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YexocaoBaukuii MaTeMaTHIeCKHii xKypHai, T. 16 (91) 1966, IIpara

ALGEBRAIC DEFINITION OF CENTRAL DISPERSIONS
OF THE 1°* KIND OF THE DIFFERENTIAL EQUATION )" = Q() y

EricH BARVINEK, Brno

(Received October 20, 1964.)

1. Introduction. Let Q(¢) be a real function of a real variable defined and continuous
in interval J = (4, B), where 4 < B, and let the symbol (4, B) signifiy an interval
with the left-hand end-point A (4 = — oo is admitted) and with the right-hand end-
point B (B = oo is admitted). The interval can be either closed [4, B], or open
14, B[ or half-closed [ 4, B[, ]4, B]. In what follows the word “interval” will signify
an interval containing at least two points.

If a differential equation

(Q Yy =0(t)y

is given we shall denote the set of all its solutions in the interval J by the symbol (Q);
nontrivial solutions of differential equation (Q) in the interval J will be called in-
tegrals.

In his paper [1] O. BorROVKA has defined dispersions of the 1% kind of differential
equation (Q) as the largest solution X(¢) of the differential equation

! 1 " 7
VIX () + 20 X2 = 0.
VX |
They are functions either increasing or decreasing everywhere. Note that the intro-
duced differential equation in the real domain is equivalent to two differential equa-

tions,

v-x Jix,)'# 0(X) X x= Q(1)
and
(Q.Q) JX (\/LX) +0(X) X2 = Q1)

The first equation is the differential equation of all decreasing dispersions whereas
equation (Q,Q) is the differential equation of all increasing dispersions. As central

" 46



dispersions are increasing we confine ourselves, in what follows, on increasing
dispersions {(¢) — further dispersions only — that are solutions of differential equa-
tion (Q, Q) not admitting any prolongation in the interval J x J and thus passing
boundary to boundary; the set of all dispersions (i.e. increasing dispersions) of dif-
ferential equation (Q) will be denoted by the symbol (Q, Q), too.

In what follows, we shall denote the definition-domain of an arbitrary function f
by the symbol Dom f and the set of its values by Im f. Thus, for every e (Q, Q)
Dom { and Im ( are certain subintervals of interval J.

Similarly as we have confined ourselves on increasing dispersions we can do it,
without loss of generality, for increasing phases of differential equation (Q), see [1].
For that reason, under a phase of differential equation (Q) we understand any solution
«(t) of the differential equation

1
-1, o
(-1.9) v (5
in the interval J. The set of all phases of differential equation (Q) will be denoted
by the symbol (—1, Q), too.
By the amplitude of differential equation (Q) we mean any solution g(t) of the dif.
equation

4 ” A?
(“Q) 0 =Q(t)9+53~

)"— o? = Q(t).

in the interval J, where 4 =+ 0 is an arbitrary constant; the set of all solutions of

differential equation (“Q) in interval J will be denoted by the symbol (“Q), too.

The set of all amplitudes of differential equation (Q) is then a union {J (“Q). In the
4%0

paper [2] there has been proved, resp. will be analogously proved, that every disper-
sion { €(Q, Q) transforms every u € (Q), ¢ € (“Q), respectively, on a solution U of
differential equation (Q), or on a solution P of differential equation (*Q) in Dom ¢,
according to the formula

Uut) = ul{(1)] resp. P(t) = o[L(1)]

Jew’ NEOR

If we assign to any u € (Q) the solution U € (Q) fulfilling the first of the above
formulas in Dom ¢, then it is possible to interpret any dispersion as a linear operator
on the set (Q).

The first definition of central dispersions (of the 1% kind) of differential equation (Q)
is an application of the original Bortivka’s definition on the general case. Let n be
an arbitrary integer. Let ¢ € J be an arbitrary number. Let y be an integral of differen-
tial equation (Q) such that y(r) = 0. If we take # as a zero root of the integral y and if
we assign positive indices to the roots lying right from ¢, we define the value of a central

dispersion ¢, at the point ¢ as the n-th root of the integral y as far as this root exists
in J.
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The number ¢,(t) is, sometimes, denoted by ¢, and we call it the n-th conjugated
number with the number t, = @y(f) = .

Irrespective of the trivial case that some central dispersion exists at most at one
point of interval J, every central dispersion ¢ exists in a certain subsinterval of
interval J, is increasing and fulfills the differential equation (Q, Q) there, while it does
not admit an extension in J x J, so that ¢ €(Q, Q).

A central dispersion @,(f) = ¢ exists always in the entire interval J. The inverse
function to an arbitrary central dispersion is again a central dispersion while ¢, * =
= ¢@_, The set of all central dispersions of differential equation (Q) is at most
enumerable; we denote it by C.

In the paper [4], there is proved that the following definition is equivalent to the
above mentioned definition. Let C, be a set of all dispersions ¢ € (Q, Q) that trans-
formevery u € (Q) on +u, i.e. for which the formula

g[_(p(t)] = + u(r)

Jo

holds for every u € (Q). There holds C; = C, so that it is possible to define central
dispersions of differential equation (Q) as elements of the set C;.

Dezfine in the third way central dispersions of differential equation (Q) as elements
of the set C,, where C, is the set of all ¢ €(Q, Q) such that for every { € (Q, Q),
for which the composed functions { ¢ and ¢{ have some common interval of existence,
there holds {¢ = ¢{ in this interval.

In the paper [4] it is proved that C, < C. The equivalence of this definition to the
preceding definitions of central dispersions depends on the inclusion C, = C, the
proof of which we present in this paper.

2. Representation of dispersions by means of matrices. For an arbitrary { e (Q, Q)
let M, be a set of all { € (Q, Q) for which {{ and {{ have some common interval of
existence, i.e. Dom { n Dom { is an interval. The set M, contains an identical map-
ping e of the interval J on itself for every (.

Let N, be a set of all { € M, for which £ = ¢Z holds in the corresponding common
interval of existence of both composed functions. The set N, is never empty because
ee N, for every { €(Q, Q). In general, N, & M,. But there exist { € Q. Q) with the
property N, = M,. e.g. { = e.

The set C, is evidently the set of all ¢ € (Q, Q) for which N, =M,

Let us choose fixed ordered pair of linearly independent integrals u, v of differen-
tial equation (Q). Let ¢ be an arbitrary dispersion. Then we can univocally assign
to the dispersion { or to its arbitrary part, in an interval, a matrix

()
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by means of the formulas

u(?)
@) NG

and we shall write { — A.

=au + fv, @=)}u+6v

N

The transformation property of the dispersion {, namely, that an integral jz =
= du + bv is assigned to any integral y = au + bv according to the formula
y(C)/\/ ¢’ =y, can be expressed by means of the matrix, corresponding to the disper-
sion {, by the formula in coefficients

a ay\ [a
(2 = .
) b BS)\b
Let us remark that one matrix can be assigned to more different dispersions. Trans-
formation equations (1) can be written in the form

u()

g COO- 1%

Vi
The differentiation of the equation (3) gives
1 ! 7 4
w7 ) WO+ Ve
® G-
v /\v 1y .
(77) "0+ Ve v ©
Recall that the Wronskian uv’ — u'v of the ordered pair of integrals u, v is a con-
stant 4 # 0. From this there follows the relation aé — fy = 1; thus, a matrix
assigned to an arbitrary dispersion is unimodular.
If{ — A, then {™' - A7 If {; > A;, i = 1,2, then to {,{;, as far as it exists,
the product of matrices in inverse order is assigned, i.e. {,{; = A{A4,.
Lemma 1. Central dispersions ¢ € C are characterized by the fact that their

matrix is
+ 10 .
01

Proof. Let ¢ € C; let ¢ — C{ ”). As for any y € (Q) we have y((p)/\/qo' = 1,
v
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. (% . . . .
the elements of the matrix (A #> with arbitrary numbers a, b satisfy the equations
v

ax F1)+bu=0, al+b(F1)=0.

Fora=0,b=1weget u=0,v= =+1; for a=1, b =0 it follows » = +1,

A = 0; thus
10
- + .
> =(1)

10
+
o= (o1)
for ¢ €(Q, Q). Then for any a, b we have
+ 10\ /a -+ a ’
01/\b b

or, according to (2), for any y € (Q) there holds y(¢)/\/@’ = +y which, in addition,
follows from (1), too — and thus ¢ € C.

Conversely, let

The problem of validity of the inclusion C, = C mentioned in the introduction

v
any { € M, where { — (Z é) there holds {e N, and thus {¢ = ¢{ in a certain

interval dependent on ¢ and {; thus, the elements of a matrix <; H

can be interpreted in the following way. Let be ¢ € C,, while ¢ _)(x k ) Then for

>satisfy the system
v

of equations
(o) — 7 + Bu =0
yx +(—)p—yp =0
—Pr + (0 — 8) 4 +pBv=0

with coefficients «, f8, y,  that can vary in a certain way in dependence on { € M,,.
In order to deduce some conclusions on numbers %, 4, g, v from the system of
equations (o), we need to know a little more about the set M, for arbitrary { € (Q, Q).
The circumstance that the identity belongs to M, gives the system of equations (o)
with coefficients « = 6 = 1, = y = 0, which for the numbers %, A, y, v gives only
the relation that they are arbitrary.

3. Continuous increasing mappings. Let { be an arbitrary increasing and continuous.
mapping of some interval (a, b) < J on some interval (¢, d) < J such that the graph
of a mapping { passes from one boundary to another in the square J x J; let £ be
a set of all such mappings {. Let K, be a set of all € 2 such that the functions {{ and
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¢{ have some common interval of existence. Evidently M, = (Q, Q) n K; at (e
€ (Qa Q)

In this paragraph, we shall first solve the following problem to find a convenient,
necessary and sufficient condition for { € £ to belong to K, ata given { € 2.

A mappings ( € 2 belongs to K, if and only if Dom I ~ Dom ¢ is an interval,
i.e. according to the remark in the introduction, an interval with non-empty interior,
For thet reason, it is necessary for Dom {{ and Dom {{ not to be empty or one-
point sets. As Dom {{ = {"*(Dom { n Im {) and Dom {{ = {~* (Dom { n Im ),
this necessary condition will be fulfilled exactly if Dom { N Im { and Dom { n Im {
are intervals (with non-empty interior); then with notation Dom { = (a, b), Im{ =
= (c,d), Dom{ = (4,b), Imn{ = (¢,d) we can writt Dom{ nIm{ = (c;, dy)
where ¢; = max (4, ¢) and d, = min (b, d) and similarly Dom { nIm{ = (¢, d,)
where & = max (a, ¢) and d; = min (b, d); consider that ¢, < d;, & <d, and
denote in this case Dom {{ = (ay, b;) and Dom ( = (4, b,) so that a, < b,, and
@, < b;. Then Dom {{ n Dom ({ is an interval if and only if for a, = max (a,, )
and b, = min (b, b,) the inequality a, < b, holds; then Dom {{ n Dom ({ =
= (a,, bo)-

Hence we get the following simple criterion:

Lemma 2. If and only if ¢; < dy and &, < d,, each of the functions {{ and (T
exists in an interval; for { € K, to be valid it is necessary and sufficient that

ao = max (ay, @) < min (by, by) = by .

Note that {(ao, bo) = (&, b), {(ae, bo) = (a, b) and that (aq, by) < (a, b) N (&, b)
so that a, = max(a,d), by < min (b, b). If we denote (c,, dy) = {(¢, d,) and
similarly (2,,d,) = {(¢;,d,), then Im{{ = (c,, d;) and Im{{ = (&,,d,). Let us
remark that if { €K, then (e Kz. If {eK,, then te(aq, bo) exist such that  is
defined at ¢ and simultaneously at {(¢), and at the same time ( is defined at points ¢
and {({), too, If we are to construct some { € K, to a given { € 2, it is possible e.g.
to choose t € Ja, b[ and {{r) = t, and to insure that { is defined for the number
C(t). For example { = e has these properties for every { € 2.

LetJ = (4, B) be an interval; let us remind that 4 can be — oo, B can be oo and J
an open, closed or half-closed interval. Let { € £ so that { :(a, b) — (c, d) while
it holds

a=Aorc=A and b=Bord=B.

There exist four types of a mapping { € £:

(1) . a=A, d=B
(11) ¢c=A, b=B8
(111) a=A, b=B
(1v) c=A4, d=B
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These types are not quite disjunct in the sense that there exist mappings { € 2 that
are simultaneously either of the type (I) and (III), or (I) and (IV) or (II) and (III),
or (II) and (IV) or of all types at the same time.

This classification of functions { € 2 by types (I)—(IV) permits us to investigate
the relation { e K, and by means of Lemma 2 to get necessary and sufficient conditions
for this relation.

Let (€2 and { :(a, b) - (c, d) with boundary condition (a = A or ¢ = A) and
(b =Bord = B).

Let (e, and { :(d, b) — (& d) with boundary conditions (&= A or & = A)
and (b = Bord = B).

Theorem 1'. If { € 2 is of the type (I) then { e P fulfils the relation { e K, if
and only if @< b, & < b; b > ¢, d arbitrary, and the following conditions are
satisfied (as far as they are meaningful): {(&) < b, (™) < T7Y(b), {4 (a) < b

Proof. With the notation introduced in this paragraph, Dom{ n Im { = (cl, dl)
etc., we have d; = b, & = &, so that Dom {{ = (a,, {"*(b)) and Dom {{ = (&, b,).
By Lemma 2 { e K, if and only if a; < by, @ < {7'(b); then, from the inclusion
\do» bo) = (4, b) n (4, b) it follows that max (4, ) < min(b,b) and therefore
@ < b is the necessary condition for { € K,. According to Lemma 2 there is a further
necessary condition for (eK, ¢, <d;, & <d; or max (4, c) < min (b, B),
max (4, &) < min (b, ) so that inequalities ¢ < b, & < b are some part of the
above mentioned necessary and sufficient condition.

Thus, we have proved that [ e K, <> a; < by, d < ("' (b); a<b, &< b, ¢ <b.
In order to give the inequality a, < b, a little more illustrative content in the system
of all other inequalities, let us recall that ¢, = max (4, c), d; = min (b, d); there
occur 4 possibilities (1a,) (1b), (2a), (2b), where

(1) d < ¢ and therefore ¢; =¢, a; = A4
(2) d@ > ¢ and therefore ¢; = @, a, = {"Y(a
(a) b < d and therefore d; = b, b, = {7'(b)
() b = d and therefore d, =d, b, = b.

In case (la) we have a; = A, by = {"*(b) and the inequality a, < b, is fulfilled
automatically because b > . In case (1b) we have a; = A, b; = b and the inequality
a, < b, is again fulfilled automatically.

In case (2a) there follows from 4@ < b that ¢ < b, and from boundary conditions
for { that & = 4; we have a, = {"Y(d), b, = {"!(b) and the inequality a; < b1
gives the condition {~*(a) = {~!(b).

In case (2b) there is again necessarily ¢ < b, & = A; we have a; = {7'(4), b, = b
so that the inequality a, < b, gives the condition {~!(4) < b.
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Theorem 1 is proved because a; < by, @ < {"*(b) is according to the accom-
plished considerations equivalent to the complex of inequalities from theorem 1,
as far as they are meaningful.

Theorem 1. Let { € 2 be of type (II). Then for T e P there holds ZEKj if and

only if @ < d, & arbitrary; b > a, d > a and the conditions a < {(b), {"'(a) <
< {7Y(b) must be fulfilled.

Proof. In this case we have b = B, ¢ = A and therefore ¢, = 4, d; = d so that
Dom {¢ = ((7*(d), by), Dom ({ = (a,, b). According to Lemma 2 the equivalence
Z € K, < d; < by, {7'(@) < b holds; this necessary and sufficient condition leaks
a telling meaning and for that reason we shall specify it in details by explicit stressing
of its illustrative parts contained in it implicitly.

Similarly as in the proof of Theorem 1’ an illustrative limiting of area 4 < d,
b > a, d < a follows from the inequalities d; < by, {~(d) < b. We get further
illustrative necessary conditions contained in the inequality 4, < b, from relations
¢, = max (a, &), d; = min (b, d); there are four possibilities (1a), (1b), (2a), (2b)
where

(1
(2) a >
(a) d < b and therefore d, = d, b; = B
(b) d > b and therefore d; = b, b, = {7'(b).

In case (1a) the inequality d; < by is fulfilled automatically as well as in case (1b)
and (2a).

In case (2b) we have for a, d a restriction a < d, d = B. The inequality 4, < b,
gives a condition {~*(a) < {™*(b). Thereby the proof of Theorem 1" is finished.

Q
I\
o

¢ and therefore ¢

Il

g d; =

NS

o

and therefore &, = a, @, = {"'(a)

Theorem 1”. Let { € 2 be of type (II). Then for { € P there holds { € K, if and
only if d < d,b > c; ¢ d arbitrary and (&) < b,d < u(b).

Proof. In this case we have a = A, b = B so that &, = & d; = d and therefore
Dom {{ = (ay, b;), Dom{ = (4, b). According to Lemma 2, the equivalence
{eK,«a; <b, da<b,.

First of all, holds from the found condition the illustrative restrictions @ < d,

b > c follow; its further consequence can be obtained by relations ¢, = max (4, c),
d, = min (b, d), which give four cases (1a), (1b); (2a), (2b):

(1) @ < ¢ and therefore ¢, = ¢, a; = 4
2 @ > c and therefore ¢, = @, a, = {7%(a)
(a) b < d and therefore dy = b, b, = {7'(b)
(b) b = d and therefore d; = d, b, = B.
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In case (1a) the inequality a; < b is fulfilled automatically and the inequality
@ < b, gives the condition @ < {~!(b).

In case (1b) we do not get any new condition.

In case (2a) we gzt two conditions (@) < b, @ < {*(b).

In case (2b) the inequality @ < b is fulfilled automatically and the inequality
a, < b gives again the condition {7*(4) < b. Thereby Theorem 1” is proved.

Theorem 1"V, Let { € 2 be of type (IV). For { € & there holds { € K, if and only
ifa<b,&<b;b>a,d> aandif conditions {"*(a) < {7Y(b), T"Xa) < {7Y(b)
are fulfilled.

Proof. Now we have ¢ = 4, d = B and consequently ¢, = 4, d; = b; Dom {{ =
= (¢"4(a), (b)), Dom ¢ = (a,, b,). According to Lemma 2 we have

{eK e ("Ya) < by, a4 <(7'(b).

" From the found condition it is possible to deduce its immediate illustrative part:
d<b, a<bh, ¢<d, a<d and by means of relations & = max(a, &), d; =
= min (b, d) the remainder of the illustrative part by discerning the four cases (1a),
(1b), (2a), (2b), where

(1) a < ¢ and therefore & = ¢, @, = @
(2 a > c¢ and therefore & = a, d; = {"*(a)
(a) b < d and therefore d; = b, b, = {7*(b)
(5) - b = d and therefore d, = d, b, =b.

In case (1a) we get a condition {™*(&) < {"*(b), in case (1b) we do not obtain
any new condition, in case (2a) we get both conditions { "*(@) < {"%(b)and {~*(a) <
< {"Yb) and in case (2b) we have a condition {~*(a) < {~*(b). Thereby the proof
of Theorem 1" is finished.

Results given in Theorems 1’ to 1'¥ may be expressed in one theorem.

"'Theorem 1. Let { € # be arbitrary. Then for { € # there holds that lek, if
and only if there hold the inequalities (as far as they are meaningful)

(4) d<min(b,d), ¢<b, b>max(ac),d>a
(%) (THa@) < T7Hb), T'(a) < C7Y(B).

Proof. The inequalities for @ up to d are evident. Under the assumption of Theo-
rem 1’ we have a = A4; for @ = A the condition {(d) < b reduces to ¢ < b which
is fulfilled; for @ > A we have {"*(a) = 4 and the condition {(d) < b or @ < {~%(b)
is identical with the condition {™*(a) < { “1(5). The condition {~%(d) < b occurred
n case (2b) provided d < b; if b = B and b = B then the condition {7%(4) < b
i
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reduces to {7!(d) < B or to & < {(B) = B which is, naturally, fulfilled; for b = B,
b < B we have {"*(b) = b and the condition {!(&) < b is identical with the con-
dition {~'(a) < {"(b); for b < B we have b = B with respect to boundary con-
ditions for { and with respect to the inequality d < b; the condition {~1(4) < b is,
thus, trivial.

In Theorem 1” we have the condition {~%(a) < b; of course, even here b = B
is true so that {7*(b) = {7!(B) = b as soon as d = B and in this case the condition
{7Y(@) < b is identical with {~'(a) < {"*(b); if however, d < B, then necessarily
b = B and the condition is trivial.

In Theorem 1” we have the condition @ < {~*(b); but here, of course, a = 4;
for @ = A the condition is trivial because it means that ¢ < b, and {~!(a) = 4 for
d > A and the condition identifies with {~*(a) < {~*(5). Analogously the condition
{7Y(4) < bis a special case of the inequality {~*(@) < {7(b).

Thereby the theorem is proved.

The results concerning the behaviour of curves e K, have the disadvantage that
conditions (4) do not suffice and that it is necessary to respect (5). For this reason,
we need some sufficient condition free from conditions (5) which would possess
more or less the character of (4). In fact, the matter is whether for a given { € 2
some fixed limits, dependent on {, exists such that whenever Z is in these limits, then
necessarily { e K,; now, we are going to deal with this problem.

Theorem 2. Let { € # be arbitrary. Let x < y be arbitrary numbers such that

A < x < min (b, d), max (a, ¢) < y < B. Let E be an arbitrary number fulfilling
the relations

O0<E<min(b—-{""x),(y)—a,B—y, x—A).

Let K=x—3E, L=y +34E. Let 0<e<%E Let D,={tz))K<t=<L,
|z - t| < &}. Then D, = J° x J° where J° denotes the interior of interval J, and
any { € 2, for which Dom { = [K, L] and for which |{(t) — t| < ¢ holds in interval
[K, L], belongs necessarily to K,.

Proof. The existence of the number E depends on the fact whether or not min (b —
- {"Yx), C"y) —a, B—y, x — A) > 0. For a chosen x in the open interval
14, min (b, d)[ {™*(x) need not exist; then simply the element b — {~*(x) is not taken
into consideration. If {~*(x) exists then necessarily {"*(x) < b because x < {(b) =
= d. Likely, for a chosen y € Jmax (a, ¢), B[ {”(y) need not exist; then the element
{™Y(y) — a in the definition of E is simply failing. If {~*(y) exists then necessarily
{7Y(y) > a, because y > {(a) = c. Thus, min(b = {"*(x),{"(y) — a. B — y,
x — A) > 0 and it is possible to choose E > 0 less than this minimum.

As E < x — A, a straight line t = K, |C — Kl < ¢ lies inside the square (A, x) X
x (A, x); similarly, a straight line ¢ = L, [C - L| < ¢ lies inside the square (y, B) x
x (y, B); consequently for x < y the rhomboid K < ¢t < L, IC - tl < ¢ lies then
inside the square J° x J°.
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As x < b and {"'(x) — if it exists — is also less than b, every { € 2 for which
@ < xand for which {*(b) > {~*(x) fulfills the sooner condition { ~*(a) < {7!(b) —
as far as {'(a) has a sense at all.

As y > aand {7Y(y) > a, too, as far as {*(y) exists, and { € 2 for which b > y
and for which {™*(a) < { () fulfils the sooner condition {(a) < {~'(b) — as far
as {7Y(b) is defined at all.

Hence, from this it follows that for an arbitrary € 2, the graph of which cuts
simultaneously all rectangles |4, x[ x ]4, x[; 14, 7 '(y)[ x]a, ') 1 H(x),
B[ x]¢7'(x), b[: 1y, B[ x] v, B[, provided they exist, there holds { € K, according
to Theorem 1.

Particularly, any ¢ e 2 from Theorem 2 has the property that ZeKC, because
passing through a rhomboid it necessarily cuts all rectangles, if they exist. Thereby
Theorem 2 is proved.

Theorem 2 serves as a preparation for a closer investigation of properties of the
set M, at arbitrary { € (Q, Q) if we recall that M, = (Q, Q) n K,. Many functions
le K, pass through the rhomboid D,; the matter is whether also solutions of diff.
equation (Q, Q) pass through D,.

4. Dependence of dispersions on initial conditions. Every dispersion {e(Q, Q)
is well defined by the initial conditions {(t,) = (o, ('(to) = Lo, {"(te) = {5, where
(to, Lo» Lo C’(’,) is an arbitrary point of the set

o = {(to, Lo, Lo, CO)[to €T, Lo €J, Ly > O arbitrary, {§ arbitrary}.

To any p € w there exists just one Ce(Q, Q) and an interval I, =Dom{ cJ
(while t, €I,) so that {(r) satisfies differential equation (Q, Q) in interval I, and fulfils
the corresponding initial conditions, see [2].

The dispersion { = C(t; to> o5 (oo C’(’,) as a function of the variable ¢t and of the
initial conditions is thus defined in a certain set Q = J x w, where Q = {(t; tos Cos
Lo Lo)/(t0: Los o (o) € 0, te L),

Let { €(Q, Q) be given, { = {(t; to, Lo, Lo, £5)- To an arbitrary 4 + 0 let us take
an arbitrary solution ¢(t) of the differential equation (“Q) in interval J. Then we
define the solution P(r) of the differential equation (*Q) in interval J by means of the
initial conditions

©) P(to>=—@(ig,1(=m>, Pt = ¢ /(&) — 1P(t) “( Py).

Then the dispersion { with the upper initial conditions is the solution in interval I,
of the separated differential equation

2
, O i (N
( ) Pz(t; to, C()a C;)’ ,(l))
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with the initial condition {(to) = {o; instead of P(t) we write more explicitly P(t; t,,
Co» £}, £3) in order to stress the dependence of the right side in (7) on parameters
(tO! £0a C;)’ CI(’)) € w.

Properties of the function {(; to, Lo, {6, {5) depend on the property of the function

_ *(0) '
Pz(t; to, CO; C67 CI(I)

The function P(t) is an amplitude of some pair of linearly independent integrals
U, V of the differential equation (Q) in interval J, i.e. P> = U? + V?; the integrals
U, V possess the following initial conditions

U(to) = Uo, U'lte) = Ups W(to) = Vo, V'(to) = V5,
where

(8) U, = Pycosa, U6=P[)cosot—PAsinoc,
o

. . 4
Vo =Pysina, Vg = Pysina + — cos o .
0

Here « is an arbitrary, fixedly chosen number independent of p € w.

The integrals U = U(t; to, Uy, Uy), V= V(t; 1, V, V) are defined by relations
(6), (8) as functions of variables t, t,, (o, {5, {5 on the set J x ; properties of the
function P and thereby properties of the function G, too depend thus on properties
of functions U = U(t; to, Lo, Lo, £0), V = V(1; to, Lo» Loy £6)-

An arbitrary solution y of differential equation (Q) in interval J with initial condi-
tions y(to) = yo, ¥'(t) = ¥o is a function of variables ¢, #y, y,, y5 on the set © =
=J x § where

3 = {(to, yo» ¥o)[to € J, arbitrary, y, arbitrary} .

With the notation ¥ = <y) 0*(t) = <
y

to the differential equation

(0)* Y =041 Y.

The solution Y of differential equation (Q)* is, in fact, a function ¥(t; t,, yo, ¥0)
defined on the set @; we shall show that it is continuous in the domain @° (= interior
of @). Denote R = ]— o0, oo[. The function Q*(?) Y is continuous on the set J x R x
x R but it is not bounded there.

Choose an arbitrary but fixed point (£; to, Yo, ¥5) € @°; then particularly, ¢ e J°,
to €J°. Let 7o, ¢ be a minimal closed interval containing point t,, t; we have to, t = J°.
Consequently, numbers 4, < A, and B; > B, exist such that 4 < 4; < 4, <
< min (to, t), max (¢, 1) < B, < B; < B.

0 1\ .. . . . .
) differential equation (Q) is equivalent

Q1) 0
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Let us denote J; = [A4;, B,], J, = [4,, B,]. Let Ry = [yo — L, yo + 1], R, =
= [y6 — 1, yo + 1]. Then, in the domain J$ x R} x R}, Q*(#) Y is continuous
and bounded.

Let us denote Y(t) = Y(t; to, ¥o, ¥6), Y(t) = ¥(t; 1, Yo, yo)- Solutions ¥(f) and
and Y(¢) of differential equation (Q)* exist in interval J, and according to theorems
on dependence of solutions of differential equations on initial conditions, for
(fo» Yo» ¥0) = (t0> Yo, ¥6) we have ¥(¢) == ¥(t) in interval J,, see [3].

From this it follows that for (¢, Z, Yo, 6) = (t to, Yo, ¥o) We have ¥(z) — ¥(1)
which proves the continuity of function ¥(z; to, yo, ¥6) in the domain @°.

Especially, the general solution of differential equation (Q) ¥(f;, to, Yo, ¥o) is
a continuous function in the domain @°.

As P, and P, are continuous functions of variables (o, {;, {5 on the set
J %710, o[ x| —o0, oo, functions Uy, Up; Vo, V§ of variables o, (o, (o are also
continuous here. Then functions U(t; to, (o, {5, C2) 5 V(25 to, Lo, Co» C5) are continuous
in the domain J° x «® and P*(t; ty, {0, {5, {5) is continuous, too. As P? > 0, we get
finally the result that the function G = G(t; {; t,, {o, (b, {3) on the right-hand side
of differential equation (7) is continuous in the domain J° x J® x °.

Theorem 3. Let J, = [A,, B,] be ar arbitrary closed subinterval of interval J°.
Choose ¢ > 0 such that ¢ = min(4, — A, B — B,). Denote D = {(t,z)[teJ,,
|z - t| < &}. Then, for an arbitrary tyeJy an n > 0 exists such that for all
[to — to| <, |80 — to| < n. |86 — 1| < n, |C4] < n we have:
1° Z(t) exists in J, and a graph of { runs in D
2° (to, Lo» Lo, ) = (tos to, 1, 0) implies {(t) 3 t in interval J,.

Proof. Choose J, = [A4,, B;] such that A < 4, < A, — ¢, B, + ¢ < B; < B.
Then D < J? x J§. In the domain teJ}, {eJ}, ,€J}, {oed}, |0 — 1| <4,
lf;’)| < 1 the function G is continuous and bounded. Using the theorems on depend-
ence of solutions of differential equations on initial conditions and parametres, we
conclude the proof.

At the end of paragraph 2, the demanded detailed knowledge of set M, is given by

Theorem 4. Let { €(Q, Q) be an arbitrary dispersion. Let D, be the closed set
from Theorem 2. Then, for an arbitrary ty € 1K, L[ an n > 0 exists such that for
all [ty — to] <, |8 — to| <. 8o — 1| < n, |Z4| < n the dispersion { with initial
conditions {(to) = o, {'(t0) = {5, T (f) = {§ belongs to M.

Proof. Let us putJ, = [K, L] in Theorem 3. We shall show that ¢ from Theorem 2
fulfils, the inequalities ¢ < K — A, ¢ < B — L: thus, we have K = x — 1E, E <
<x—A,e<3E;hencee <x — K <K — A;similarly, L=y + 3E,E<B — y,
& < 3E implies ¢ < L— y < B — L. For this reason our D, possesses properties
of D from Theorem 3; by Theorem 3 it follows that le (Q, Q) runs in Dy, so that
according to Theorem 2 we have ( € K, and consequently le M,.
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The results obtained so far, form a basis for the investigation of equation system (a)

from paragraph 2.

5. System of equations (). The dependence of numbers «, B, 7, 6 on an arbitrary
{ e(Q, Q) can be obtained explicitly from equations (3), (3'). If 4 is a Wronskian
of the ordered pair of integrals u, vi.e. 4 = uv’ — u'v, then

u() v'(r)

(R) Ao =

ML OLOIS

NG

/(0 v(t) T

2(/3/2

uQur) t

4 — _ V) _

+ () u() VT,

\/C' 2032
4y o v(f)/ Z:(t) v(i);s(g N G ON/®
s = - K00 O v -

These equations are dependent because ad — By = 1. The expressions on the left
hand sides and then also these at the right-hand sides of (R) do not depend on :
If we choose t = t, €J, arbitrarily but fixed, the matter is to find which values
assume coefficients «, B, y, § as functions of initial conditions ¢y, (o, (g, 3 if the dis-
persion { € M, where ¢ € C,.

Adding the second and the third equation of system (o) we get the equation

) (= B) e =) + (5 —a) (= ) = 0.

Let
0eCy, o (1)
Ay

then, for the elements of this matrix at every

— ®y
ceM,. (ﬁé)

there hold the equations (o), (¢') with coefficients a, B, .y, & which are given by for-
mulas (R) in which ¢ = ¢, is an arbitrary fixed number in a certain interval, { = {,
can be chosen equal to t,, {' = {j is an arbitrary number in a small neighbourhood
of number one and {" = (g is an arbitrary number in a small neighbourhood of zero.
At this special choice {, = ¢, in (R) we substract the second equation from the third
one and the fourth from the first one.
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We get

_uy+ ok, , , 1 ,
(5) Ay = ) = S50 G+ (ot + o) (75 - Jco),

1
Ao - 9) = % o + (ugvy + ugve) (ﬁ - \/C;))_

For { in the neighbourhood of one & = (1 /\/ &) — \/ {5 lies in the neighbourhood
of zero, and in these neighbourhoods the correspondence between (g and & is one-to-
one.

System (S) taken as the system of linear equations for (g and ¢ has the determinant

2 2
o + v
l L0 Uglly + VoUg
204312 A 2 2
= ———(ug — v3).
{o¥*
Uy, , ,
Ugl ugw
(32 olo + Uglp

As uy = u(to), vo = v{to) and t, can be chosen arbitrarily in a certain interval,
we can arrange it in such a way that uy # 0, v, & 0 and uj — v} = 0. This means
that due to simultaneous validity of y — 8 = 0 and 6 — « = 0 we have necessarily

% =0, {; = 1, whereas in the neighbourhood of {5 = 0, {; = 1 it is possible to
choose values {, and {{ such that y — B = 0 and at the same time 6 — o + 0 and
there is also possible to choose values {; near to one and (j near to zero in such
a way that y — B + 0 and at the same time § — o = 0; from equation (¢’) it follows
u = A in the first case, v = x in the second one. Thus, the dispersion ¢ € C, has

a matrix
% A
Ax)

Then for B — y # O the first equation in system (o) gives 1 = 0, so that ¢ — (g 0).
%

The determinant must be equal to 1 and hence we get x = +1. Thus,
10
+
o= (o)

The inclusion C, < C is proved.

so that ¢ € C.

Thus, it is possible to define in an equivalent way central dispersions of the dif-
ferential equation (Q) as dispersions ¢ € (Q, Q) with the property that for any { e
€ (Q, Q) for which both composed functions {¢, ¢{ exist in some common interval,
there holds {¢p = @{.
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Pe3rome

AJITEBPAMTYECKOE OMPEJEJIEHMUE LEHTPAJIbHBIX NUCIIEPCUI
MMEPBOIO MOPSIKA JU®OEPEHLIMAILHOTO VPABHEHUS
y' =0(t)y

OPUX BAPBUHEK (Erich Barvinek), Bprao

MBI paccMmarpuBaeM aubdepeHnuaibHoe ypaBHEHE

(9 y' =00y,

Tie Q(t) IeicTBUTENbHAS (DYHKIUSA OT JCHCTBHTEILHOM TMEepeMEeHHOH oIpeeseHa
¥ nenpepeiBHa B untepsane J = (4, B), rae A < B u cumsoi (A4, B) o6o3Havaer uH-
TepBaJi C JeBbIM KOHIOM A (Wim A = —00) U C IpaBbIM KOHLOM B (wm B = ),
NPUYEM HHTEPBAJI MOXET OBITh 3aMKHYTHIM [ A, B uimi oTkpeITEIM |A, B[ wmi moy-
OTKPBITHIM [A, B[, 14, B]. Mot Hudero He mpenmosiaraeM o KOJeOaHWM DeIleHUs
middepenyuanbroro ypasHerus (Q).

IepBoe onpesesieHye MEHTPAIBHBIX HucHepcuii (epBoro mopsiaka) aubdepen-
LnasbHOro ypasHenus (Q) IpecTaBisieT co6oil cBeieHue K 06LIeMy CIIyYatro mepBo-
HayaspHOro ompeneneHus bopysxu, cm. [1]: Ilycrs n mro6oe yenoe wucio. Iycts
t e J moboe yucio. ITycTs y mpeficraBisier coOoi HeHyJieBoe peleHue auddepen-
muanbHoro ypasHenus (@), umeHHo Takoe, uto y(f) = 0. Ecim TouKky ¢ B3ATb B Ka-
4EeCTBE HyJIEBOIO KOPHS MHTErpaja y M eClIi KOPHSAM HHTErpaja Crpasa oT f II0CTa-
BUThH B COOTBETCTBHUE IOJIOXKUTEIbHBIC HHACKCHI, TO 3HAYEHWE TEHTPAJIBHOMN qUCTIep-
CHUM @, B TOYKE ! MOXXHO OINPEIEIUTh KAK n-blif KOPEHb PEICHUS ), IIOCKOJBbKY 3TOT
KOpEHb CYLIECTBYET B J. .

MHO0X€eCTBO BCEX LEHTPAIbHBIX qucnepcuii nuddepennuansHoro ypaBHeHus 00o-
3pavaeM yepe3 C. MHoxkecTBo C CYETHO UIJIM KOHEYHO.

61



Hasosem mucnepcueii (ee 6oiiee TOUHOE HA3BAHNE ,,BO3PACTAIONIAS JUCTIEPCHS TIEp-
Boro mopsika‘) gupdepennuansuoro ypasenus (Q) moboe pemehne muddepen-
LHAJIBHOTO YPABHEHUS

(2.0) Jo ( ch) +0(0) £ = (1)
OIpe/ieICHHOE B IIOAUHTEepBae uHTepBaia J, rpaduk KOTOPOro IpOXOoauT B UHTEP-
Base J x J OT kpast B0 Kpasl. MHoxecTBo BcexX mucrepcuii muddepenupaibnoro
ypasrenust (Q) Mbr 6yaem Takxke 0603Hadath cumsoioM (Q, Q). Hanmomuum, uro
C < (Qa Q)'

Iycts C; €CTh MHOXeCTBO Beex aucnepcnit ¢ € (Q, Q), KOTOpble MpeoGpa3oBhI-
BAIOT KaXIoe pelienne u quddepennuansaoro ypasuernus (Q) B +u 1Mo ypaBHEHHIO

B pa6ore (4) moxasano, uto C; = C, Tak 4To WeHTpPajIbHbIE qucnepcuu guddepen-
MajIbHOTO ypaBHeHus (Q) MOXHO ONPENENMTh SKBHBAICHTHBIM 06pasoM Kak lie-
MEHTBI MHOXECTBA Cj.

IMycts C, mpencrapiseT coboit MEOXeCTBO Beex ¢ € (Q, Q) TaK YTO IJISL KaXKIOTO
(e (Q, Q), JIJ1s1 KOTOPOTO 00¢ CIIoXHbIe QYHIKHY { ¢ U ¢f UMEIOT HEKOTOPBIH 00LIHit

MHTEPBAJI CYLIECTBOBAHNSI, UMEET MECTO B 9TOM HHTepBaie (¢ = ¢{.

B paGote (4) noxasano, uto C < C,. B HacTosueif cTaThe T0Ka3kIBaeTCS 00paTHOE
prmouenrie C, = C, Tak YTO IeHTpajbHBlE mucrepcud aubdepernpais-HOro ypas-
Henust (Q) MOXKHO ONpEJEIHTh TPETHUM SKBUBAJICHTHBIM CIOCOGOM KaK 3JIEMEHTBI
MHOXecTBa C,.
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