, and orientation reversing if Cf = —1. 

Lemma 2.6. Let symQ : R^ ^ R̂  be the symmetry of R̂  relative to the origin^ 
(i.e. the affine mapping given by the matrix {aj^}, ajj = — 1, a^ = 0 for j Ф fc, 
J, к = 1, 2 , . . . , n); then e^y^^ = (—1)^. More generally, if sym : R̂  Ä̂  R̂  is 
a symmetry of R̂  relative to a point XQ, and S an oriented sphere with center in XQ, 
i:S cz RP, f^:S -^RP - {XQ} : / O (X) = sym i{x) , then œ{xo, /о) = ( -1 )^ . e .̂ 
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Proof. Clearly e,y^^ = det (a^) = ( -1 )^ and co{xoJo) = %• • ^symo-

2.4. In this paragraph we shall introduce the notions of a local dynamical system 
[4] and of vector fields associated with a local dynamical system, which will play 
a very important role in the remaining part of the paper. 

Definition 2.7. A local dynamical system on a topological space P is a partial 
mapping T out of P x R̂  into P which satisfies the following five conditions: 

(1) the domain of T is open; 

(2) T is continuous; 

(3) to each x e P there exist â ,̂ ß^ with — o o ^ j 5 ^ , < 0 < a ^ ^ +oo and such 
that XT9 is defiлed iff ß^ < в < a ,̂ where хТв denotes the value of the mapping T at 
the point (x, Ö) e P X R ,̂ if this is defined; 

(4) XTO = X obtains for all x e P; 
(5) (XTÖI)TÖ2 = XT(ÖI + Ö2) holds if both хТв^ and also the left or right side of 

this relation are defined. 

A local dynamical system with P x R̂  as domain will be termed a global 
dynamical system. 

For R с P, Л c: R̂  denote ХТА = {хт9 : x G Z , 9 e A, хГ9 defined}. Let T be 
a local dynamical system in P. A point x e P is said to be a critical point of the local 
dynamical system T if xTÖ = x holds for all 9 such that xTÖ is defined. If there 
exists a least 9Q > 0 such that xT0o = ^ holds, then the set XTR^ will be called 
a periodic trajectory with the primitive period 9Q. Every number fcöo with к an 
integer will be called a period of the periodic trajectory X T R ^ If xT0 ф x holds for 
all 9 e R^ such that xTÖ is defined, then the set XTR^ will be called a (non-periodic) 
trajectory. 

A set X с P is termed a + invariant (or —invariant, invariant) set of the local 
dynamical system T if Хт<0, +oo) с X, (or Z T ( - O O , 0> CZ X, XTR^ cz X 
respectively). 

Now consider a local dynamical system T on R ,̂ and let К с R^, 0 < 8 e R ,̂ 
S :K -^ (0, e) any continuous mapping such that xT^(x) is defined for all xeK. 
A vector field of the local dynamical system T on iC is the mapping W.K-^ R̂  
defined by 

(1) W{x) = xld{x) - X . 

The mapping W is continuous. Clearly, W vanishes at a point XQ if either XQ is 
a critical point of the local dynamical system T, or XQ is on a periodic trajectory with 
the period 5(xo), or ф о ) = 0 [5, VI, § 1]. 

If ^1 ĉ  ^2, then, obviously, the corresponding vector fields are also homotopic. 
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Lemma 2.8. Let T be a local dynamical system in R ,̂ JF <= R̂  compact non-j^oid 
and containing no critical point of T. Then there exists an A, 0 < Ae R \ such 
that 

(i) хтв is defined for every (x, в) e R̂  x <0, A}; 
(ii) for every mapping S : F ^ {0, A), the mapping W defined by (l) is a vector 

field of the local dynamical system T, continuous and vanishing nowhere on F, 

Proof. Let xeF. There exists an a^ > 0 such that хТ9 is defined for every 
в G <0, a^). The domain of T is open; hence there exists a neighbourhood G^ of x 
and an a^ e R̂  such that 0 < a^ < oc^ and уТв is defined for every (y, ö) ^ G^ x 
X <0, a^) = H^. The set H^ is open in R̂  x <0, + oo). Clearly, the system {H^}^^p 

is an open cover of F x {0}; then there is a finite cover {HxiYi^i с {Я_̂ }̂ ср. Now 
assertion (i) holds for every A with 0 < Л < min {a^ ,̂ a^^, ..., a^^}. 

The proof of (ii) is the same as that of lemma L5 in [6]. 
Let now T, F, A be as in lemma 2.8. Then for every two mappings SQ, S^ : F -^ 

-> (0, A) there exists a homotopy d;̂  : ^o — '^i {^-E- ^я(^) = (1 — Я) ^o(-^) + 
+ À^i{x)) such that, for every Я е / , the mapping Pf̂  defined as in (l) is a vector 
field of the system T, continuous and vanishing nowhere on F. Every vector field W 
on F defined by (l) with ^ : F -> (0, A) defines a mapping WQ : F -^ K^ — 
— {0} : WQ(X) = W{x). Every such mapping WQ will be termed a small vector field 
of the local dynamical system т on F. 

2.5. From lemma 2.8 it follows that, for every (p ~ l)-pseudomanifold P in R'' 
containing no critical points of the local dynamical system т, there exist small vector 
fields on P. If FFi, W2 are two small vector fields on P, then 0 ф Wi{P) u W2{P), and 
according to lemmas 2.8 and 2.2 (i), there holds a>(p, Wi) = co(0, W2). Now we can 
set up the following definition. 

Definition 2.9. Let T be a local dynamical system in R ,̂ P an oriented {p — 1)-
pseudomanifold in R̂  containing no critical points of T, PFa small vector field on P. 
The Kronecker index indj P of P relative to T is defined as Sp . co(0, If). 

Immediately from the definition it follows that indj P is an integer not depending 
on the orientation of P; thus in this definition the assumption on the orientation of P 
can be weakened to orientability only. 

Theorem 2.10. Let P be a {p — i)-pseudomanifold in R ,̂ T a local dynamical 
system in R̂  without critical points in Int P. Then indj P = 0. 

Proof. Let Q = Int P, i : P CI Q, Z an orienting generator of Hp-i(P), S an 
orienting generator of Hp^i{S^'~^). It is easily shown that Hp^^^Q) = 0. Hence it 
follows that i^^Z is the zero element of Hp_^{Q). According to lemma 2.8 there exists 
a small vector field If on g, hence for nW: Q -^ S^~^ there holds 

(2) {nW% Z = 0 . 
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Clearly, Wi is a small vector field on P, and from (2) and the definition 2.1 one obtains 
0 = (nWi)^ Z == 6o(0, Wi) S; it follows that ш(0, Wi) = 0 and thus indj P = Sp , 
. û)(0, Wi) = 0. 

Corollary 2.11. If indj P ф 0, then Int P contains at least one critical point of the 
local dynamical system T. 

Theorem 2.12. Let т be a local dynamical system on R ,̂ S a [p — i)-sphere 
containing no critical point o/T. Then 

(i) indj S = 1 if Int S is —invariant, 
(ii) indj S = { — ly if Int S is -{-invariant. 

Proof. Denote by XQ and r the center and the radius of the sphere S, i : S cz K̂  — 
- Ю-

Ad (i). From the assumptions it follows that there exists an Л > 0 such that 
\хТв — XQ\ ^ r and xTÄ Ф X for all (x, в)Е S x <0, Ä}. Define mappings WQ, W^ : 
: S -> RP - {0} and a homotopy W;, : PFQ C^ W\ as follows: 

PFoW = X — XQ , Wi{x) = XTA — X , 

W;,{x) = XT(ÀA) — XQ — Я(Х — XQ) . 

Obviously, Wx is continuous and vanishes nowhere on 5, since |хТ(ЯЛ) - XQ\ ^ 
^ г > À\X - Xo| for 0 ^ A < 1, ^ i (x) = xTA - x Ф 0. Thus 

(3) co(0, PFo) = û)(0, ÏFi) = ш(хо, f) = г^, 

and hence indj S = s^ . co(0, W^) = Ss . s^ = 1. 
Ad (ii): From the assumptions it follows that Int S is also + invariant, so that 

there exists an Л > 0 such that \хГО - Xo| ^ г for every (x, 9)e S x <0, A}. 
Define mappings WQ, W^ : S -^ R ^ - {0} and a homotopy W;, : WQ Ĉ^ Ж^ as follows: 
Wo{x) = Xo — X, ^ i (x) = xTA ~ X, Жя(^) = A(xTv4 - XQ) + (XQ - x). Obviously, 
Жя is continuous and vanishes nowhere on 5, since Я|хТЛ — x | < r = | x o ~ x | for 
0 ^ Я < 1, Wi(x) = XTA — X Ф 0. According to lemmas 2.3 and 2.6 

(4) ш(0, Wo) = co(0, W,) = ш(хо,/о) = ê  . ( - 1 ) ^ (Л from 2.6), 

and hence 

The theorem 2.12 is thus proved. 
From (3) and (4) it may be noted that ind^ S in the theorem is expressed by 

topological invariants (co(xo, i) and ш(хо, sym) respectively, see lemma 2.6). The 
assumption about S in the theorem may now be weakened thus: S is an arbitrary 
(p — l)-manifold in R ,̂ homeomorphic to a (jp — l)-sphere. 
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Corollary 2.13. Let R^ be odd-dimensional, let a [p — ])-manifold S be homeo-
morphia to a [p — \)-sphere. Then Int S is not an invariant set of any local 
dynamical system without critical points on S. 

Proof. Let Int S be the invariant set of a local dynamical system T. Then Int S is 
also —invariant. From the proposition 2.12 (i) there follows indj S = 1, from (ii) 
there follows indy S = —1; this is a contradiction. 

Corollary 2.14. / / the (p ~ l)-sphere S satisfies the assumptions of the theorem 
2.12, then Int S contains at least one critical point of the local dynamical system T. 

For p r o o f see corollary 2.11. 

2.6. Definition 2.9 generalises the definition of the index of a simple loop [6, 
def. 1.6], and also allows one to generalise in the same manner the notion of the index 
of a critical point. We shall prove that this generalised index of a critical point is also 
a topological invariant. 

Definition 2.15. Let т be a local dynamical system, x e Я^ not an accumulation point 
of critical points of T, S an oriented [p — l)-sphere with center x and small enough 
to have Int S — {x} contain no critical points of T. The Kronecker index indj x of 
the point X relative to T is defined as the number indj S. 

It is easily shown that indj x does not depend on the choice of S, 

By a generalisation of theorem 1.17 we now obtain an important result which also 
enables us to replace a (p — l)-sphere S in definition 2.15 by an arbitrary (p — 1)-
pseudomanifold. 

Theorem 2.16. Let the inner domain of a {p — l)-pseudomanifold P contain only 
a finite number x^, X2, ..., x„ of critical points of a local dynamical system T, and 
let there be none on P. Then 

n 

i n d j P = YJ ^ ^ ^ T ^j • 

Proof. For j = 1, 2, ..., fx let Sj be a (p — l)-sphere with center in Xj, such 
n 

that Sk n Sy = 0 holds for 1 й к < j й n. Denote Q = Int P - U Int Sj, 
j = i 

ig : P a g, ij : Sj с Q. Let ZQ, Z^ , ..., Z„ be positive orienting generators of 
H,_i(P), F , _ i ( 5 i ) , . . . , H,.,{S„), Z\ = (i,X. Z, for / = 0, 1, ..., FT. 

Let 71 : R̂  — {0} -^ S^~^ be the projection, S an orienting generator of S^"^. 
Then it is easily shown that 
(8) Z',-YZ'j 
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Let Tf be a small vector field on ß . Then from (8) there follows (тгЖ)^ (Z^ - J] Z'j) = 

= 0; substituting Z; = (ij)^ Zj, one obtains {nW)^ (io)^ Z« = f (nW)^ ( i ^ ^ j . or, 

equivalently, co{0, Wio) S = Y < (̂0. ^h) S; hence there follows co(0, Шо) = 
n j = i 

= 2 ] Ц ^ ' ^^j)- According to the assumption, P, S^, ..., S„ are positively oriented, 

i.e. gp = ê ^ = ... = г̂ ^ = 1, so that 

ind^. P = ep . a)(0, mo) = i e<j,. ш(0, Wij) = J ind^ x,-. 

The theorem 2.16 is proved. 
From theorem 2.16 it follows immediately that if XQ e R̂  is not an accumulation 

point of critical points of T and P^, P2 are (p — l)-pseudomanifolds such that 
XQ e Int Pi n Int P2, Int P i u Int P2 — {XQ} coiitains no critical point of T, then 
indj Pi = indj P2 = indj XQ, Hence the sphere S in definition 2.15 may be replaced 
by an arbitrary (p — l)-pseudomanifold P having the properties described in this 
definition. 

From the definition of local dynamical systems one has directly the following 
proposition: If T is a local dynamical system in R ,̂ / : R̂  ;^ R ,̂ then the relation 
/{хтв) == f{x)Tf в defines a local dynamical system Ту in R .̂ Naturally there arises 
the question as to the relation between indj x and indT^,/(x). The answer is the 
following theorem on the topological invariance of the index of a point. 

Theorem 2.17. Let XQ e R̂  not be an accumulation point of critical points 
of a local dynamical system T in R ,̂ f-.R^^ R .̂ Then ind^Xo = indT^/(xo). 

Proof. Let S be as in definition 2.15. Let 0 e R̂  be such that the mapping 
Wo : S -^ R̂  ~ {0} given by the relation Wo{x) = хТв - x is a small vector field 
on S. Let/o : S -> RP - {0} be given by the relation /o(x) = хтв. The proof of the 
theorem will be divided into two parts. 

I. Let/o(S) с Ext S. 
Define a mapping ^ i : S -> R̂  - {0} and a homotopy W;,:Wo c^ W^ in R̂  - {0} 

by the relations (also see fig, 1) PFi(x) = /o(x) - XQ, WX{X) = /o(x) - x + A(x - XQ). 
FF; is continuous, and vanishes nowhere on S, as Wx{x) = /o(x) -- XQ + (1 — Я). 
. (xo - x), (1 - A) |x - Xo| = (1 - A) г ^ r < |/o(x) - Xo|. Thus according to 
lemma 2.3, ш(0, WQ) = co(0, W^. From the definition of the mapping W^ it follows 
easily that co(xo,/o) = < (̂0, W^, so that 

(6) c^(0, PFo) = a>(xo,/o), 

and hence indj XQ = g^. co(xo,/o). From lemma 2.5 one obtains EJ^^) = ^/ • %» 
oKf{^o)Jfo) = ^f • o){xoJo) and thus indTj,/(xo) = B/^S) • Û)( / (^O). / /0) = % • ^/ • 
. Cf . a)(xo,/o) = indj XQ. The topological invariance of the index in case I is proved. 
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IL Let/0(5) ф Ext S. 

First we shall prove one proposition which will make it possible to carry over the 
proof of case I to the present case. 

Proposition. There exist f^ : S -^R^ — {0}, / i (S) a Ext S and a homotopy 
к;^:/(ус^ / i such that hjx) Ф x for every Xel. 

^-Aa-^jc^^ 

Fig. L Fig. 2. 

P r o o f of proposition. Define/1 and h^ as follows (see fig. 2): 

Mx) = X + (|/o(x) - x| + 2r) 
\fo{x) - x\ ' 

K{x) = X + (|/o(x) - x| + Я . 2 г ) У Y 

From the relation |/i(^:) — x| = |/o(x) — x| + 2r > 2r there follows/i(S) c: Ext S, 
and from the relation \hA^x) — x| = \fo{x) — x\ + Я . 2r > 0 for Я e l there follows 
hjx) =t= x for every Я G I. 

The proposition is proved. 
Returning to the proof of the theorem, we shall show that the mapping/^ from the 

proposition has the properties of the mapping /0 from case L The relation / i (S) e 
с Ext 5 is evident. Defining the mapping WQ : S -^ R^ — {0} and the homotopy 
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^^^:Wo^ Wi by Pf^(x) = / i (x) - X, W^{x) = h^{x) - x, we obtain a)(0, ï^o) = 
:=:^Û;(0, И^О). Furthermore, from f^{S) cz Ext S there follows (see (6)) co(0, Tfo) = 
:= ö>(-^o./i)' hence 

(7) co(0, Жо) = co(0, Ж )̂ = a>(xo,/i) • 

This shows t h a t / i has the property of/o from (6). Now we may apply the first part 
of the proof which concludes the proof of theorem 2.16. 

Now we shall give two results which may be useful for the calculation of the 
index. 

Corollary 2.12. Let the inner domain of a (p — lypseudomanifold P contain 
only a finite number of critical points of a local dynamical system T, and let there 
be none on P; let f : R̂  ^ K .̂ Then ind^ P = mdj^f(P). 

Proof. If Xi, X2,..., x„ are all the critical points of Tin Int P, then / (x i ) , / (x2) , . . . , 
. . . , /(x„) are all the critical points of Tj in In t / (P) . From theorems 2.16 and 2.17 

n n 

there follows indyP = Y, indy Xy = Tj^^^J/fi^j) "̂  ^^^iffi^)-

Theorem 2.19. Let the inner domain of a {p — lypseudomanifold P contain only 
a finite number of critical points of a local dynamical system T and let there be 
none on P. Let WQ be a small vector field on P and let f : P -^ K̂  be such that the 
mapping W^ : P -^ R^ — {0} defined by Wi(x) = / (x ) — x satisfies on P the rela
tion \Wo{x) - Pfi(x)| < \Wo{x)\. Then mdjP = Sp . ш(0, W^). 

Proof. We shall prove that WQ and W^ are homotopic in R̂  — {0}. Define 
a homotopy W;,:Wo ^ W^ in R̂  - {0} by W^{x) = (1 - Я) Wo{x) + I W^{x), 
Wx is evidently continuous. We shall prove that it vanishes nowhere on R̂  — {0}. 
Suppose that there exists a point (Яо, XQ) G <0 , 1 > X P such that И̂ яо(-̂ о) == Ö. Then 
(1 - Ao) FFo(̂ o) + К ^i(^o) = 0» hence Жо(^о) = >^o(^a(^o) - ^i(-x^o)). and thus 
|Жо(хо)1 ^ l^o(^o) ~ ^i(^o)h ^his contradicts the assumption of the theorem. 
Thus Wx is indeed a homotopy WQ C^ W^ in R̂  — {0}, and then the theorem follows 
immediately. 

2.7. In this last paragraph we make one remark concerning the rôle of the unicity 
of trajectories assumption in our investigation. If T is a local dynamical system, then 
the relation хтв = уТв impHes x = j ; . It may be noted that we have not exploited 
this property of T in our treatment. Thus it is very natural to generalise, in a certain 
sense, our results to the category of the so-called local semi-dynamical systems on jR̂  
[4]. Let us recall the definition of a local semi-dynamical system (R"*" denotes the 
set of all non-negative reals). 
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Definition 2.20. A local semi-dynamical system on a topological space P is a partial 
mapping T out of P x K^ into P which satisfies the following five conditions: 

(1) the domain of T is open; 
(2) T is continuous; 
(3) to each xe? there exists an â , with 0 < â  ^ + oo and such that xjO is 

defined iff 0 ^ Ö < a ;̂ here xlB denotes, whenever defined, the value of the mapping T 
at the point (x, Ö) e P x R^; 

(4) XTO = X obtains for all x e P; 
(5) (XTÖI)TÖ2 = ^^T(^I + ^2) holds iff the left or right side of tliis relation is 

defined. 
A local semi-dynamical system with P x R"̂  as domain will be termed a global 

semi-dynamical system. 
It is clear that for a local semi-dynamical system -unicity need not hold, i.e. from 

the relation xlO = уТв there need not follow x = y. 
The main apparatus in the present paper were small vector fields of local dynamical 

systems T on compact sets in R̂ . In the definition of these fields only the values of 
в e <0, г), for some s > 0, were used. Hence it is clear that one can define the notion 
of a small vector field and also the notions of the Kronecker index of a (p — 1)-
pseudomanifold or of a point in R'' in the same manner also for a local semi-dynamical 
system. It is easily verified that all the results holding for local dynamical systems also 
hold for local semi-dynamical systems. 

Note. I have been advised that reference [2] of [6] will not be published as 
a separate paper, but will appear as part of chap. VI, section 3 in [5]. 
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Резюме 

ИНДЕКС КРОНЕККЕРА В АБСТРАКТНЫХ ДИНАМИЧЕСКИХ 
СИСТЕМАХ, II 

ЙОСЕФ НАДЬ, (Jozef Nagy),npara 

В работе определяется локальная динамическая система т в/?-мерном евклидо
вом пространстве R̂  (определение 2.7). Потом определяется (определение 2.9 
и 2.15) индекс Кронеккера ïnàj Р (р — 1)-мерного псевдомногообразия Р с R ,̂ 
не содержапдего критических точек динамической системы Т, и индекс Кронеккера 
indj X точки xeR^ относительно локальной динамической системы т. Дока
зывается (теорема 2.17), что индекс indj х топологически инвариантен. 

Дальнейшие важные результаты этой работы содержатся в следующих 
теоремах: 

Теорема 2.10. Если Р — (р ~ 1)-мерное псевдомногообразие в R^ и Int Р (за
мыкание внутренней области Р) не codepofcum критических точек локальной 
динамической системы Т, то indy Р = 0. 

Следствие 2.11. Если indj Р ф О, то Int Р содержит по крайней мере одну 
критическую точку системы Т. 

Теорема 2.12. Пусть (р — 1)-мерная сфера S в RP не содерэюит критических 
точек локальной динамической системы Т. Тогда 

(i) indy 5 = 1 , если Int S является — инвариантной областью, 
(ii) indy S = (—1)̂ , если Int S является + инвариантной областью. 

Следствие 2.14. Если S — (р — \умерная сфера из теоремы 2.12., то Int S 
codepofcum по крайней мере одну критическую точку системы Т. 

Теорема 2.16. Пусть (р — \)-мерное псевдомногообразие в R̂  не codepjtcüm 
критических точек локальной динамической системы Т и пусть Int Р содерлсит 
только конечное число критических точек Xĵ , ̂ 2, ..., x„ системы Т. Тогда имеет 
место соотношение 

п 

indy Р = YJ i^^T ^j • 
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