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ON UNIVERSAL QUASI-ORDERED SETS

VitézsLav NovAK, Brno

(Received December 17, 1964)

Let F(a, m) denote a type of a set of all sequences of type & formed from
elements of a set of cardinality m together with the relation < defined as
follows : {a; | A < a} = {b;| A < a} if and only if the sequence {a; | 1 <
< oz} is a subsequence of the sequence {bl |4 < oc}. In this paper the follow-
ing theorem is proved. For every quasi-ordered set G of cardinality = ¥,
there exists a subset G’ isomorphic with G in a set of type F(w, . 2, ¥,). This
theorem improves a result of M. NovoTNY in [6].

A quasi-ordered set is a non-empty set together with a reflexive and transitive
binary relation (see for instance [1]). Two quasi-ordered sets G, G’ are called iso-
morphic if a one-one mapping f of the set G onto G’ exists such thatx, ye G, x < y <
c»f(x) < f(»)- A quasi-ordered set G is called an m-universal quasi-ordered set
(where m > 0 is a cardinality) if for every quasi-ordered set H with card H < m
there exists a subset G’ = G isomorphic with H.

Let G be an ordered set (i.c. a non-empty set together with a reflexive, antisym-
metric and transitive binary relation). Let B be a chain of type 2 (i.e. a chain contain-
ing exactly two points). Let K be a non-empty set. Let f, denote a mapping of the
set G into B for every » € K. A system {f, l % € K} is called a 2-pseudorealizer of the
set G, if x, y € G, x < y is equivalent to f,(x) < f,(y) for every x € K. In [5] there
is proved that every ordered set G has at least one 2-pseudorealizer. 2-pseudodimen-
sion of the set G is defined as the minimal cardinality of a set K such that {f,, l % € K}
is a 2-pseudorealizer of G. This cardinal number is denoted 2-pdim G. In [5] the
tollowing theorem is proved: Let G be an ordered set. Then the following statements
are equivalent:

1) 2-pdim G £ m

2) There exists an antichain ') M with card M = m such that G ~ G' £ B™ ?).

Let « > 0 be an ordinal number, let {a, | A <a}, {b, l A < o} be sequences of

) By an antichain we understand a set.ordered so that every two its distinct elements are
incomparable.
2) G = G’ denotes that the sets G, G’ are isomorphic. BM denotes the Birkhoff’s cardinal
power (see for instance [1] or [2]).
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type a. The sequence {a, | 4 < o} is called a subsequence of the sequence {b; ‘ A< a}
if there exists a strictly increasing sequence {f; I A < a} of type « formed from ordinal
numbers less than o such that a, = by, for every 4 < a.

Let M be a non-empty set, let « > 0 be an ordinal number. Denote F(a, M) the
set of all sequences of type o formed from the elements of the set M together with
the relation =< defined as follows: {a, | A<a} £{b, l A < a} if and only if the
sequence {a, l A < a} is a subsequence of the sequence {b, l A < a}. It is easy to
prove that the relation < is reflexive and transitive so that F(a, M) is a quasi-ordered
set. This relation, however, is not antisymmetric in general as it is shown in [6]
F(, M) is therefore generally not an ordered set. If N is a set with card N = card M
then clearly F(a, N) is isomorphic with F(ax, M) so that the type of the set F(o, M)
depends only on the cardinality m of the set M. We denote this type by F(a, m).

Let {a, | A < a} be a sequence of type a. Let G = {x [ there exists an ordinal num-
ber A < o such that a, = x}. Put for every xe G m({a, |4 < a}) = card {A| A€
e W(a), a; = x}. %) :

We shall need the following two lemmas.

Lemma 1. Let G be a non-empty set such that card G < NX,. Then the elements
of the set G can be written in the form of a sequence of type w,, {a; I A < w,}, such
that m({a; | A < w,}) = N, for every x € G.

Proof. Let H be a set with card H = N,. Put K = G x H. Then card K =
= card G . card H = N,. Let us write the elements of the set K in the form of a sim-
ple*) sequence of type w,, i.e. K = {k, | A < ,}. Then k, = [x, y] where x€ G,
yeH, for every A < w, Now put for every 1 < w,a; = x where [x, y] = k.
Then {a, | A < w,} is a sequence of type w, formed from the elements of the set G
and having the desired property for, if x4 € G, then card {[xo, ] I yeH} =N, and
therefore card {4 | A€ W(w,), k; = [xo, y] (v € H)} = N, = card {1| 2 € W(w,), a; =
= Xo} = my({a; I A< ).

Lemma 2. Let G be a set with card G = m where 2 < m £ X,. Let & be the set
of all sequences of type w, formed from the elements of the set G and such that
m({a, l A < w,}) = N, for any sequence {a; l A< w,} €& and any element x € G.
Then card & = 2%« .

Proof. Let 7 denote the set of all sequences of type w, formed from the elements
of the set G. Then card 7 = m™ = 2%, As & < 7, we have card & < 2%« Let
{e; | 1 < w,} be a given fixed sequence from &, i.e. such a sequence that m({c, | 4 <
< w,}) = ¥, for any x e G. Put for any sequence {b, |1 < w,} €T o({b,| 4 <
< w,}) = {a; I A < w,} where {a, | A < w,} is a sequence of type w, defined in the
following way:

b, for A =2v
2=, for A =2y + 1

3) W(a) denotes the set of all ordinal numbers less than « (see [4]).
4y e ka, & ky, for 1y F 4,.
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Then clearly ¢({b, | A< w,})e & for any sequence {b, | i< w)ed and @ is
a one-one mapping. This implies card & > 2% and hence card & = 2%,

Theorem 1. Let G be a non-empty ordered set and let 2 — pdim G < N, Then
the set of type F(w,, N,) contains a subset isomorphic with G.

Proof. If the assumptions of Theorem are true then G =~ G' < B™ where B =
= {0, 1} is a chain of type 2 and M is an antichain with card M = N,. The set BM
is isomorphic with the system of all subsets of the set M ordered by a set inclusion®).

Let a be any element which does not belong to M. Put for any subset N & M,
N’ = N U {a}. Then the system & = {N’ | N < M} is a system of non-empty sets
which is — ordered by a set inclusion — isomorphic with B¥. & therefore contains
a subset &’ isomorphic with G; denote  an isomorphism of G onto &’. Now, because
card M’ = card (M U {a}) = N, it is possible to write the elements of the set M’
in the form of a sequence {b, | A < w,} of type w, such that m({b, | A< o)) =K,
for every x € M. Let us assign to every set N' € &’ a sequence @(N') = {a, | A< w,}
of type w, in the following way: a, = b,, where p, is the smallest ordinal number
such that b, € N’; suppose that we have defined a, for every 1 < 4, (4 < ®,).
Then we put a,, = b, where ,, is the smallest ordinal number with the following
properties: p,, > p; for every A < g, ty, < @, b“o € N'. Such an ordinal number
always exists for, if y1,, were not defined for some 4y < ®,, then m,({b; | 2 < w,}) <
< card {y; | A < Ao} < N, for any element x € N’ which is a contradiction. If N’ € &’
and ¢(N') = {a,| 4 < w,} then clearly m({a, | A< ) =N, for every xeN'.
The set ). = {@(N')| N'e€ &'} is a subset of a set of type F(w,, N,) and we shall
show that ¢ is an isomorphism of &’ onto Y. Hence let N, Nj € ', N{ < N’ and
let o(N}) ={c,|4 <), o(Ny)={d;|2<w,}. Let us define the sequence
{B. | A < w,} of type w, of ordinal numbers less than w, in the following way:
Po = Ko where p, is the smallest ordinal number with the property d,, = co; sup-
pose that we have defined the numbers f, for every 4 < 4, where 4, < w,. Then
we define f8,, as the smallest ordinal number with these properties: §,, > f, for every
A < Aoy Bag < @y, dy 20 = Cao It is easy to see that f8, is the smallest ordinal number
with the property d; € Ni and f,, is for every 4, < w, the smallest ordinal number
with these properties: f,, > B, for every A < Ay, B,, < w,, dﬂ/10 € Ni. From this
follows, similarly as in the first part of the proof, that f8, is defined for every 4 < w,
so that {B, | A < w,} is a strictly increasing sequence of type w, of ordinal numbers
less than w, and such that ¢, = d;, for every A < w,. Thus, the sequence {c, | A< w,}
is a subsequence of the sequence {d, | A < w,},ie. {c;| 1 < o} = ¢(N}) £ ¢(N})=
= {d, | A < w,}. Suppose, on the contrary, that ¢(N7) = {c; l A<} <{d, | A<
< o,} = ¢(N3) and let x € Nj. Then there exists an ordinal number 1, < w, such

5) If we assign to every element f € BM a subset g(f) = {x | xeM, f(x)= 1} g M, then

it is clear that ¢ is an isomorphism of BM onto a system of all subsets of the set M ordered by
a set inclusion.
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that ¢;, = x and exists an ordinal number B;, < w, such that ¢, = d,,/1 so that
0
dﬂzo = x and hence x € Nj. This implies N{ £ Nj. Further it is clear that ¢ is a one-

one mapping and therefore ¢ is an isomorphism of &’ onto ). From this it follows
that a composite mapping @y is an isomorphism of G onto ) and the theorem is
proved.

Theorem 2. A quasi-ordered set of type F(w, .2, N,) is an N,-universal quasi-
ordered set.

Proof. Let G be a quasi-ordered set such that card G £ N,. For two elements
x,y€Gputx = y,ifand only if x < y, y < x. It is known ([1]) that the relation =
is an equivalence relation which defines a decomposition G of G in such a way that
X eG = x < y for all elements x € X, y € X. Further, the set G can be ordered in
the following way: X, Ye G= X < Y ifand only if x < y for any x € X, y € Y. Now
card G £ N, so that 2 — pdim G < ¥,. ) According to Theorem 1 G is isomorphic
with a certain subset ). of a set F(w,, M) where card M = N,. Let ¢ be an isomor-
phism of G onto Y. Let N = {a, b} where a € M, b € M be any set with card N = 2.
Now we shall distinguish two cases:

1) « = 0. Then let 9 denote the subset of the set F(wy, N) containing all those
sequences {b, | 1 < w,} for which m,({b; | 2 < @o}) = No, my({b; | 2 < we}) = N,.
2) o > 0. In this case let § be the subset of the set F(w,, N) containing all those
sequences {b, | 2 < w,} for whichb, = a(A < w,)=b,,; = b, b, =b=b, , = a.
In both cases we have card 9 = 2% Proof:

1) « = 0. Then the statement follows from Lemma 2.

2) o > 0. Then it holds: for any limit ordinal number 1, < w, and any sequence
{a, | 4 < w,} € % we can have either a;, = a or a;, = b. As card {1 [ A< aw,lisa
limit ordinal number} = X,, we have clearly card § = 2%=.

In both cases there is {a,|A < w}ed, {b;|2<wed={a, [1<w,) <
< {b,| 4 < w,} in F(w,, N). Proof:

1) o = 0. Let {a,| A < wo} €9, {b;| 2 < wo} €Y. Let f, be the smallest ordinal
number such that by, = a,. If we have defined S, for every n < ng (no < ®,) then
we define f,, as the smallest ordinal number with these properties: f,, > B, for every
n < ng, fn, < o, b,,no = a,,. Such an ordinal number f,, is always defined since
otherwise there would be m,({b, ! 2 < we}) < Vo or my{b, I A < wy}) < Ny
Thus {8, [ A < w,} is a strictly ascending sequence of type w, of ordinal numbers
less than @, and such that a, = by, for every 4 < w,.

This implies {a, | 2 < wo} < {b,| 1 < w,} in F(wy, N).

2) a>0.1If {a,| A< w} e {b;| 2 <} e, then we put B, = 4 in case that
dpy = by, and B, = 1 + 1in case that a,, * b, ,for 1 satisfying 0.y £ 2 <
<. (y + 1)foreveryy < , Then {8, ] A < w,} is a strictly ascending sequence

%) It is not difficult to prove that 2— pdim G == card G for any ordered set G.
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of type w, of ordinal numbers less than w, and such that a, = by, for every
A<y ie {a;| 2 <o) = {b,| 2 < w,} in F(w, N).

Now because card X < N, for every X € G, it is possible to define a one-one
mapping yx of the set X into 9; this mapping is clearly an isomorphism. Finally let
us assign to every element x € G the sequence ¢(x) = {c; | A< w,.2}of type w, . 2
in the following way: there exists just one X € G such that x € X. Then Y(X) =
= {a; | A< aw)ey,yx(x)={b, ’ A < w,} € 9. We define ¢{x) = {c;, l A< w,.2}so:

a, for 1 < w,

Cc, =
* b, for 2 =w, + p, u < w,

The set {¢(x) | x € G} is a subset of a set of type F(aw, . 2, N,). We shall show that ¢
is an isomorphism. Let x, ye G, x < y. Then xe X, ye Y where X, Ye G, X £ Y.
Denote Y(X) = {a}| 4 < w,}, W(Y) = {a] | A < w,}, xx(x) = {b} |4 < a 1e(y) =
= {b}| 4 < w,}. As ¢ is an isomorphism, the sequence Y(X) = {a} |/ < w,} is
a subsequence of the sequence Y(Y) = {a} | A < w,}, i.e. there exists a strictly ascend-
ing sequence {f; ] A < w,} of type w, of ordinal numbers less than w, such that
aj = aj, for every 2 < @, As yxx(x) €9, xy(y) € 9, the sequence yx(x) = {b} |4 <
< w,} is a subsequence of the sequence y(y) = {b} l A < @,}, ie. there exists
a strictly ascending sequence {y; | A < w,} of ordinal numbers less than w, such that
5 = b}, for every 1 < w,. If we put

_ /Ba for 1 < w,

0 )
PN, +y, for A= w, + pup < w,

then {4, | A < w, .2} is a strictly ascending sequence of type w, . 2 of ordinal num-
bers less than w, . 2 such that ¢} = ¢}, for every 2 < w, . 2. This implies that ¢(x) =
= {cj| 4 < ,.2} is a subsequence of p(y) = {c] |1 < w,.2}, ie. o(x) < o(y).

Suppose, on the contrary, that ¢(x) < ¢(y), i.e. ¢(x) is a subsequence of ¢(y).
As a, b € M, this implies that x € X, y € Y and y(X) is a subsequence of y(Y), i..
¥(X) < ¢(Y). As ¥ is an isomorphism, this implies X < Y and hence x < y.

Finally, it is easy to see that ¢ is a one-one mapping and therefore ¢ is an iso-
morphism and the proof is completed.

If N, is a regular cardinal number then we are able to prove a stronger result:

Theorem 3. If N, is a regular cardinal number then a quasi-ordered set of type
F(w, N,) is an N,-universal quasi-ordered set.

Proof. If G is an ordered set constructed from G in the same way as in the proof
of the Theorem 2 then 2 — pdim G < N, so that G is isomorphic with a certain
system & of subsets of a set M with card M = N, ordered by a set inclusion.

Let aeM, beEM, a + b be two elements and put for every set Ne & N’ =
= N U {a, b}. Then the system &’ = {N’ | Ne &} is a system of sets such that
2 < card N' £ N, for every N' € &’ which is-ordered by a set inclusion-isomorphic
with G. Denote y an isomorphism of G onto &’. Let ) (N’) be the set of all sequences
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{a, | A < w,} of type w, formed from the elements of the set N’ and such that
m,({a,| A < o,}) =N, for every xeN'. According to Lemma 2 we have
card Y (N’) = 2% for every N' € &'. As card X < N, for every X € G it is possible
to define a one-one mapping @y of the set X into Y.[y(X)]. Finally put ¢(x) =
= ¢x(x) where x € X € G. ¢ is a one-one mapping of G into {}(N') | N'e #'}; the
latter set is a subset of a set of type F(w,, N,). We shall show that ¢ is an isomorphism.
Let x,yeG, x < y. Then xe X, ye Y and X < Yin G. Thus ¢(x) = ¢x(x) =
= {a,| 2 < o} where m({a; |4 < w,}) =¥, for every uey(X) and o(y) =
= ¢y(y) = {b;| 4 < @} where m,({b, |2 < w,}) =R, for every ve yY(Y); at the
same time Y(X) < y(Y). We define the sequence {f, | 2 < w,} of ordinal numbers
less than w, in the following way: f, is the smallest ordinal number such that a, =
= by,; suppose, we have defined 8, for every 2 < Ay (o < w,). Then we define f,,
as the smallest ordinal number with these properties: f;, > B, for every 1 < 4,
Biy < @a by, = a3, - B, is defined for every 4, < o, because {5, |4 < 20(4o < @,)}
is a sequence of type 4, (< ®,) of ordinal numbers less than w, and hence it is not
confinal with w, (w, is a regular ordinal number). Thus, there exists an ordinal
number y < w, which is greater than f; for every 1 < A,. From this it follows that
there exist ordinal numbers f < w, greater than S, for every 4 < 4, and such that
by = a,, for, otherwise_m,,ao({b}L | A < ,)} < cardy < N, which is a contradiction.
This implies that {8, | A < w,} is a strictly ascending sequence of type , of ordinal
numbers less than o, such that a, = by, for every A < w,, ie. {a; | A<} =
= ¢lx) < ¢(y) = {bs| 2 < ®,}. Suppose, on the contrary, that ¢(x) = {a, |4 <
<o) £{b,| A <} = ¢(y). Let xe X (¢ G), ye Y(e G) and let u € Y(X). Then
there exists an ordinal number 4, < w, such that u = a, and an ordinal number
B, < @, such that by, = a;, = u. This implies u € Y(Y) and hence Y(X) = Y(Y).
As  is an isomorphism we have X < Yin G and therefore x < y in G. Thus ¢ is
an isomorphism and the theorem is proved.
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Pe3rome

OB YHUBEPCAJIBHBIX KBA3UVIIOPAOJOYEHHBIX MHOXECTBAX
BUTE3CJIAB HOBAK (Vitézslav Novak), BpHo

Mycrb F(o, m) (rae « — OpAMHANBHOE U M — KAPAMHAJIBHOE YHCII0) — THIL MHO-
XKE€CTBA BCEX MOCIIEOBATEIBHOCTE THIIA 0o, 00pa30BAHHBIX M3 3JIEMCHTOB MHOXECTBA
MOIHOCTH M, KBA3HYHOPSJOYCHHOTO OTHOLICHHEM <, ONPEAEICHHBIM CJICIYFOLIMM
ob6pasom: {a; | A<a} < {b, | A < a} TOTJa U TOJBKO TOrJA, KOTAA MOCIE/0BATEb-
HocTh  {a; | A < a} sABIAETCS NOINOCIEAOBATENBHOCTHIO TIOCIEN0BATENHHOCTH
{b, | A < a}. B craree mokaspiBaercs: JIJis BCAKOTO KBA3MYNODSIOYEHHOTO MHO-
JKeCTBAa MOIIHOCTH =N, UMEETCS B MHOXECTBE THIIa F(wu .2, Na) u3zoMop¢Hoe 1o~
muOX)ecTBo (Teopema 2.). Eciu MOIIHOCTB N, peryispHa, TO UMeeT MecTo Goiee
ciibHasi Teopema: [ BCSKOTO KBa3HYMOPSIOYCHHOTO MHOXECTBA MOLIHOCTH
<N, rme X, — peryaipHoe KapIuHAJIbHOE YUCJIO, MMEETCS B MHOXECTBE THIA
F(w,, ¥,) m3omopdHoe mogmuoxectso (Teopema 3.).
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