
Czechoslovak Mathematical Journal

Erich Barvínek
Algebraic definition of central dispersions of the 1st kind of the differential
equation y′′ = Q(t)y

Czechoslovak Mathematical Journal, Vol. 16 (1966), No. 1, 46–62

Persistent URL: http://dml.cz/dmlcz/100709

Terms of use:
© Institute of Mathematics AS CR, 1966

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/100709
http://dml.cz


Чехословацкий математический журнал, т. 16 (91) 1966, Прага 

ALGEBRAIC DEFINITION OF CENTRAL DISPERSIONS 
OF THE V KIND OF THE DIFFERENTIAL EQUATION y" = Q{t) у 

ERICH BARVINEK, Brno 

(Received October 20, 1964.) 

1. Introduction. Let Q{t) be a real function of a real variable defined and continuous 
in interval J = (A, В), where A < B, and let the symbol {A, B) signifiy an interval 
with the left-hand end-point A(^A = — oo is admitted) and with the right-hand end-
point Б (B = 00 is admitted). The interval can be either closed [Л, J5], or open 
]Л, Б[ or half-closed [Л, J5[, ] Л , Б]. In what follows the word "interval" will signify 
an interval containing at least two points. 

If a differential equation 

(Q) y" = Q{t)y 
is given we shall denote the set of all its solutions in the interval J by the symbol (Q); 
nontrivial solutions of differential equation (Q) in the interval J will be called in­
tegrals. 

In his paper [1] O. BORÙVKA has defined dispersions of the 1̂* kind of differential 
equation (Q) as the largest solution X(t) of the differential equation 

VI^'l(;y|^)"+eW^" = ô(0-

They are functions either increasing or decreasing everywhere. Note that the intro­
duced differential equation in the real domain is equivalent to two differential equa­
tions, 

and 

(Q.Q) y^'(^J+6W^'' = ô(0-

The first equation is the differential equation of all decreasing dispersions whereas 
equation (ß,ß) is the differential equation of all increasing dispersions. As central 
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dispersions are increasing we сопйле ourselves, in what follows, on increasing 
dispersions C{t) ~ further dispersions only — that are solutions of differential equa­
tion (ô , Q) not admitting any prolongation in the interval J x J and thus passing 
boundary to boundary; the set of all dispersions (i.e. increasing dispersions) of dif­
ferential equation (g) will be denoted by the symbol (Q, Q), too. 

In what follows, we shall denote the definition-domain of an arbitrary function / 
by the symbol D o m / and the set of its values by Im/ . Thus, for every С ^ (ô? ô ) 
Dom С and Im С are certain subintervals of interval J. 

Similarly as we have confined ourselves on increasing dispersions we can do it, 
without loss of generality, for increasing phases of differential equation (Q), see [1]. 
For that reason, under a phase of differential equation (Q) we understand any solution 
(x[t) of the differential equation 

(-1,6) ^a'U-}j'-a'^ = Qit). 

in the interval J. The set of all phases of differential equation (Q) will be denoted 
by the symbol (— 1, g) , too. 

By the amplitude of differential equation (Q) we mean any solution Q{t) of the dif. 
equation 

m Q" = Q{t)Q + ^ 

in the interval J, where A Ф 0 is an arbitrary constant; the set of all solutions of 
differential equation (^Q) in interval J will be denoted by the symbol {"^Q), too. 
The set of all amplitudes of differential equation (g) is then a union (J ("^g). In the 

zl + O 

paper [2] there has been proved, resp. will be analogously proved, that every disper­
sion С e (gj g ) transforms every и e (g), Q E (^g), respectively, on a solution U of 
differential equation (g), or on a solution P of differential equation (^g) in Dom С, 
according to the formula 

If we assign to any и 6 ( g ) the solution U E(Q) fulfilling the first of the above 
formulas in Dom С, then it is possible to interpret any dispersion as a linear operator 
on the set (g). 

The first definition of central dispersions (of the 1̂ * kind) of differential equation (g) 
is an application of the original Borùvka's definition on the general case. Let n be 
an arbitrary integer. Let ^ e J be an arbitrary number. Let y be an integral of differen­
tial equation (g) such that y{t) = 0. If we take t as a zero root of the integral y and if 
we assign positive indices to the roots lying right from t, we define the value of a central 
dispersion cp^ at the point t as the n-th root of the integral y as far as this root exists 
in / . 
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The number cpn{t) is, sometimes, denoted by t^ and we call it the n-th conjugated 
number with the number t^ = Фо(0 ~ •̂ 

Irrespective of the trivial case that some central dispersion exists at most at one 
point of interval J, every central dispersion cp exists in a certain subsinterval of 
interval J, is increasing and fulfills the differential equation (ß, Q) there, while it does 
not admit an extension in J x J, so that cp e (Q, Q). 

A central dispersion (Po(0 ~ ^ exists always in the entire interval J. The inverse 
function to an arbitrary central dispersion is again a central dispersion while (p^^ = 
= (p_„. The set of all central dispersions of differential equation (g) is at most 
enumerable; we denote it by С 

In the paper [4], there is proved that the following definition is equivalent to the 
above mentioned definition. Let Ĉ  be a set of all dispersions cp e (Q, Q) that trans­
form every и e (Q) on ±u, i.e. for which the formula 

"МП = + u{r) 

holds for every и e (ß). There holds Ĉ  = C, so that it is possible to define central 
dispersions of differential equation (ß) as elements of the set C .̂ 

Define in the third way central dispersions of differential equation (ß) as elements 
of the set C2, where C2 is the set of all cp e (ß, ß) such that for every С e (ß, ß), 
for which the composed functions Cç and (pC have some common interval of existence, 
there holds C(p = (pC in this interval. 

In the paper [4] it is proved that С2 <= С. The equivalence of this definition to the 
preceding definitions of central dispersions depends on the inclusion C2 c: C, the 
proof of which we present in this paper. 

2. Representation of dispersions by means of matrices. For an arbitrary С e (ß, ß) 
let Mç be a set of all С e (ß, ß) for which CC a.nd Ct have some common interval of 
existence, i.e. Dom С п Dom С is an interval. The set M^ contains an identical map­
ping e of the interval J on itself for every C-

Let Nç be a set of all С e M^ for which CC "— CC holds in the corresponding common 
interval of existence of both composed functions. The set N^ is never empty because 
ее Nç for every С e (ß, ß). In general, iV̂  ф Mç. But there exist ( e (ß, ß) with the 
property iVç = Mç. e.g. С = •̂ 

The set C2 is evidently the set of all (p e (ß, ß) for which N^ = M^. 

Let us choose fixed ordered pair of linearly independent integrals w, v of differen­
tial equation (ß). Let С be an arbitrary dispersion. Then we can univocally assign 
to the dispersion С or to its arbitrary part, in an interval, a matrix 
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by means of the formulas 

(1) 'EU = ocu + ßv, ^)-=yu + ôv 

VC Vc 
and we shall write С -> Л. 

The transformation property of the dispersion {, namely, that an integral у = 
= au + bv is assigned to any integral y = au -{- bv according to the formula 
y{C)l'\/C == Я c^ïi be expressed by means of the matrix, corresponding to the disper­
sion C, by the formula in coefficients 

(2) h^l'^^h-
Let us remark that one matrix can be assigned to more different dispersions. Trans­
formation equations (1) can be written in the form 

a ß\ fu\ I V С 
(3) . , . , , 

The differentiation of the equation (3) gives 

l(-L\'u(c) + Vc'uXc)\ 

(^)'ЧО.УГ.'(С) V 
Recall that the Wronskian uv' — uv of the ordered pair of integrals w, i; is a con­

stant zl Ф 0. From this there follows the relation aô — ßy = 1', thus, a matrix 
assigned to an arbitrary dispersion is unimodular. 

If С -> A, then C"^ -> A~^. If Ci -> Al, i = 1, 2, then to C2C1, as far as it exists, 
the product of matrices in inverse order is assigned, i.e. C2C1 -^ ^1^2-

Lemma 1. Central dispersions cp e С are characterized by the fact that their 
matrix is 

Proof. Let (peC;let(p-*\ ^ ). As for any у e (Q) we have y{<p)l\'^(p' = +У, 
\ÀvJ 
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( y/ n\ 
) with arbitrary numbers a, b satisfy the equations 

X v J 

a{x T I) + bß = 0, aX + b(v + 1) = 0 . 

For a = 0, Ь = 1 we get jU = 0, V = ±1 ; for fl = 1, Ь = 0 it follows % = ± 1 , 
1 = 0; thus 

Conversely, let 

<p-> ± 

for (p e (Q, ô). Then for any a, b we have 

1 0 
0 1 

1 0 
0 1 

^flO\(a\^^fa 

0 1/ \bj \b 

or, according to (2), for any y e (g) there holds y{(p)j^Jcp' = ±y which, in addition, 
follows from (1), too — and thus cpeC. 

The problem of validity of the inclusion C2 c: С mentioned in the introduction 

(a/ / i \ 
). Then for 

X vj 
any С e M^, where С -^ ( 1 there holds C^ N^ and thus Сф = фС in a certain 

\ß^y fy,a\ 
interval dependent on ç and C; thus, the elements of a matrix I ) satisfy the system 

\XvJ 
of equations 

W -yX 

yx 

-ßx + (a -

+ ßfi =0 

•i- (Ô — (x) fi — yv = 0 

- Ô)X + ßv = 0 

with coefficients a, j^, 7, <5 that can vary in a certain way in dependence on С e M ,̂. 
In order to deduce some conclusions on numbers x, X, ji, v from the system of 

equations (d), we need to know a little more about the set M^ for arbitrary С e (ß, Q). 
The circumstance that the identity belongs to M^ gives the system of equations (a) 

with coefficients (x = ô = l, ß = y = 0, which for the numbers x, /I, /i, v gives only 
the relation that they are arbitrary. 

3. Continuous increasing mappings. Let С be an arbitrary increasing and continuous 
mapping of some interval (a, b) a J on some interval (c, d) a J such that the graph 
of a mapping С passes from one boundary to another in the square J x J; let ^ be 
a set of all such mappings C- Let K^ be a set of all te^ such that the functions tC .̂nd 
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ce have some common interval of existence. Evidently Mç = (ß , Q) n Kç at C^ 

e(aô). 
In this paragraph, we shall first solve the following problem to find a convenient, 

necessary and sufficient condition for С e ^ to belong to iC^ at a given С ^ ^ • 
A mappings С ^ ^ belongs to K^ if and only if Dom CC ^ Dom CC is an interval, 

i.e. according to the remark in the introduction, an interval with non-empty interior, 
For thet reason, it is necessary for Dom (С and Dom CC not to be empty or one-
point sets. As Dom CC = C~^{p^^ С n Im C) and Dom Ct = t~^ (Dom С n Im С), 
this necessary condition will be fulfilled exactly if Dom С n Im С and Dom С п Im ^ 
are intervals (with non-empty interior); then with notation Dom С = (Ö, Ь), Im ( = 
= (с, d), Dom С = (û, Ь), Im ^ = (с, Л) we can write Dom С п Im С = (cj, d^) 
where c^ = max (0, c) and d^ = min (Ь, d) and similarly Dom С n i m С = (c^, (?i) 
where c^ = max (a, c) and dj, = min (b, J); consider that c^ < d^, c^ < d^ and 
denote in this case Dom l^ = (a^, b^) and Dom CC = {au ^1) so that a^ < b^ and 
Ö1 < bj. Then Dom CC n Dom Ĉ  is an interval if and only if for ÛQ = max (a^ а^) 
and bg = min (Ь^, Ь^) the inequality a^ < bo holds; then Dom CC n Dom (^ = 
= (ao, bo). 

Hence we get the following simple criterion: 

Lemma 2. / / and only if c^ < di and c^ < di, each of the functions CC <^^d CC 
exists in an interval; for I e Ki^to be valid it is necessary and sufficient that 

«0 = max(ßi , ai) < min (Ь^, bj) = bo . 

Note that C{^Q, bo) с (д, Ь), C(<̂ o? ^o) <=: (a, b) and that (aQ, bo) a (a, b) n (a, b) 
so that ao ^ max (0,0), bo ^ min (b, b). If we denote {c2, d^) — C(^i, d^) and 
similarly (^2, Я2) = C(^i, ^i) , then Im CC = (<̂25 ^2) and Im (С = (̂ 2? ^г)- Let us 
remark that if С ^ K^, then С G K^. If С e X^, then ^ e (00, bo) exist such that I is 
defined at t and simultaneously at C(0' and at the same time С is defined at points t 
and l{t\ too. If we are to construct some С e X^ to a given С e ^ , it is possible e.g. 
to choose t e ]a, b[ and C(0 ==" ̂ ' ^^^ ^^ insure that I is defined for the number 
C(t). For example С = ^ has these properties for every С e ^ . 

Let J = (Л, B) be an interval; let us remind that A can be — 00, Б can be 00 and / 
an open, closed or half-closed interval. Let С e ^ so that С ' iß, b) -> (с, d) while 
it holds 

a = A or с = A and b = В or d = В . 

There exist four types of a mapping С e ^ : 

(I) . a = Л , d = Б 
(II) с = A, b = В 

(III) a = A, b = В 
(IV) с = Л , i = J5 
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These types are not quite disjunct in the sense that there exist mappings С e ^ that 
are simultaneously either of the type (I) and (HI), or (I) and (IV) or (II) and (HI), 
or (II) and (IV) or of all types at the same time. 

This classification of functions С e ^ by types (I)--(IV) permits us to investigate 
the relation С ^ K^ and by means of Lemma 2 to get necessary and sufficient conditions 
for this relation. 

Let С G ^ and [^ :{a, b) -^ (c, d) with boundary condition (a = A от с = Ä) and 
{b = BOY d = В). 

Let Z e ^, and I :(ä,b) -^ (c, d) with boundary conditions (â = A or с = A) 
and (b = В or d = B). 

Theorem V. If С ^ ^ is of the type (I) then le^ fulfils the relation ZeK^ if 
and only if a < b, с < b; b > c, d arbitrary, and the following conditions are 
satisfied (as far as they are meaningful): ((a) < b, C~\ä) < С~^(Ь), C~^{ä) < b. 

Proof. With the notation introduced in this paragraph, Dom С n Im С = (^i, d^) 
etc., we have di = b, c^ = c, so that Dom CC = (^i? C~^(b)) and Dom CC == (a, bj). 
By Lemma 2 С G î ^ if and only if a^ < b^, â < С~^(Ь); then, from the inclusion 
v^O' ^o) '^ (^' b) n(â, b) it follows that max [A, â) < min (Ь, Ь) and therefore 
a < b is the necessary condition for С e î .̂ According to Lemma 2 there is a further 

necessary condition for С e iĈ  c^ < d^, c^ < d^ or max (0, c) < min (Ь, В), 
max (A, с) < min (b, b) so that inequalities с < b, с < b are some part of the 
above mentioned necessary and sufficient condition. 

Thus, we have proved that Z e K^^o a^ < bi, â < C~\b); â < b, с < b, с < b. 
In order to give the inequality a^ < b^ a little more illustrative content in the system 
of all other inequalities, let us recall that c^ = max (a, c), d^ = min(b, J); there 
occur 4 possibilities (la,) (lb), (2a), (2b), where 

(1) a S с and therefore c^ = c, a^ = A 

(2) â > с and therefore c^ = â, a^ = C~^(a) 

(a) b < d and therefore d^ = b, b^ = l~^{b). 

(b) b ^ d and therefore d^ = d, bi = b. 

In case (la) we have a^ = A, b^ = C'^ib) and the inequality a^ < b^ is fulfilled 
automatically because b > c. In case (lb) we have a^ = A,bi = b and the inequality 
Ui < bi is again fulfilled automatically. 

In case (2a) there follows from ä < b that с < b, and from boundary conditions 
for С that с = A; WQ have a^ = C~\à), b^ = t~^{b) and the inequality ai < b^ 
gives the condition C"^(^) = C~^(b). 

In case (2b) there is again necessarily с < b, с = Л; we have a^ = C~^(Ö), B^ = В 
so that the inequality a^ < b^ gives the condition C~\ä) < В. 
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Theorem Г is proved because a^ < b^, a < C~^(b) is according to the accom­
plished considerations equivalent to the complex of inequalities from theorem Г, 
as far as they are meaningful. 

Theorem 1\ Let С e ^ be of type (II). Then for С e ^ there holds t ^ K^ if and 
only if a < d, с arbitrary; b > a, d > a and the conditions a < C(b), t~^{ci) < 
< C~~^{b) must be fulfilled. 

Proof. In this case we have b = B, с = A and therefore c^ = a, di = d so that 
DomCC = (C"4^) ' ^i) ' Dom CC = (^ь Ь)- According to Lemma 2 the equivalence 

<^ âi < bi, Ç, ^(ö) < Ь holds; this necessary and sufficient condition leaks 
a telling meaning and for that reason we shall specify it in details by explicit stressing 
of its illustrative parts contained in it implicitly. 

Similarly as in the proof of Theorem Г an illustrative limiting of area a < d, 
b > a, d < a follows from the inequalities â^ < bj, C~\ä) < b. We get further 
illustrative necessary conditions contained in the inequality ä^ < b^ from relations 
Ci = max (a, c), d^ = min(b, J); there are four possibilities (la), (16), (2a), (2b) 
where 

(1) ß ^ с and therefore c^ = c, a^ ~ ä 

(2) a > с and therefore c^ = a, a^ = C~^(a) 

(a) d ^ b and therefore d^ = d, b^ — В 

(b) d > b and therefore d^ = b, b^ = C~^{b). 

In case (la) the inequality ä^ < b^is fulfilled automatically as well as in case (lb) 
and (2a). 

In case (2b) we have for a, d SL restriction a < d, d = B. The inequality a^ < b^ 
gives a condition t~^{a) < C~^{b). Thereby the proof of Theorem Г' is finished. 

Theorem V. Let С ^ ^ be of type (III). Then for te^ there holds leK^if and 
only if a < d, b > c; c, d arbitrary and C(â) < b, â < С(Ь). 

Proof. In this case we have a = A, b = В so that c^ == c, d^ = d and therefore 
Dornte = (a 1, b^), DomCC = (a,b). According to Lemma 2, the equivalence 
С EKço a^ < b, a < b^. 

First of all, holds from the found condition the illustrative restrictions a < d, 
b > с follow; its further consequence can be obtained by relations c^ = max (a, c)y 
di = min (S, d), which give four cases (la), (lb); (2a), (2b): 

(1) a -^ с and therefore c^ = c, a^ = A 

(2) ä > с and therefore c^ = a, a^ = C~^(Ö) 

(a) b < d and therefore d^ = b, b^ = C"^(b) 

(b) b ^ d and therefore di = d, b^ ~ В . 
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In case (la) the inequaUty a^ < 5» is fulfilled automatically and the inequality 
a < bi gives the condition ä < t,~'\b). 

In case (lb) we do not get any new condition. 
In case (2a) we get two conditions l,~\ä] < b, â < С"^^)-
In case (26) the inequality a < Ь is fulfilled automatically and the inequality 

ûi < В gives again the condition C~^{â) < В. Thereby Theorem V is proved. 

Theorem l ' \ Let C^^ be of type (IV). For le0^ there holds leK^if and only 
if â < b, с < b; В > a, d > a and if conditions C~\ä) < С"^(Ь), C~^{ci) < С~^(Ь) 
are fulfilled. 

Proof. Now we have с = A, d == В and consequently c^ = â, d^ = B; Dom CC = 
= (C~^(ö), С~^(Ь)), Dom ce = (̂ 1» Bi). According to Lemma 2 we have 

СеК^оГ\а)<В,, â,<r'HB), 

From the found condition it is possible to deduce its immediate illustrative part: 
a < b, a < B, с < d, a < d and by msans of relations c^ = max (a, c), d^ = 
= min {b, d) the remainder of the illustrative part by discerning the four cases (la), 

(lb), (2a), (2b), where 

(1) a ^c and therefore Ci — c, a j — a 

(2) a > с and therefore c^ = a, â^ = C~^(a) 

(a) b < d and therefore di = b, B^ = C~\b) 

(b) b ^ ä and therefore di = d, B^ = В. 

In case (la) we get a condition C~^(ä) < С~Ч^)' i^ ^^^^ i^b) we do not obtain 
any new condition, in case (2a) we get both conditions C~\ä) < t~^(b) and C~^(a) < 
< C~\B) and in case (2b) we have a condition C~^(a) < C~^(B). Thereby the proof 
of Theorem l '^ is finished. 

Results given in Theorems 1' to 1^^ may be expressed in one theorem. 

Theorem 1. Let С e 0^ be arbitrary. Then for le0^ there holds that leKj^, if 
and only if there hold the inequalities (as far as they are meaningful) 

(4) â < min (b, d) , с < b , В > max (a, с) , d > a 

(5) r\ä)<r\b), Г»<гЧь~). 
Proof. The inequalities for a up to ^ are evident. Under the assumption of Theo­

rem Г we have a = A; for â = A the condition (,(â) < В reduces to с <B which 
is fulfilled; for a > Л we have l~\a) = â and the condition ^(a) < В ox â < (,~^(B) 
is identical with the condition l~^(a) < C~'^(B). The condition l^~\â) < b occurred 
n case (2b) provided d S b; it b = В and В = В then the condition C"^(ö) < b 

i 
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reduces to C~^(ä) < В or to â < С{В) = В which is, naturally, fulfilled; for b = B, 
b < В we have C~^(b) = b and the condition C"^(Ö) < ß is identical with the con­
dition C~^{ä) < t~^{b); ÎOV b < В we have b = В with respect to boundary con­
ditions for С and with respect to the inequality Я ^ b; the condition C~4^) < ^ is, 
thus, trivial. 

In Theorem V we have the condition C"^(Û) < b; of course, even here b — В 
is true so that t~^{b) = C~^(^) = Ь as soon as d = В and in this case the condition 
{"^(a) < b is identical with C"4^) "̂  t~\^)l if however, d < B, then necessarily 
b = В and the condition is trivial. 

In Theorem V we have the condition â < С~^(Ь); but here, of course, a = Ä; 
for â = Ä the condition is trivial because it means that с < b, and C~̂ (<̂ ) = ä for 
J > Л and the condition identifies with t~\ci) < С~\^)- Analogously the condition 
C~^{â) < Ь is a special case of the inequality C~^(Ö) < С~^(Ь). 

Thereby the theorem is proved. 
The results concerning the behaviour of curves t ^ Kr have the disadvantage that 

conditions (4) do not suffice and that it is necessary to respect (5). For this reason, 
we need some sufficient condition free from conditions (5) which would possess 
more or less the character of (4). In fact, the matter is whether for a given С e ^ 
some fixed limits, dependent on C, exists such that whenever ( is in these limits, then 
necessarily t e K^; now, we are going to deal with this problem. 

Theorem 2. Let (,e0^ be arbitrary. Let x ^ у be arbitrary numbers such that 
A < X < min (Ь, d), max (a, с) < y < В. Let Е be an arbitrary number fulfilling 
the relations 

0 < £ < min (b - r\x), r'^{y) - a , B - y , x - Ä ) . 

Let К = X - ^E, L= у + iE. Let 0 < г < ^E. Let D^ = {{t, z)lK й t S L, 
\z — t\ ^ e}. Then D^- c: J° x J° where J^ denotes the interior of interval J, and 
any С e 0*,for which Dom I ZD [^K, L ] and for which \t{t) ~ r| ^ e holds in interval 
[i^, L], belongs necessarily to K^, 

Proof. The existence of the number E depends on the fact whether or not min (b — 
— C~^(^)? C~^^(y) — a, в — y, X — Ä) > 0. For a chosen x in the open interval 
]Л, min (Ь, J ) [ С~Ч^) ^^^^ ^^^ exist; then simply the element b — C"^(^) is not taken 
into consideration. If C~^(^) exists then necessarily C~^(^) < b because x < C(b) = 
= d. Likely, for a chosen у e ]max (a, c), Б [ С~\у) need not exist; then the element 
C~^(y) ~ ß in the definition of E is simply failing. If С~^(у) exists then necessarily 
C~^{y) > a, because у > l,{a) — с Thus, min (Ь — C~^(^)? C ~ 4 J ) — (i,B — y, 
X — A) > 0 and it is possible to choose £ > 0 less than this minimum. 

As £ < X -- v4, a straight line t •= K,\(, — К\ ^ г lies inside the square [A, x) x 
X {A, x); similarly, a straight line ^ = L, |C — L | ^ e lies inside the square (y, Б) x 
X (y, Б); consequently for x ^ 3; the rhomboid К S t S L, \C — t\ S ^ lies then 

inside the square J^ x J^. 
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As X < b and C~4^) ~~ if it exists — is also less than b, every С e ^ for which 
a < X and for which С"^(b) > C~^(^)f^ilfills the sooner condition С~^(Ö) < С~^(Ь) — 
as far as C"^(^) has a sense at all. 

As у > a and C~^{y) > a, too, as far as С~^{у) exists, and С e ^ for which b > у 
and for which С"^(a) < С~ (̂}̂ ) fulfils the sooner condition C~^{(^) < C~4^) ~ as far 
as C~^{b) is defined at all. 

Hence, from this it follows that for an arbitrary С ^ ^ , the graph of which cuts 
simultaneously all rectangles ]Л, x[ x ]Л, x[; ]Л, С~Хз^)['^] ^' ^~^W[ ' ]C~X^')' 
Б [ х ] C^i^), b[; ]};, ^ [ x ] y, JB[, provided they exist, there holds С e Ĵ ^ according 
to Theorem L 

Particularly, any I s 0^ from Theorem 2 has the property that t G Ki-, because 
passing through a rhomboid it necessarily cuts all rectangles, if they exist. Thereby 
Theorem 2 is proved. 

Theorem 2 serves as a preparation for a closer investigation of properties of the 
set Mç at arbitrary С e (ß , Q) if we recall that M^ = (Q, Q) n K^. Many functions 
I еК^ pass through the rhomboid D^; the matter is whether also solutions of diff. 
equation (g , Q) pass through D^. 

4. Dependence of dispersions on initial conditions. Every dispersion С ^ (6^ Q) 
is well defined by the initial conditions C(̂ o) = Co? C'(̂ o) = Co? Г'(^о) = Co? where 
(̂ 05 Co? Co? Co) is an arbitrary point of the set 

œ = {(̂ 0? Co? Co? Co)lto^J, Co e-̂ ? Co > 0 arbitrary, Co arbitrary}. 

To any j7 e CO there exists just one С e (Q, Q) and an interval /^ = Dom С <= «̂  
(while 0̂ ̂  ^ç) so that ф) satisfies differential equation (Q, Q) in interval /^ and fulfils 
the corresponding initial conditions, see [2]. 

The dispersion С = C{tl ô? Co? Co? Co) as a function of the variable t and of the 
initial conditions is thus defined in a certain set ß c: J x со, where Q = {{t; t^, Co> 
Co, Co)/(̂ o? Co? Co? Co) e û>, tel J. 

Let С e (6 , Q) be given, С = C(̂ ; ô? Co?* Co? Co)- To an arbitrary J ф 0 let us take 
an arbitrary solution g^t) of the differential equation (fQ) in interval J. Then we 
define the solution P(t) of the differential equation (^Q) in interval J by means of the 
initial conditions 

(6) p{t,) = ̂  (=Po), p'{to) = б'(Со) Ло) - mto) ^ ( = n ) . 
v^o so 

Then the dispersion С with the upper initial conditions is the solution in interval Iç 
of the separated differential equation 

(7) С =^ ^-^^^^^-^-^ 
P (^? ^0? Co? Co? Co) 
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with the initial condition фо) = Co; instead of P{t) we write more explicitly P{t; to, 
Co, Co' Co) in order to stress the dependence of the right side in (7) on parameters 
(to, СоЛоЛ1)е CO. 

Properties of the function L,{tl h^ Co. Co, Co) depend on the property of the function 

^ = m_ _ 
^ y\ to, Co? Co? Co) 

The function P(t) is an amplitude of some pair of linearly independent integrals 
U, F of the differential equation (Q) in interval J, i.e. P^ = C/̂  + V^'; the integrals 
U, V possess the following initial conditions 

U{to) = Uo , UXto) = U'o ; V{to) = Vo , r{to) = Го , 
where 

(8) Uo = PQ cos a , UQ = Pooosoc sin a , 
^ 0 

Vo = Po sin a , Fo = Po sin a H cos a . 

Here a is an arbitrary, fixedly chosen number independent of p e со. 
The integrals U = U{t; to, Uo, UQ), V = V(t; to, FQ, VQ) are defined by relations 

(6), (8) as functions of variables Г, to, Co? Co, Co ^^ the set J x œ; properties of the 
function P and thereby properties of the function G, too depend thus on properties 
of functions и = U{t; to, U Co? Co)? V = V{t; to, Co? Co? Co)-

An arbitrary solution у of differential equation (g) in interval J with initial condi­
tions y{to) = Уо, УХ^О) = Jo is a function of variables t, to, Уо, Уо on the set О = 
= J X S where 

^ = {(̂ 0? Jo? Уо)1^о e J, arbitrary, у о arbitrary} . 

With the notation Y = ( ^ ], ô*(r) = ( _ | differential equation (Q) is equivalent 

VW VßWoy 
to the differential equation 

The solution Y of differential equation (ß)* is, in fact, a function Y(t; to, Уо, У о) 
defined on the set O; we shall show that it is continuous in the domain в ^ ( = interior 
of 0 ) . Denoted = ] —oo, oo[. The function ô*(r) Fis continuous on the set J x P x 
X R but it is not bounded there. 

Choose an arbitrary but fixed point (t; to, Уо, У о) ̂  ^^l then particularly, teJ^, 
to e J^. Let to, t be a minimal closed interval containing point ô? t; we have ô? t ^ J^-
Consequently, numbers A^ < Ä2 and B^ > B2 exist such that A < A^ < A2 < 
< min [to, t), max (^o, t) < B2 < Bi < B. 
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[Ä,, B,l J2 = {Аг, B^l Let R^ = [уо - h Уо + 1], ^̂ 2 = 
= [Уо ~ 1» Уо + ! ] • Then, in the domain j j x R? x R2, ô*(0 Y is continuous 
and bounded. 

Let us denote Y{t) = Y{t; t^, Уо, Уо), Y{t) = Y{t; t^, y^, у'о). Solutions Y(t) and 
and Y{t) of differential equation (ß)* exist in interval J2 and according to theorems 
on dependence of solutions of differential equations on initial conditions, for 
(^0' Jo. Уо) -^ (^0. Уо. У о) we have Y{t) ==t Y{t) in interval J 2, see [З]. 

From this it follows that for {t, to, Уо. Уо) ^ {t, t^, Уо, Уо) we have 7(ï) -> Y{t) 
which proves the continuity of function Y{t; to, Уо, Уо) in the domain 0**. 

Especially, the general solution of differential equation (Q) y{t;, to, Уо, Уо) is 
a continuous function in the domain 0^. 

As PQ and PQ are continuous functions of variables Co. CQ, CO ̂ ^ Ле set 
J x]0, o o [ x ] - 0 0 , oo[, functions Uo, UQI VQ, VQ of variables Co. Co, Co are also 
continuous here. Then functions U(t; to, Co. Co. Co) . ^(^J ^0. Co. Co. Co) ^ '̂̂  continuous 
in the domain J^ x co^ and P^(f ; to, Co. Co. Co) is continuous, too. As P^ > 0, we get 
finally the result that the function G = G{t; C; to, Co. Co. Co) on the right-hand side 
of differential equation (7) is continuous in the domain J^ x J^ x a>^. 

Theorem 3. Let J2 = [^2. ^2] ^^ ^̂ ^ arbitrary closed subinterval of interval J^. 
Choose e > 0 such that s = min (Л2 — A, В — Б2). Denote D = {(f, z).jtEJ2, 
z — t\ S s}. Then, for an arbitrary ^0^/2 ^^ ^ > 0 exists such that for all 
?o - ^o| < n. |Co - ^o| < n. |Co - l | < ^. !Co| <ПУ^е have: 

l"^ l{t) exists in J2 and a graph of I runs in D 

2"̂  (?o? Co. ̂ 0' I'o) ~^ (̂ 0? ^0. 1. 0) implies l{t) i | t in interval J2* 

Proof. Choose J^ = [Л^, JS^] such that A < A^ < A2 — s, B2 + s < B^ < B. 
Then D ciJl X J\, In the domain t 6 J ? , Ce J?, Fo^J?, Co^J?, |Co - l | < i 
]Co| < i the function G is continuous and bounded. Using the theorems on depend­
ence of solutions of differential equations on initial conditions and paramètres, we 
conclude the proof. 

At the end of paragraph 2, the demanded detailed knowledge of set M^ is given by 

Theorem 4. Let С e (g , Q) be an arbitrary dispersion. Let D^ be the closed set 
from Theorem 2. Then, for an arbitrary to e ]K , L[ an rj > 0 exists such that for 
all \to — to\ < f], \to — ̂ o| < ^. |Co — l | < ^, |Co| < ^ the dispersion С ^vith initial 
conditions t{to) = Co. t\to) = Co. Co (?o) = to belongs to M^. 

Proof. Let us put J2 = l^K, L] in Theorem 3. We shall show that 8 from Theorem 2 
fulfils, the inequaUties e < К — A, s < В — L: thus, we have К = x — +£, E < 
< X ~ A, s < iE; hence 8<x~K<K — A; similarly, L= y + ^E, E < В — y, 
s < ^E implies s<L—y<B — L. For this reason our D^ possesses properties 
of D from Theorem 3; by Theorem 3 it follows that t e (Q, Q) runs in D^, so that 
according to Theorem 2 we have t e K^ and consequently ^ e M^. 
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The results obtained so far, form a basis for the investigation of equation system (<т) 
from paragraph 2. 

5. System of equations (a). The dependence of numbers a, ß, у, ô on an arbitrary 
С e (Q, Q) can be obtained explicitly from equations (3), (3'). If J is a Wronskian 
of the ordered pair of integrals u, v i.e. A = uv' — u'v, then 

These equations are dependent because OL3 — ßy = 1. The expressions on the left 
hand sides and then also these at the right-hand sides of (A) do not depend on t: 
If we choose t = ÎQEJQ arbitrarily but fixed, the matter is to find which values 
assume coefficients a, ß, y, ô as functions of initial conditions ÎQ, CO? CO? CO if the dis­
persion С € Mç, where (p e C2. 

Adding the second and the third equation of .system (a) we get the equation 

((TO ( ^ „ д ) ( ; , _ ^ ) + ( ^ - а ) ( / г - Я ) = 0 . 

Let 

(peC2, ^~^[Y^ 

then, for the elements of this matrix at every 

сем,, <.( ;^ 

there hold the equations (cr), (a') with coefficients a, ß, 7, ô which are given by for­
mulas (R) in which t = to is an arbitrary fixed number in a certain interval, С = Co 
can be chosen equal to tg, С = Co is an arbitrary number in a small neighbourhood 
of number one and С = Co is an arbitrary number in a small neighbourhood of zero. 
At this special choice Co = 0̂ iî  (^) we substract the second equation from the third 
one and the fourth from the first one. 
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We get 

(S) 4 r ' ^) = ^ ^ Co + M o + fo«̂ é) ( - ^ - Vcé), 

4 « ' ^ ) = ^ Co + («0.^0 + u'oVo) (—^ - V C o ) • 

For Co iîi the neighbourhood of one ^ = (l/^/Co) — \/Co lies in the neighbourhood 
of zero, and in these neighbourhoods the correspondence between Co and С is one-to-
one. 

System (S) taken as the system of linear equations for Co and ^ has the determinant 
2 . 2 Uo + Vl 
2Co 3/2 

Co / 3 / 2 

^ 0 ^ 0 + Î̂ O^O 

UQVQ + Wol?o 

^ / 2 2\ 

As Wo = (̂̂ o)? 0̂ = (̂̂ o) and ô can be chosen arbitrarily in a certain interval, 
we can arrange it in such a way that WQ Ф 0, Î;O Ф 0 and WQ ~ ô Ф Ö. This means 
that due to simultaneous validity of y — ^ = 0 and (5 - a = 0 we have necessarily 
Co = 0, Co = Ij whereas in the neighbourhood of Co = 0, Co = 1 it is possible to 
choose values Co and Co such that y — ß = 0 and at the same time (5 ~ a ф 0 and 
there is also possible to choose values Co ^̂ âr to one and Co Ĵ ^̂ ar to zero in such 
a way that у — ^̂  Ф 0 and at the same time ^ — a = 0; from equation (a') it follows 
/i = A in the first case, v = % in the second one. Thus, the dispersion cp e C2 has 
a matrix 

i2. X) 

Then for j5 — 7 Ф 0 the first equation in system {a) gives Я = 0, so that cp 

The determinant must be equal to 1 and hence we get x = ±1 . Thus, 

XÜ 

Ox 

Ф - ± 10' 
01 

so that (p e C, 
The inclusion C2 ci С is proved. 
Thus, it is possible to define in an equivalent way central dispersions of the dif­

ferential equation (6) as dispersions cp e (Q, Q) with the property that for any С ^ 
e (6? 6) for which both composed functions Сф? фС exist in some common interval, 
there holds Сф = фС-
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Р е з ю м е 

АЛГЕБРАИЧЕСКОЕ ОПРЕДЕЛЕНИЕ Ц Е Н Т Р А Л Ь Н Ы Х Д И С П Е Р С И Й 
ПЕРВОГО П О Р Я Д К А Д И Ф Ф Е Р Е Н Ц И А Л Ь Н О Г О У Р А В Н Е Н И Я 

y" = Q{t)y 

ЭРИХ БАРВИНЕК (Erich Barvinek), Брно 

Мы рассматриваем дифференциальное уравнение 

(е) y"-Q{t)y, 

где Q{i) действительная функция от действительной переменной определена 
и непрерывна в интервале J = (Л, ß), где А < Вк символ {А, В) обозначает ин­
тервал с левым концом А (или А = — со) и с правым концом В (или В = оо), 
причем интервал может быть замкнутым [Л, Б] или открытым ]Л, Б[ или полу­
открытым [Л, ß[, ]У4, В']. МЫ ничего не предполагаем о колебании решения 
дифференциального уравнения (ß). 

Первое определение центральных дисперсий (первого порядка) дифферен­
циального уравнения (ß) представляет собой сведение к общему случаю перво­
начального определения Борувки, см. [1]: Пусть п любое целое число. Пусть 
te J любое число. Пусть j ; представляет собой ненулевое решение дифферен­
циального уравнения (ß), именно такое, что y{i) = 0. Если точку t взять в ка­
честве нулевого корня интеграла у и если корням интеграла справа от t поста­
вить в соответствие положительные индексы, то значение центральной диспер­
сии (р„ в точке t можно определить как п-ът корень решения у, поскольку этот 
корень суш;ествует в J. 

Множество всех центральных дисперсий дифференциального уравнения обо­
значаем через С. Множество С счетно или конечно. 
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Назовем дисперсией (ее более точное название,,возрастающая дисперсия пер­
вого порядка'') дифференциального уравнения (ß) любое решение дифферен­
циального уравнения 

(ае) уг(-~У'+о(с)г = о(0 
определенное в подинтервале интервала J, график которого проходит в интер­
вале J X J от края до края. Множество всех дисперсий дифференциального 
уравнения (ß) мы будем также обозначать символом (ß, ß). Напомним, что 
С с: (ß, ß). 

Пусть Cl есть множество всех дисперсий ср е (ß, ß), которые преобразовы­
вают каждое решение и дифференциального уравнения (ß) в +w по уравнению 

В работе (4) доказано, что С^ = С, так что центральные дисперсии дифферен­
циального уравнения (ß) можно определить эквивалентным образом как эле­
менты множества С^. 

Пусть С2 представляет собой множество всех (р e{Q, ß) так что для каждого 
С е (ß, ß), для которого обе сложные фунцкии С<Р и срС имеют некоторый общий 
интервал существования, имеет место в этом интервале Сф = (рС-

В работе (4) доказано, что С а С2. В настоящей статье доказывается обратное 
включение Сз cz С, так что центральные дисперсии дифференциального урав­
нения (ß) можно определить третьим эквивалентным способом как элементы 
множества Сз-
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