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THE FREDHOLM RADIUS OF AN OPERATOR
IN POTENTIAL THEORY

Joser KRAL, Praha

(Received December 12, 1965)

( Continuation )

§2

Throughout this paragraph we shall keep the notation and the assumptions intro-
duced in § 1. The distance between two sets A, B = E, will be denoted by dist (4, B)

= inf {lz — Cl; z € A, { € B}). For z € E, we write dist (z, B) instead of dist ({z}, B).
Let us start with a simple lemma which will be used later.

2.1. Lemma. Let A — E, and suppose that dist (4, K) > 0. Then all the functions
j PO g~ ap(z)
k¢ —z

with F € C(K), [lFﬂ L areuniformly bounded and equicontinuous(more precisely,
they fulfil the Lipschitz condition with the same constant) in A.

Proof. Let d = dist (A4, K). It is easily seen that
(FeC(K), ze A)= |AF(z)| = d"' . iK . ||F|,

where AK is the length of K. Further we have for every F € C(K) and any pair z,, z,
of points in 4

|AF(z,) — AF(z,)| < ||F| n;a}(x €= 207t = (= )71 4K <

< |F|. |z1 — zzl .d7% K,
which concludes the proof.

2.2. Notation. Given M = K and a real-valued function F on M we put N =
= ¢~ 1(M) n <0, 2k) and define

(& F)
ooyl = o= [ v - 2

provided the Lebesgue-Stieltjes integral on the right-hand side exists.
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Remark. The integral

(59) d¢ — 2| = ReJ C_F% d¢

li—l

was called by N.I. MuskHELISHVILI the modified logarithmic potential of the single
distribution (cf. [4], chap. I, § 12). In this paragraph we shall examine some of its
properties which will enable us in § 3 to establish the uniqueness and existence of
solution of the modified Dirichlet problem for a sufficiently wide class of domains.
Our main objective here is the proof of the following theorem which reminds of the
PriwaLow fundamental lemma as presented in [5], chap. III, § 2.

2.3. Theorem. Let #K < n (cf. 1.15 for notation). Then, for F € C(K), the fol-
lowing conditions (A), (B) are equivalent to each other:

(A) The integral (59), considered as a function of the variable z, is uniformly
continuous in a complementary domain of K.

(B) The integral

(60) V.p. j FO)_ d|C - 1| = llmf
IC Kn(n)

df¢ — |,
r->0+

IC - '1|
where K,(n) = {{; (€ K, IC - 11| > 2r}, converges uniformly in ne€K.
If (B) holds then the function MF defined by

(61) MF(z)zLﬁd]{—zL zeE, — K,

MF(ry):V.p.J~ —Ii(g)—d]C—nl, nek,
K|C_’1'

is continuous on the whole of E,.
The proof of 2.3 is based on the following auxiliary results 2.4 and 2.5 whose proofs
will be presented in 2.8 and 2.14.

2.4. Proposition. Let K < n and let D be a complementary domain of K. Then,
for every a € K, there is a b(a) € D such that |b(a) — a| is constant on K and that,
for the set H of all the couples [a, b] withac K and b = a + &(b(a) — a),0 < & <
< 1, the following condition

(62) inf{

is fulfilled.
2.5. Proposition. Suppose that FK < n and let H be any set of couples [a, b]

dist (b, K)

——; |a,bleH 0
b= a [a,b]e }>
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with a€ K and b ¢ K such that (62) holds. Given F e C(K) and [a, b]€ H put
K., = {¢: (€K, lC - a| > 2|b - a|} and define

®(a, b, F) = Ri{ON djt — b| _J F({) djt — d|.
x|¢ - bl ka ¢ = d|
Then, for every F € C(K), ®(a, b, F) >0 as |b—a| >0, [a, b]eH . Proposi-
tions 2.4 and 2.5 having been proved we can establish theorem 2.3 as follows:
Suppose that MF (with F € C(K); cf. (61)) is uniformly continuous in D, a comple-
mentary domain of K, and denote by H the set from 2.4. Let [b(a) — a‘ = r for every
a € K. By 2.5 we conclude that
0 = lim ®(a, a + &(b(a) — a), F) =

&0+

. Fi
= lim (MF(a + &(b(a) — a)) ——J- ©) d|¢ - a))
E0+ Kre(@) { — al

uniformly in a € K. In view of the uniform continuity of MF on D, MF(a + &(b(a) —
— a)) must tend to a limit (as ¢ — 0+ ) uniformly in a € K. Consequently, also

F(0) ) F(¢)
vp. | 28 gl — gl =1 dle —
S Rt giﬁlLM i

converges uniformly in a € K and the implication (A) = (B) is verified.

Conversely, suppose that (B) is fulfilled (F € C(K)) and associate with every
beE, — K an a(b) € K such that ‘a(b) - bl = dist (b, K). Denoting by H the set
of all [a(b), b] (b € E, — K) we observe at once that (62) holds. Employing the remark
following 1.11 we obtain that

[ e —nl (= e o). s B wlo) =)
wa [C =11

is a continuous function of the variable n € K provided 2r € (0, +0) — 2 (cf. also
1.11). # being at most countable (see 1.10) we conclude that, in view of the uniform
convergence of (60), MF|y is continuous on K. To prove that MF is continuous on
E, it is therefore sufficient to verify that MF(b,) - MF(a) for every sequence of
points b, € E, — K tending to a € K as n — oo. Fix such a sequence {b,} and put
a, = a(b,), r, = la, — b,,’. Clearly, r, - 0 and a, » a as n — oo. Let us write
K, = K, (a,). Taking into account 2.5 and the uniform convergence of (60), we see
that

MF(b) — MF(@) = (M0, - [ O a - o

Kn - an|

n ( j § EF—(Cr)l,.I d¢ - a,| - MF(a,)) + (MF(a,) — MF(a)) - 0

asn — 0.
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In order to make the proof of theorem 2.3 complete we have thus to prove proposi-
tions 2.4 and 2.5.
Before going into the proof of 2.4 we shall establish two simple lemmas.

2.6. Lemma. Let y(t) =(, 1o —k S a <ty <P <ty + k 0 <5< rand sup-
pose that var [9;; («, f)] < n — 6 (cf. 1.1 for notation). Then there is a y € E, such
that

(63) 30 S 9(t)) —ySm— 149,
(64) 30 = 9(to—) —vysn—19,
(65) x€E; = dist ({ + xexp iy; Y(o, B)) = |x| sin 46 .

Proof. We may assume that 9,(t) is an argument of (1) — { in (to, to + 2k)
(cf. 1.1). Let a; < by be the end-points of the interval 3,((a, #,)) and let a, < b,
be the end-points of the interval 9,((¢,, §)). Clearly,

(66) by — ay + |94to) — 9to=)| + by —a, S var[9; (0, B)] = n -6,
(67) ay < 9(to) = Ifto+) <
(68) Oto—) = b

Since |94to) — 9{to—)| = %(to—) — 9(t,) = a, — b, we obtain from (66)
n—0=b, —ay+a, — b, + b, —a,=b, —a,,
so that

(69) by <a, +n—9.

In a similar way [3,(to) — 9(to—)| = 9,(t,) — 9{to—) = a, — b, together with (66)
implies

(70) b<a, +n-9.

Put b = max (b, — =, b, — m). Noting that, by (66), b, — a, < n — J, we obtain
from (69)

(71) ‘ b<a,-9.

In a similar way (70) and b, — a; < n — & (compare (66)) imply

(72) b

IIA
=2
|

S~

Defining @ = min (a,, a,) we have by (71), (72)
(73) b<a-5s.
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Put y = (@ + b). Given ue (a, — n, b, — 1) we have by (73)

y2b+152b, —n+402u+15,
Vy=d-3<a - su+n-—10,
so that
(74) uela, —mn, by —n)=>3 <y —usn -4

In a similar way u € {a,, b,) implies

y2b+3=b,—n+3=Zu—n+145,
ySd—30=<a,—30=u—140,

so that

(75) uelan by = <y+n—usn—13.

Finally, (67) and (75) imply (63) while (74), (68) imply (64). Let now x € E,. Given
te(x, to) we have Y(t) = { + Eexpiu with &= |y(r) — (| and u = 9(t) — ne
€{ay; — m, by — n) (note that, with the notation from 1.1, exp i(9(t) — on) =
= exp i(9,(t) — n)) whence we obtain by (74)

|1[/(t) - ({ + xexp iy)l = |x exp iy — Eexp iu| =
= |xexpi(y — u) — ¢l z [Im (xexpi(y — u) — &)| = |x| sin 3o
If t€(ty, B) then Y(f) = { + Eexpiu with u = 9t) € {a,, b,)> and we conclude

from (75) | + xexpiy — Y(¢)| = |xexpi(y + = — u) + ¢| = |Im (xexp i(y + 7 —
— u) + &)| = |sin 30|. Thus (65) is checked and the the proof is complete.

2.7. Lemma. Suppose that K < n (c¢f. 1.15). Then there is a §€ (0, n) and a
(finite) real-valued function y({) such that

(76) ((eK, xeE,, |x| £6)=dist({ + xexp iy((), K) = |x|sin 6
and, for every s € E (cf. 1.9 for notation),

(77) 0 < ¥(s) — »(yY(s)) < m,

(78) 0 < ¥(s—=) = y(y(s) <m.

Proof. Let re(0, +00) — £ be so chosen that #,K < = (cf. 1.15) and fix a
A > 0 with #,K + 4 < n. Suppose that r is less than the diameter of K and, for
every s€ E,, denote by («(s), B(s)) the component of {t; t € E, [y(t) — v(s)| < r}
containing s. Defining U$ by (43) we have clearly (2(s), B(s)) = U; and on account of
1.13 and 1.15 we conclude that var [9°; («(s), B(s))] < n — 4, se€E,. Next we put
A, = (s — k, a(s)> U {B(s), s + k) and show that

(79) inf {dist (Y(s), Y(4,)); s€ E;} > 0.
Indeed, suppose that inf dist (¥(s), ¥(4,)) = 0. Then there are s, € <0, 2k) and
(80) | 4, 4,
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such that lim ||/1(s,,) - !//(q,,)l = 0. Passing to subsequences, if necessary, we can
n-» o0

achieve that {s,}o-1, {da}nz1 be convergent. Put s, = lims,, qo = lim g,. Clearly,

n— oo n— o

¥(so) = ¥(qo) and 4o € {so — k, 5o + k), so that s; = q,. Let ¢, d be so chosen that
®s0) < ¢ < sp <d < B(so) -
Then y(<c, dy) = {{; (€K, [{ — ¥(so)| < r} and we have an n, such that
n>ng= (Y(e, d)) < {{: e K, |0 = Y(s,)| <1} spede, d)).
Consequently,
(81) n > ng=<e,dy < (a(s2) Bsy) -

Noting that g, € {c, dy for sufficiently large n we observe that (81) violates (80).
Thus (79) is proved. Let 2¢ = inf dist (y(s), Y(4,)). Applying 2.6 we associate with

every s € €0, 2k) a y* € E, such tshat

MEH() -y <n—34, MS$s—)-rSn-H4,
(82) x € Eq = dist (Y(s) + x exp iy®, ¥((o(s), B(5)))) = |x| sin 34 .
If xeE,, |x| <e then dist(Y(s) + xexp iy’ Y(4%) = & = |x| sin 44 for every
s € €0, 2k) which combined with (82) yields

(xeEy, [xl < &, s€<0, 2k)) = dist (Y(s) + x exp iy*, K) = [xl sin 4 .
Defining for { € K
y(¢) =y*, where s€<0,2k), ¥(s)=¢,

we see that it is sufficient to put 6 = min (¢, 34) in order to make the proof complete.

Now we are able to present the following

2.8. Proof of proposition 2.4. Let us keep the notation and the assumptions
introduced in 2.4. With every { € K we associate a y({) possessing all the properties
described in 2.7. We shall show that, for every { € K, the points { + J exp iy(C) s
{ — S exp ip(¢) (where § > 0 is taken from 2.7) belong to different complementary
domains of K. Let s € E;, Y(s) = {. We shall apply 1.4 where we put z' = { — &
expiy(), 22 = + S expiy((). We may assume that 9,(f) is an argument of
Y(t) — ¢ for te(s, s + 2k) (cf. 1.1), so that

-exp i(9(t) — «0))»

te(s, s + 2k) = (ﬂ | v(t) —

te(s — 2k, s) = . exp i(3(1) + on — (0)) .

!//() ’l/ft)
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Hence we obtain on account of (77), (78)

lim sign Im fg)*:% = signsin (s) — () > 0,
t=s+ zZ° — Z
lim sign Imlllgti% = — signsin (%(s—) — 7)) <0,
tos— zZ =z

so that, by 1.4, ind (z%, K) # ind (z%, K). For every a € K we denote by b(a) that
of the points a + dexpiyp(a), a — dexpiy(a) which belongs to D. If b =a +

+ ¢(b(a) — a), 0 < & < 1, then, in view of (76),
dist (b, K) > sin o
|b — al

and the proof is complete.

2.9. Notation. Given z € E, and ¢ > 0 we denote by v(¢, z) the number (possibly
zero or infinite) of points in {{; { € K, IC - z| = 0}. Since ¥(g, z) is Lebesgue measur-
able with respect to o (cf. section 2 in [11]) we are justified to define

uf(z):fv(g,z)dg, r>0.

0

The following proposition will be needed below:

2.10. Proposition. Let K < . Then sup {r 'uf({); r > 0, (e K} < +00 .

Proof. On account of 1.11 in [10] we conclude from (9) that
(83) sup {v8(z); z€E,} =V < +0.

Let now & and y({) have the same meaning as in 2.7. It follows from (76) that, for every
(EK,

() =0 <B<yl)+d8 0<r<d)=>Ctrexpiyl)¢K.

Hence it follows by [11] that sup {r 'uX({); 0 < r < 14, { € K} = () < + o0 with
a ¢(0) depending on & and V only.

On the other hand, we have for » = 15 and every (€ K r™ ' uf({) < 2671 uk(() =
= (cf. [11]) = 267" var [|y(r) — {|; €0, 2ky] £ 267" var [y; <0, 2ky] = 267 '4K
whence we conclude that sup {r™! uX({); r > 0, { € K}. < max (¢(5), 20! . AK).

Now we shall concentrate on the proof of proposition 2.5. First we prove three
lemmas.

2.11. Lemma. Let f,, ..., f, be continuous functions on a set U open in an interval
I and denote by f = [fl, -.» f] the corresponding map of U into E,, the Euclidean
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n-space. Suppose that F is a function of n real variables possessing continuous and
bounded first order derivatives F; (j = 1, ..., n) in a neighbourhood of f(U). Let
every f;(j = 1, ..., n) have finite variation on U and define h(t) = F(f(t)), teU.
Then h has finite variation on U and, for every bounded Borel-measurable function
H on U, the equality

(84) J =¥ | 1) Fr) 970

U

is true (the integrals are taken in the sense of Lebesgue-Stieltjes). Further we have
for any non-negative Borel-measurable function H on U

(85) j Havarh < 3 [ HOEO)] dvarf(o).

Proof. Fix a compact interval <o, f) = U and consider an arbitrary subdivision
D={a=1ty<..<t,=p} of <o, B>. We have for sufficiently small lD[ =
= max {t,, — t,—; 1<m<p}

hlta) = H=s) = S L) + 5T LAlt) = o)

where z}' = Fi(x™) — F)(f(t,)) and x™ is a suitable point of the segment with end-
points f(t,—), f(t,). It is easily seen that

(86) Z(D):max{lz;f'l;1§m§p,1.§j§n}—»0 as |D|—>0.
Noting that

W) = he) = £ S F) - D) = )] +
+ (D)D) ¥ [ta) ~ )
with |@(D)| < 1 and making |D| - 0 we obtain
h(B) — h(x) = Z ,(f ) /(1) -
In a similar way
61 Blhle) = ho)] = P - ) = S-)] +
+ 2OV T lt) ).

By lemma 1.3 in [11] we have

SR - Ft) ~ St )]~ J \FUAW) dvar fi(6) as D] = 0.
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Making |D| — 0 in (87) we obtain by (86)
var [h; <o, BY] £ 3 j [F (f(1)) Idvarfj(t

We see that (84) and (85) are true if H is the characteristic function of a compact
interval contained in U. Making linear combinations and passing to limits one easily
shows that (85) is valied for any non-negative function of Baire (compare [9], chap.
V, § 10). In particular, (85) with H = 1 shows that h has finite variation on U. Similar
reasonings show that also (84) is valid for every bounded function H of Baire.

As a direct corollary we obtain the following

2.12. Lemma. Let f,, f, be bounded continuous functions of finite variation on
a set U open in an interval I and put h(t) = f,(t).f,(t), t€ U.Then h has finite
variation on U and for every boundedr Boel-measurable function H on U the

equality
JHdh =ij1df2 +ij2df,
v U U

is true. Further we have for any non-negative Borel-measurable function H on U
JHdvarh §jH[f,‘dvarf2 +fH|f2| dvarf; .
v U ]

2.13. Lemma. Let U be open in 0,2k), a,be E, — y(U) and suppose that
d = dist (a, y(U)) > 0. Then
(88) var, [|(t) — a| — |y(r) — b|; U] < 4d™"|a — b| var [y; U].

Proof. Write y; = Re ¢, Y, = Im ¢ and let aj, b; (j = 1,2) have a similar
meaning with respect to a, b. Put F(z) = |z - a[ |z — b], z € E,. We have by 2.11

var,[||//(t - a| - |l//() ; U] = var, [F(y(1)); U] <

g ) —a; Y1) — b
; J.U W )_al ll//( “bl

e, w0 = b
vl - al () - | |
_ [(b; = a))| w(t) = b] + (Y1) — b)) (|¥() — b| — |¥(r) — a])| <
|v(r) — a| - lu(1) = b] N
cbi—al |-
Iw(f) - ﬂl (1) — df
we conclude easily that (88) is true.
Now we can pass to

IIA

d var y (1)

Since

<2d7'b — q
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2.14. Proof of proposition 2.5. Let [a, b] € H. We shall show that
1

1
89 _dC—b:=0=j —d|{ — a].
(59) [ gk -el=o=| piydk-d
Indeed, using 2.11 with n = 1, F(x) = log x we obtain

1 2k |() |
90 —~ _dlc—bl =1 d.dogly(t) — b =
- Jope o=},

= log |y/(2k) — b| — log [y(0) — b| = 0.
In a similar way we derive for U = {t; t€ 0, 2k, |y(t) — a| > 2|b — al}
1
(91) f ————d|¢ - 4 =I d, log |y(t) — a .
Kab C - al U

Let & be the system of all components of U. If |x//(0) - a[ < 2|a - b| then every
I € & has the form I = (a, f) with

(92) |¥(2) = a| = 2la — b| = [(B) ~ |,

so that

(93) Jd, log |y(t) — a| = log [W(B) — a|—log |y(x) — a| =0
and

f d, log |y(t) — a =Y fd, log |(t) — a| = 0.
U Ies J1

Consider now the case |n//(0) - a| >'2|a - b| . Noting that a € K we see that
K — K, * 0. There are exactly two components <0, &), (By, 2k) in & containing
the end-points of <0, 2k} while every other I € & has the form I = («, §) with (92)
(so that (93) is true). Consequently,

ay 2k
fd, log |y() — 4 =j d, log |y(t) — a| +f d, log [y(1) — a| =
U 0

B1
= log2la — b| — log [(0) — a| + log |y(2k) — a| — log2|la — b| =0

which together with (91), (90) yields (89) again. We have seen that, in any case, the
equality (89) is true. Let us fix an F € C(K). On account of (89) we have for [a, b] € H

(94) ¢(a,b,F)=fF(|Cg+fl(“)dIC—bi—J f—(—lCz—:%(—a—)dk—al.

The rest of the proof will be divided into three lemmas 2.15—2.17.
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2.15. Lemma. Given [a, b]€ H and A > 0 put

Ky= K (a) = {{; LeK, |{ — a| > 24}
and define

[ FO-F@ gy [ FO-F@ g o
(p“(a’b)_L [ de = #l La ¢~ qf 4 =l

Then, for any fixed A > 0,
@ (a,b) >0 as |a—b| >0, [ab]leH.
Proof. Let us define for [a, bl e H
F() — F(a) _ F(£) = F(“))
Ji(a, b) = - dlc — b,
(@ Lm)( |c — b |c -l | |
sany = =T e~ 1),

Ka(a) |C - a|

so that
®4(a, b) = Jy(a, b) — Jy(a, b).
Let max {|F({)|; { € K} = m. Given [a, b] € H with |b — a| < 4 we have for every
le KA(“)
1 < |a - b!
o= bl ¢ —all 7 Jc—b].|¢ -

a S4la—b|.477
whence
|74(a, b)| < m|a — b| 472 . var, [|y(t) — b|; <0, 2k>] <
< mla — b| 472 .var [y; <0,2k)] >0 as |a —b[ 0.
Employing 2.13 with U = {1; 1 € €0, 2k}, |(t) — a| > 24} we obtain

Jo(a, b) < mA~" var, [|y(r) — a|l — |w(t) — b); U] £
< 4la — bl mA~? var [y; <0,2ky] >0 as |a —b| =0,

which completes the proof.
2.16. Lemma. Given 4 > 0 and [a, b] € H with |a — b| < 4 put

L= Lya,b) = {{; LeK, 2Ja — b| < |{ — a] <24}
and define
F(() — F(a) I F({) — F(a)
¥ a,b)=| - B gle = b| - | =L——d|C - 4.
(@ 5) L [ o= L |- ql 6=l
Then ¥ (a,b) >0 as 4 -0+, [a,b]eH, |a —b| < 4.

575



Proof. Given [a,b]e H we denote by (;a, b) a continuous single-valued
argument of (Y(t) — a)/(b — a) on

T, = {t; 1€ <0, 2ky, |Y(1) — a| > 0} .

We have thus for every te T,

(95) |'P(’) - biz = expi¥t;a, b) — 1 2=

|

I slf(t)

= |y(®) — a* + |a — b]* = 2|a — b| - |W(t) — a| cos 9(z; a, b)

(which, in fact, is the elementary cosine theorem). Let us fixa 4 > 0 and a [a, b]e H
with |a — b| < 4; further put T= {t; t€<0, 2k, 2|la — b| < |y(1)— a| < 24}.
It follows easily from 2.11, 2.12 and (95) that

f F(y(1)) - F(a)_dth[,(t) = b| =

() - o]
J Tﬁﬂ—())—blz_@ df[w(e) — a* = 2a — ] . [y(1) — a| cos §(t; a, b)] =
- LF?:I;Eg):ZjZ(“) (Jw(5) — a| — |a — b] cos 8 (£; a, b)) difu(t) — a| +
b'f F(‘P ;ﬁ“) W(t) — a| sin 8(t; a, b) d, 9(t; a, b).
Writing

Ky(a, b, 4) = j (Fu() -

Fla (1) — a| —|a — bI cos §(t; a, b) 1 B

- e W) — oF 5 a0 el
K,(a, b, 4) = |a — b| T_F(T'//j%tt))):__ﬁgillx//(t) — a| sin 3(t, a, b) d,%(t; a, b)

we obtain

(96) ¥ a, b) = Ky(a, b, 4) + Ky(a, b, 4) .

Put, for the sake of brevity, r = luﬁ(t) - al, 9 = 9(t; a, b). Then, by (95),

|W(1) —a| — |a —bJcos §(t;a,b) 1 rla—b|cos§ —|a— b
Iw(t) - bl2 |¢(t) - a| B r(r*+ |a - b|2 - 2r|a —b] cos 9) i
Let us define for everyé = 0 ‘

2(8) = sup {|F({) — Fin); &, neK, ¢ —n| <6}
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Noting that Z‘a - b‘ < r(te T) and, consequently,

rla — b|cos 9 — |a — b? la — b|
r(r* + la — blz - 2r|a - b| cos 9) = (r - la - bl)2 ’
we obtain the following estimate for K,(a, b, 4):
d, var |y(t) — a
97 K,(a, b, 4)| < 2Qg24).la — b .
01 Klab. ) 5 20004) o -] [ e MO

Denoting by x(y) the characteristic function of the interval {y; 2
we have

d var |y(t) — 4 _ 2k x(r) — a)) var ol
GQLWWW%MWZLWWW%Mm” Wi =

Let us observe that v(y, a) (cf. 2.9 for notation) equals the number of points in
{t; te <0, 2k); ]l//(t) - al = y}. Employing 1.1 in [11] we arrive at

% —a)
‘”)qu0~ﬂ—w~wfd v = j

Let us recall that [§ v(y, a) dy = uf(a) and, by 2.10,
(100) sup{g ' ut((); >0, {eK} =Q < +.

Integrating by parts in (99) we obtain

S N7 () - )
.Lla—b! (v = |a = b V- la = b))  a— b

+ 2j (v = a = )7 ul(a) dy < 20 (A“ +j Wy —la— bl)'3) dy <

2ja—b| 2ja-b|

a—b| <y=24}

24 v(y, a)

2}a—b) (v - ‘a - b\)z

dy .

.+_

<20/4 + 3Qf|a - b|,
which together with (99), (98) and (97) gives
(101) |Ky(a, b, 4)| < 102424).Q, [a,bleH, |a — b| < 4.

To derive an estimate for K, (a, b, /_1) we keep the notation introduced above and
notice that, by (95),

la — b|. |¥t) — al . |sin 8(t; a, b)| _ la — b|.r.|sin 9| <
() — b|? r* + |a — b|* — 2rja — b|cos §
la - bl r r
B CE P ey e
whence
(102) Ky(a, b, 4) < 2Qg(24) . var, [3(t; a, b); T,] .
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Let ¥~ be the system of all components of T, and, for every I € ¥°, denote by 94(¢)
a single valued continuous argument of l//(t) — a onI. It is easily seen that, for every
Iev,9,(t) — 3(t; a, b) reduces to a constant on I so that

var, [9(t; a, b); I) = var [9;;1], Te¥
and, by 2.2—2.4 in [11],

(103) var [§(t; a, b); T,] =Y, var [9;1] = v¥(a).
Iev
Employing (83) and (102) we arrive at
(104) |Ka(a, b, 4)| < 2VQ(24), [a,b]€H, |[a —b| < 4.

In view of (104), (101), (96) and the uniform continuity of F our lemma is proved.
2.17. Lemma. Given [a, b]e H put M = M,, = {{; (€K, IC — a! < 2}a - b]}

and define
F(a,b):j%l(—w IC b|.

Then I'(a, b) - 0 as Ia - b| -0, [a, b]eH.
Proof. Let us recall that

(105) inf {dist (b, K)/|a — b|; [a,b]eH} =1> 0.
Fix a [a, b] € H and put

A = {t; te<0,2k), |¥(t) — a| < 2|a — b},

B={tted |y(t)—a|>0 =ANnT,.
Noting that var [|x//(t) — bl; A — B] = 0 because |1// t) — bl la - bl is constant
on A — B (cf. 1.9), we see that

F(y(t F F(y(t)) — F(a

() - s V() - bl
Let %(¢; a, b) and Qp have the meaning described in the proof of 2.16. Applying 2.11
we obtain by the same reasoning as in the proof of 2.16

F(y(1)) = F(a) bl =
j =6 dly(®) - b

|w(t)
_ [ () = Fa) al — Ia— cos 9(t; a —a
= f W (Jw(r) - |- | b| cos §(t; a, b)) d,|y(t) | +
o= 0 [ D=0 ) — i (s )05 0.) =

= I,(a, b) + I(a, b).
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Noting that, by (105),
(106) teB=|y(t) — b| 2 l|a - bl
and (compare (100) and section 2 in [11])
var, [|(t) — a|; B] = u}j,—p(a) < 2Q|a — b|,
we conclude easily that
(107) |Ii(a, b)| < 60172Q¢(2|a — b|), [a,b]€H.
Further we have on account of (106), (103) and (83)
(108) |I(a, b)| < 2V172Q4(2]a — b|), [a,b]€H.

Since I'(a, b) = I,(a ,b) + I,(a, b), (107) and (108) complete the proof of our lemma.
Now we are able to finish the proof of 2.5.
In view of (94) and 2.15—2.17 we have

d(a, b, F) = ®4(a, b) + ¥4(a, b) + I'(a, b)

provided [a, b] € H, |a — b| < A. Let ¢ be an arbitrary positive number. By 2.16 we
can fix a 4 > 0 such that

([a, b]€H, |a — b| < 4) = |¥(a, b)| < &/3.
Applying 2.15 we find a 6; > 0, §; < 4, such that

([a, b]€H, |a — b| < &,) = |®,(a. b)| < ¢/3.
Employing 2.17 we obtain a §, > 0, §, < J,, with

([a. b]€H, |a — b| < &;) = |I(a, b)| < &3.
Thus ([a, b]€ H, |a — b| < §,) = |®(a, b, F)| < £and 2.5 is proved.

§3

In this paragraph we shall be engaged with the modified Dirichlet problem as de-
scribed in the introduction. We shall show that results obtained in §§ 1, 2 permit us
to express its solution as a logarithmic potential of the double distribution for a suf-
ficiently wide class of domains.

We start with an auxiliary result:

3.1. Proposition. Let G be an arbitrary domain in E, with a compact boundary B
and let ¥ be bounded analytic function in G. Suppose that there exists a continuous
function ¥, on G U B = G coinciding with Re ¥ on ‘G and put m = inf {¥(z);
ze€ G}, M =sup{¥,(z); ze G}. Then ¥,(B) = {(m, M.
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Proof. Let us first remark that it follows from known properties of harmonic
functions that inf Y’l(B) = m, sup TI(B) = M. Hence we, however, cannot conclude
that

(109) ¥,(B) = {m, M),

because B need not be connected. Since ¥,(B) is closed it is sufficient to show that
¥,(B) is dense in (m, M) in order to obtain (109). Let us admit that there is an interval
(a, b) with m < a < b < M containing no points of ¥,(B). Let Z be the set of all
z € Gwith ¥'(z) = 0. ¥ being non-constant, Z is at most countable and, consequently,
¥,(Z) is at most countable as well. Let us fix @ < Bin(a, b) — ¥,(Z). If G is unbound-
ed then there exists the limit lim ¥(z) = ¥(c0) (note that ¥ is bounded and B is
z| o0
compact) and we may assume :xland B to be so chosen that ¥,(0) ¢ («, B) . Put G, =
= {z;z€ G, « < ¥,(z) < B} and denote by B, the boundary of G,. It is easily seen
that G, is a bounded open set. G, is non-void. Indeed, there are points z,, z, in G with
m < ¥(zy) <« < p < ¥4(z,) < M ; consequently, there must be some points in
G,, too, because G is connected and ¥, is continuous in G. Since B, < {z; z€ G,
?.(z) = a} U {z;z€ G, ¥(z) = B} = G — B = G (note that (a, b) n ¥,(B) = 0),
we have G; = G; U B; = G . Consider now an arbitrary point { = x, + iy, € B,

(xo» yo€E;). Then either ¥,({) = « or ¥,({) = B so that ¥'({) = %({) —
, X

- l% (0) * 0, because a, f ¢ ¥,(Z). Hence we conclude by the classical theorem
y

on implicit functions that, for some neighbourhood
U= (xog—9, Xg+68) X (yo—4, yo+4)=G(5,4>0),
U n B, coincides with the set of all x + iy fulfilling one of the equations
y =fx)

(with an infinitely differentiable function’f(x) of the variable x on (x, — &, xo + 9))
or

x =g(y)

(with an infinitely differentiable function g(y) of the variable y on (y, — 4, yo + 4))
and that U n G, and U — G, are exactly the two parts into which U is naturally
divided by B; n U (= the graph of the corresponding function). We may thus speak
of an exterior normal n, to G, for every { € By, and, B, being smooth, we are justified
to employ the classical Green formula. Noting that ¥, = Im ¥ is harmonic in
G o G, we obtain

(110) j J [(‘”’2> (‘3;; ) :Idx dy = J Rk 6?’2 (O 010,
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where A stands for the linear measure (= length) on B,. It follows from the Cauchy-
Riemann equations that, for every { € By,

P2 )= T

111)
(1L on, oty
where 7, is a tangent to B, at {. ¥, being constant on every component of B; we have
d¥,/0t, = 0 ({ € By) and, by (111), the integral occuring in (110) must vanish. Con-

ikd v . L . .
sequently, V' = 6_2 + i—2 =0 in G,, which is a contradiction concluding the

y O0x
proof.

Remark. Reasonings applied in the course of the above proof are known; compare
N. I. MUSKHELISHVILI’s monograph [4], p. 248.

From now on we shall assume that the symbols D, K, ..., K,, B have the meaning
described in the introduction. On account of 3.1 we obtain the following

3.2. Corollary. Given G € C(B) there is at most one function @, which is continu-
ous on D and fulfils the following conditions 1) and 2):

1) @, — G is constant on K; (j =0, ..., g) and
(112) &, =G on K,

(in case Ko = 0 we require ®,(c0) = lim ®,(z) = 0 instead of (112)).

lz]= o
2) There is a single-valued analytic function ® in D for which
Imd =%, on D.

Proof. Suppose that, besides @,, @, we have another pair @,, & possessing all the
properties described in 3.2 and put ¥ = (1/i) (¢ — ¢), ¥, = &, — &,. ¥,(B) being
finite we conclude on account of 3.1 that the interval ¥,(D) = ¥,(B) must reduce
to a single point. Since ¥; =0 on K, (or ¥;(o) = 0 if K, = 0) we see that
Y, =0 on D.

3.3. Remark. Every @, enjoying the properties 1) and 2) from 3.2 will be termed a
solution of the modified Dirichlet problem corresponding to G. It follows at once
from 3.2 that, for every G € C(B), the corersponding solution of the modified Diri-
chlet problem is uniquely determined. Now we proceed to examine the existence of
the solution and its representability in the form Im &, where @ is defined by (6).
We impose (3) on B and, for every F € C(B), we define

W(z, F) = ZW,(J(z F), z€E,
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(j ranging over 0, ..., q if K, # 0 and over 1, ..., q if K¢ « 0); further define WF
on B by (4). It follows from 1.2 that, for { € K;,

lim Wy (z, F) = Wy ((, F) + n F({) ;

z{
zeD

further we have
lim Wy (z, F) = Wi ((, F)

z—{
zeD

for I # j, because { ¢ K, (compare 2.1). Consequently,
lim W(z, F) = W({, F) + n F({) .

z={
zeD

We see that WF({) = W({,F), (e B, FeC(B). WFe C(B) provided F e C(B)and
W:.F —- WF.

is a linear operator acting on C(B). Defining #B = lim % B (compare (2)) and
R-0+
using the notation introduced in 1.14 we have

3.4. Theorem. oW = ¥B.
Proof. For every j we denote by Wy, the operator on C(K ;) defined by
Wi, F({) = Wg((, F), (€K;, FeC(K,).
We first show that
(113) oW = max oWy, .

J
For F € C(K;) we denote by E; F(e C(B)) the function on B coinciding with F on K;
and vanishing on B — K;. Given F € C(B) let R;F = F|y, (€ C(K;)) be its restriction
to K;. If T'is any compact operator acting on C(B) then R;TE; is a compact operator
on C(K;) so that

oWy, < Wy, — RiTE;| = |[R,WE; — R,TE;| < [W - T
which shows that ‘
(114) max oWy, < oW.
Put ¥; = R;W — W R;. Then, for every F € C(B) and z € K,
F
¥, F(z) = ¥ Wi(z, F) = ¥ Im J FO g
%) 1%j nl—z

whence we conclude on account of 2.1 and the Arzela theorem that ¥;is a compact
operator from C(B) into C(K;). It follows from the definition of ¥; that

J
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Let now T; be arbitrary compact operators acting on C(K ;) each and put
T= ZEj(Y’j + T;R;) .
J
T being a compact operator on C(B) we have
oW < |W = T| = [ZE(Wy, — T) Ry = max [ Wy, — Tj|
J J
whence oW < max wWg, which together with (114) implies (113).

J
It is easily seen that

0 < r < mindist (K;, K;) = #,B = max # K;
it j

whence

(115) FB = m?.x.%"Kj.
J

We know from 1.20 that FK; = wW, so that (113) and (115) conclude the proof.

3.5. Notation. Given G € C(B) we denote DG the class of all F e C(B) for which
the function @, defined on D by

Dy(z) = " W(z, F), zeD, &,(() = 'limW(z, F), (eB,
z={
zeD

possesses the property 1) from 3.2.

Let Q be the class of all F e C(B) which are constant on every K. Further, Iet Q,
be the class of all Fe Q vanishing on Ko (Qo = Q if K, =0). Clearly, Q, is
a g-dimensional subspace in C(B). We shall denote by I the identity operator on

C(B).
3.6. Lemma. Let F, G € C(B). Then
FEDG« (I +n 'W)F —GeQ,.
Proof follows at once from the relation
(116) linz W(z, F) = WF(() + n F({), (€B.
zeD

3.7. Notation. Let T be a linear operator on C(B) enjoying the following properties
(117), (118):

(117) TC(B) = Qo
(118) TQy = Qo -
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To obtain such an operator T'it is sufficient to put

q

TFQ) = Y e F(C). (eB,

where e; denotes the characteristic function of K; on B and (; is a fixed point in K

(J=1..9).
The following lemma follows at once from 3.6 and (117)

3.8. Lemma. Let G C(B). Then {F; FeC(B), (I + n"'W+ T)F = G} = DG..

3.9. Remark. In view of 3.8 it is sufficient to show that, for every G € C(B), the
equation

(119) (I+n'W+T)F=G

has a solution F € C(B) in order to prove the existence theorem for the modified
Dirichlet problem. To be able to apply the Riesz-Schauder theory to the equation
(119) we now impose (7) on B (compare (3.4). Then the Fredholm alternative is valid
(note that T'is compact) and it is sufficient to verify that

(120) (FoeC(B), (I + n7'W+ T)Fy =0)=F, =0

in order to prove that, for any G € C(B), there si a unique solution F € C(B) of (119)
(cf. [6], n° 89 and [1], chap. XIII). We first prove the following

3.10. Lemma. Assume (7). Then
(121) (FeCB), I +n"'W)FeQ)=>FeQ.
Proof. Let Fe C(B), (I + n~'W) F € Q. Counsider the function
F(¢)

vz =Ly | Fra, zek, - 5.
7y KjC—z

We have by 1.2 for every { € B
lim Re ¥(z) = (I + n~'W) F({)

z=§
zeD

so that Re ¥ extends from D to a continuous function ¥, on D U B. ¥(B) being
finite we conclude on account of 3.1 that ¥ is constant on D. Fix now a; and r > 0
with r < min dist (K;, K,) and define U; = {z; z€ E,, dist (z, K;) < r}. Further

1+j
denote by 4;, B; the complementary ‘domains of K;; let the notation be so chosen

that D < 4;, D n B; = . By 2.1 every
FO) o

K,C—Z
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with I # j is uniformly continuous in U;. Since ¥ is uniformly continuous on U; N
n Aj = U; n D (for it is constant on D) so must be

(122) Re f K,.CL(—C); d¢ = Re (m ¥(z) —lgj K,_CF(——C)Z dC).

By theorem 2.3 (cf. also 2.1) we conclude that (122) is uniformly continuous on
U; — K; so that also

Im‘l’(z)=—1ReJ {FL_C)QIC—l ZReJ Mdc

T z T I+j — Z

is uniformly continuous on U; — K;. We have thus

lim Im ¥(z) = lim Im ¥(z) = a;, (€K;,
z-¢ z-¢
zeB; zeA j

where a; is a constant (note that ¥ is constant on D). Hence Im ¥ is constant on B;
(in case j = 0 the domain B; = B, is unbounded and we notice that ¥(c0) = 0).
Consequently, also Re ¥ is constant on B; and we obtain from 1.2 (cf. also 2.1) that

2F(0) = lin: Re ¥(z) — Iin; Re ¥(z)
zedj zeBj

is constant on K. Since j was arbitrary we see that F € Q.

3.11. Lemma. Let #B < n. Then
(123) (FEC(B), (I + n"'W)FeQ,) = FeQ,,
(124) FeQoy=(I+n'W)F=0.

Proof. Given F € Q we denote by ao(F) the value assumed by F on K, if K, + 0
and put ao(F) = 0if K, = 0.
We shall first show that

(125) FeQ=(I+ n 'W)F() = 2ay(F) forevery (€B.
Indeed, we have for FEQ and ze D
(126) Wiz F) =0, j=1,...,4;

in case K, + 0 we have besides (126) Wy (z, F) = 2na(F), whence we obtain
Y Wi,z F) = W(z, F) = 2nao(F), zeD. This together with (116) implies (125).
7

(124) is merely a special case of (125). Finally, (123) follows at once from 3.10
and (125).
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3.12. Lemma. Let #B < n. Then Qo = DO.
Proof. (124) and (116) imply Qo = DO while (116) and (123) imply DO < Q,,.

3.13. Theorem. Let #B < n. Then DG =% 0 for every Ge C(B). Given F € DG
(G € C(B)) we have DG = F + Qo = {F + H; He Q,}.

Proof. Let F,e C(B) and suppose that (I + 27'W + T)F, = 0. In view of
(117)we have (I + n~'W) F, = —TF, € Q, whence it follows by (123) that F, € Q,.
Using (124) we conclude that TF, = —(I + n~'W) F, = 0 and, on account of
(118) (note that Q, is finite-dimensional), we arrive at F, = 0. Thus (120) is verified
and by 3.9 and 3.8 we have DG = 0 for every G € C(B). The rest is an immediate
consequence of 3.12.

3.14. Remark. Main reasonings used above for the proof of 3.13 are classical
for B consisting of sufficiently smooth curves (compare [3], § 32 and [4], chap. III,
§ 61). The idea of employing the equation (119) with an operator T enjoying (117),
(118) for solution of the modified Dirichlet problem is due to N. I. MUSKHELISHVILI
(cf. [4], footnote on p. 253 for the bibliography).

An F € DG (G € C(B)) having been found the Dirichlet problem corresponding
to G can be easily solved as described in [4], chap. III, § 63 (cf. also [3], § 31, 32).
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Pe3rome

PAANYC ®PEATOJIMA OAHOI'O OIIEPATOPA
TEOPUU TMOTEHLUAIJIA

MOCE® KPAJI (Josef Kral), Ipara

Ilycts Dy, ..., D, — orpaHUYeHHbIC JOMOJIHUTEIbHBIE 0OJACTU MPOCTHIX 3aMKHY-

q

THIX CIPAMIIAEMBIX KPUBBIX Ky, ..., K, . IIpeanosoxum, 4ro kpusbie K; OTpUIATEILHO
OpHUEHTHPOBaHBI ¥ MHOXecTBa D; = D; U K; B3auMHO He Tepecexarorcs. Ilycts,
nmanee, E — eBKIMIOBA IUIOCKOCTH WJIM OTPAaHWYEHHAs IOMOJIHUTENIbHAs 00JacTh

TMOJIOXKHUTEIBHO OPHEHTHPOBAaHHOM cripsimuisieMol kpuBoii Kopaana K, Takas, yTo

q

‘C}lﬁ ; < E. Tlonoxum D = E — ‘Ll_l}llj ; U 0bo3HauMM uepe3 B =~U0K j opueurupo'_
Ji= Jj= =
BaHHYIO TpaHuly ob6nactu D. (Mbl nonaraeM K, = 0, ectu D HeorpanuueHa. B ciy-
yae K, + 0 gonyckaercs ¢ = 0; Takum 06pa3om, D MOXET COBNANAThL C OTPAHINYEH-
HOM OMOJIHUTEIbHOM 00J1acThI0 KPHBOM KO.)

IMpocrpanctBo Banaxa BceX HEMpepbIBHBIX AeiCTBUTENbHBIX (yHkuud F Ha B
c Hopmoit ||F|| = max {|F({)|; { € B} o6osnaumm yepe3 C(B). [lust kaxoit hynkimyn
F € C(B) paccMOTpHM COOTBETCTBYIOLMH MOTEHIHAN TBOHHOTO CIIOS

(1) W(z,F)=Imf —E(—Q-dc, zeD.

gl —z

Eciu 0603HauuTh 4epe3 pg((, @) 4ncno Touek, B KOTOPBIX OTpe3ok {{ + rexp ix;
0 < r < R} nepecekaet B, 10 pug({, o) smnsercs usmepumoit (o JleGery) dynkumeii
NMEPEMEHHOTO & ¥ MBI MOXEM MOJATaTh MO ONpPEIETEHHIO

2n

FrB = supj ur(C, o) doc .
{eB 0

W3 pesynbratos cratbu [10] BbITEKaeT, 4To

(2) F B <

ABJIAETCS HEOGXOAMMBIM U JOCTATOUHBIM YCIOBHUEM ISl TOTO, YTOOBI moTeHIua (1)
C MPOM3BOJIBHOI MIOTHOCTEIO F € C(B) omyckas HenpepblBHOe pacumpene ¢ D Ha
D = D u B. B panbHeiiieM npeanonaraem, 4to yeiaosue (2) cobmomaercs. Ompe-
nenam Ha C(B) omepatop W:F — WF mnonaras

WF(() = lim W(z, F) — n F({), (eB, FeC(B).
z=(
zeD
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XopouIio U3BECTHO, YTO HEKOTOPBIE BaXKHble KPaeBble 3aJaYU CBOAATCS K PEIICHUIO
ypaBHEHUS BUAA

3) I+2'"W+T)F=G

(c 3amaunoit ynxuueit G € C(B) u neussectHoit dyuxuueit F € C(B)), rae I 06o3una-
YyaeT TOXAECTBEHHBIH onepatop u T — onpezeCHHbII BIOJHE HEMPEPHIBHBIA onepa-
TOp IEHCTBYIOUIMII Ha C(B). B cBsa3u ¢ npumeHenneM Teopuu Pucca-llaynepa
K ypaBHEHHUIO (3) MOJIE3HO M3YYUTD BEJIMYUHY

oW = irQ\f HW— QH ,

Iie HYOKHSISL TPaHb OEpEeTCs 10 BCEM BIIOJIHE HEMPEPHIBHBIM ONEpAaTOpaM, ACHCTBYIO-
1LUMM Ha C(B). B cratbe moka3bIBaeTCsl paBEHCTBO

wW = lim #,B.
R0+ -

B kavecTBe NPUMEHEHHs [IOKA3bIBAETCS €IMHCTBEHHOCTb, CYIECTBOBAHME M IpE.-
CTaBMMOCTh B BHJE MOTCHUHAJIA IBOWHOTO CJIOS PEIICHUS MOIU(PUIUPOBAHHON
npo6iemsl Qupuxie njis obiacreit, rpaHnila KOTOPBIX MIOTIUHSIETCS YCIOBHIO

lim #xB < .
R—-0+

B noka3atesbCTBe MCHOJIB3YIOTCS HEKOTOPBIE YCTAHOBJIEHHBIE B CTaThe CBOMCTBA
MOIU(PUIMPOBAHHOIO MOTEHIMAJIA TPOCTOTO CJIOS

M(z,F):ReJ E'E(_—C)—ch.
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