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AXIOMATIC TREATMENT OF BASES IN ARBITRARY SETS

VLASTIMIL DLAB, Praha

(Received November 9, 1964)

I. INTRODUCTION

In his paper [5], H. WHITNEY has defined a matroid in several ways. In particular,
the primitive notion of “an independent set” being chosen, a matroid is a finite set S
together with a family of independent sets (subsets of S) satisfying the following two
postulates:

(I;) Any subset of an independent set is an independent set.

(I,) IfI, and I, are two independent sets with n and n + 1 elements, respectively,

then there exists an element x € I, \ I, such that 1, U (x) is an independent set.

The definition of a matroid in terms of “bases” consists in specifying a family of
bases (subsets) of a (finite) set S with the following two properties:

(B,) No proper subset of a base is a base.

(B,) If By and B, are two bases, then for any element b, € B, there exists an
element b, € B, such that [B, \ (b;)] L (b,) is a base.

The correspondence expressed by

“Every maximal indépendent set is a base”
and
“Every subset of a base is an independent set”

then easily establishes the equivalence of both concepts.

The definition of a matroid in terms of independent sets was later extended to in-
finite sets introducing an additional condition of “finite character property” for the
family of independent sets:

(I3) If every finite subset of a set I is an independent set, then I is an independent
set. .

This generalized concept coincides with the author’s concept of a LA-dependence
structure in [2], where also some other conditions equivalent to (I) are introduced.
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The present paper offers a generalization of the definition of a matroid in terms of
“‘bases” to sets of an arbitrary cardinality. An attempt in this direction was also the
paper [4] of E. SZoDORAY. As a particular result we shall prove that the properties
(B,), (B,) together with the following condition expressing ,.finite character property

(B3) If every finite subset of a set I is a subset of a suitable base, then I is a subset
of a base.")

give a complete characterization of the maximal independent sets (bases) of LA-

dependence structures (generalized matroids).

2. PRELIMINARIES

Throughout the paper, the terminology introduced in [1] and [2] will be used. Let
us recall that, in terms of independent sets, an A-dependence structure is a pair
(S, #) of a set S and an A-independence net of S, i.e. a family # =* 0 of subsets of S
satisfying (I,) and (I;). Denoting by ./, the family of all maximal independent sets
of (S, .#), i.e. the family defined by

(F - M) Medl, & MeI AVX(X Z M- X¢S)

one can easily prove that ./, satisfies the conditions (B,) and (B;), where “X is
a base” should be read*“X € .#,”. On the other hand, let .# + 0 be a family of sub-
sets of a given set S such that .# satisfies both (B,) and (B;) (again, “X is a base”
should be read as “X € 4”"). A family of this kind will be called an A-independence
covering of S. Then, defining .# , by

(M - F) Ief > IMM 21 A Me i)

it turns out immediately that # , possesses the properties (I;) and (1) (reading %,
for £). Also, combining the correspondences (# — .#) and (.# — %), the following
equalities hold

Mg, =M and SF, =F.
This yields the following basic result:

Theorem. The concepts of an A-dependence structure (S, .#), where S is an
A-independence net of S and the conc¢ept of an A-dependence structure (S, i),
where 4 is an A-independence covering of S are equivalent, the equivalence being
established by the mappings (J — M) and (M — F).

Furthermore, # being an A-independence net of a set S recall at least the following
two concepts of [2]:

1 Another, equivalent, formulation of (Bj) is the following one: A4 set which is not contained
in any base possesses a finite subset with the same property.
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The closure operation C4 on £ is defined by

© =10 U Tu(x)

Tu(x)¢S
and the family %, of canonic sets by
(%) IeG,oIcI AVX[XeF AT = CyX) > Cy(I) = Cy(X)].

In what follows, by a base of an A-dependence structure always a maximal indepen-
dent set which is canonic will be understood. Let us introduce also the relation
5 & F x £ defined by

(¢) [I, L]ees oI, = Cu(I,) A, = Cy(1y).

Our investigations will be based on the following two lemmas on A-independent
nets of a set S (see [2]):

Lemma A. Let # be an A-independent net of S. Then, for any I, € # and I, € ¥
with I,  C,(I,) there exists I, < I, \ I, such that

Iiulaed and I, < Cy(I; ul,).

Lemma B. Let .# be an A-independent net of S. Let I, € # and I, € €4 such that
[1,,1,] e, Then,

card (I, \ I,) < card (I, \ I).

3. SOME PROPERTIES OF BASES

In this short paragraph, let (S, .#) be a (fixed) LA-dependence structure (i.e.
%, = #).*) We are going to show that, besides (B,) and (B;), also (B,) and some
further properties hold for bases (i.e. maximal independent sets) of (S, #) (comp. [2]).

First, state the consequences of Lemmas A and B for bases of (S, #).

Statement A. Let B be a base and I an .i,ndependent subset of S. Then there exists
a base B, such that

I<B, and By\I1< B.
Statement B. Let B, and B, be two bases of S. Then
card (B, \ B,) = card (B, \ By).%)

Now, formulate the following

2) Though some statements can be formulated more generally for GA-dependence structures.

3) And, hence, card (By) = card (B,). Of course, both equalities are equivalent for a finite
set.S.
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Theorem. Let B, and B, be two bases of S. Then, besides (B,), also the following
statements hold:

(By) For any element b, € By \ B, there exists an element b, € B, \ By such that
[By \ (by)] U (b,) is a base of S.

(Bzf) For any finite subset B < B, there exists a subset B, < B, of the same number
of elements such that (By; \ B}) U B} is a base of S.

(B%) For any finite subset By = By \ B, there exists a subset By = B, \ B, of the
same number of elements such that (B, \ B}) U B is a base of S.

(Bg) For any subset By < By there exists a subset By = B, such that card (B}) =
= card (B}) and (B, \ B}) U B} is a base of S.

(B’zg) For any subset By < B, \ B, there exists a subset B, < B, \. B; such
that card (B}) = card (B}) and (B, \ B}) U B} is a base of S.

(§2) For any element b, € B, there exists an element b, € B, such that (b;) L
U [B, \ (b,)] is a base of S.

(ﬁ'z) For any element b, € B, \ B, there exists an element b, € B, \ B, such
that (by) U [B, \ (b,)] is a base of S.

(Ezf) For any finite subset B} < B, there exists a subset By, < B, of the same
number of elements such that By U (B, \ B}) is a base of S.

(B%) For any finite subset By = B, \ B, there exists a subset B, < B, \ B, of the
same number of elements such that By L (B, \ Bj) is a base of S.

(Bye) For any subset By = B, there exists a subset By = B, such that card (By) =
= card (B}) and By U (B, \ B}) is a base of S.

(By,) For any subset By = B, \ B, there exists a subset B, = B, \ By such
that card (B}) = card (B}) and B} v (B, \ Bj) is a base of S.

Proof. Since fourteen implications in the following two diagrams

( llg) - (Blg) (E”Zg) - (§2g)
Lo v
(BIZf) - (th‘) (Blzr) - (Bzr)
N Lo
(B'z) - (Bz) (Bi) - (Bz)

are quite evident, we are going to prove (B},) and (B},).

Thus, let B] < B; \ B,. Then, in view of Statement A applied to I = B; > B,
there exists B, < B, \ B, such that (B; \ B}) U Bj is a base of S. Moreover, ma-
king use of Statement B,

card (B}) = card (B, \ [(B; \ B}) v B]) = card ([(B, \ B}) U By] \ By) =

= card (B}) .

Hence, the property (Bj,) for the bases is established.
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In order to prove (Eég) consider again B} < B, \ B,. Now, applying Statement A
to I = B, U (B; n B,) We get the existence of Bj = B, \ B, such that

B{ U (B, n B,) U B,
is a base of S. Denote by B) the complement of (B, n B,) U Bj in B,; hence
B, < B,\ By and Bju(B,\ By)=B;uU(B, nB,)uUB;.
Also, by Statement B,
card (B}) = card ([B} U (B, \ B3)] \ B,) = card (B, \ [B] U (B, \ By)]) =
= card (B3),

as required.
The proof of Theorem is completed.

4. EQUIVALENCE OF SOME PROPERTIES OF §3

The aim of this paragraph is to established some simple relations among the pro-
perties (B,) and those of Theorem in § 3.

Thus, let S be a given set and .# a family of its subsets. In what follows, the phrase
“X isabase” in the formulation of the properties under consideration should be read,
as before, “X € 4.

First, we have the implication

“If M possesses the property (Bj,), then it possesses (B,g)”

and, similarly, the other thirteen trivial ones of the diagrams in the proof of Theorem
in § 3. Further, one can see immediately that if .# possesses any one of the properties
(B3,), (B5y), (B), (B,), (By) or (B), then is possesses also the property (B,). On the
other hand, we have

Lemma 1. If ./ possesses (B,) and (B,), or (By), or (B,,), then it possesses (Bj),
or (BY), or (Bj,), respectively.

Proof. The first two statements are consequences of the last one. In order to prove
it, let By € .4, B, € M and By < B, \ B,. By (B,,), there is B, < B, such that

card(B;) = card (B;) and (B, \ B}) U B,c./4 .
Denote the difference B), \ B; = B, \ B by Bj. Since
(By \ By) v B; = (B, \ B})u B,

belongs to .#, it suffices to prove that card (B}) = card (B}); this will establish the
property (B3,) for ..
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Thus, let card(B;) < card (Bj) (because of the inclusion Bj < B always
card (B3) < card (B;) = card (B})). Applying (B,,) to By, (B; \ B{) U B} and B} =
< [(By \ B}) U B3] \ B, we deduce the existence of a subset B; < B, such that

card (B}) = card (B;) and {[(B, \ Bj)u B3]\ B3} U B{e ./ .
But v
{[(B; ~ B})u B3] \ B3} u B} = (B, \ B})u Bj.
Since
card (B}) = card (B}) < card (B}),
we get a proper inclusion (B, \ Bj) U Bf § B,

which is a contradiction of the assumption (B,) to be satisfied for .#. The proof of
Lemma 1 is completed.

Remark. Although there is a similarity between the first six properties and the
other six ones (denoted by (7)) of Theorem in § 3, we are going to show that the
related statements to those of Lemma 1 do not hold for the latter properties.

Let S = (X4, X,, X3, X4, X5) and

M= {(x1, X3, x3), (X1, X35 Xa), (X1, X2, X5)s (X1, X3, Xa)s (X2, X35 Xg), (X3, Xg, X5)} -

It is a matter of routine to check that .# satisfies (ﬁz); evidently, (B,) is satisfied. On
the other hand, taking B; = (X, X,, X5), B, = (X3, X4, X5) and x, € By, neither
(%1, x3, x5) nor (x4, x4, x5) belong to .. Thus (B}) is not satisfied.

Lemma 2. If ./ possesses (B}), or (B}), then it possesses (Bjyy), or (BYy), respectively.

Proof. Both assertions can be proved easily by induction.

Lemma 3. If ./ possesses (B,), then it possesses (B}). Also, if .4 possesses (]~3'2g),
then it possesses (B}).

Proof. Let us prove the first statement; the proof of the other one follows the same
line. Let B, € .#, B, € ./ and b, € B, \ B,. Consider the set

1 =B\ [(B,nB,)u(b)].
Since By < By \ B,, there exists by (B},) a subset B, < B, \ B, such that
(By \ B}) UBje.4 .
As a consequence of (B,) (implied by (B3,)) the subset
Bj =(B:\ B,))\ B, c B, \ B,
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is non-empty. Now, apply (B3) once again (in fact, (B5) would be sufficient at this
point) to

(b)) U (B, \ By) = (B, \ B}) UBye M, Bye 4 and b, €[(b,) U (B, \ B3)]\ B,
we deduce the existence of an element b, € B such that (b,) U (B, \ (b,)) € .#. Since

(by) U (By N (b)) 2 (by) v (Bx N B3),

we get, in view of (B,), the equality and thus B}, = (b,), as required.
Now, Lemmas of this paragraph yield the following

Theorem. Let S be a finite set and M a family of its subsets satisfying (B,).
Then the nine properties (B,), (B}), (By), (By), (Bag), (B3,), (B3). (By) and (Bs,)
are equivalent one to the other.

5. EXTENSION OF THE RESULTS OF §4 TO GENERAL CASE

In this paragraph, the assertion of Theorem in § 4 will be proved for an arbitrary
set S and a family ./ satisfying, besides (B,), the additional property (B;); in [3],
two examples have been given showing the necessity of assuming (B;) for our in-
vestigations. The mentioned proof will explore the results of § 2.

Lemma 1. Let (S, #) be an A-dependence structure. If the subfamily # 4, < .5
of all maximal independent sets possesses the property (B}), then every maximal
independent set is canonic. '

Proof. Let Be ./, and I € J such that B = C4(I). We are going to prove that
C4(I) = S;then, S = C4(B) = Cy4(I) = S and Lemma 1 will follow.

Let us give an indirect proof of the equality C4(I) = S. Thus, let I $ B', where
B'€ M4 and take b’ € B’ \ I; evidently, because of B = C,(I), b’ ¢ B. Applying
(B3) to B’, B and b’ € B’ \ B, we deduce the existence of b € B \ B’ such that

(BN (b)) v (b)ed,.

Hence, be BN1I and b¢ Cy(B\ (b')) 2 C4(I), in contradiction to the hypo-
thesis B = Cy4(I).

Lemma 2. Let (S, #) be an A-dependence structure. If M 5 possesses the property
(B3), then it possesses also (Bb,).

Proof. Let Bye.#4, B,e M, and B} < By \ B,. Since B; \ B; = C,4(B,),
there exists, in accordance with Lemma A, a subset By < B, \ (B, \ B}) = B, \ B,
such that

(By\ B})UuByes and B, < C,(B; ~ B})uUB;].
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In view of Lemma 1, B, is canonic, and thus S = C,(B,) = C4[(B: \ Bj) v B3] ;
we conclude that the set (B, \ Bj) U B} belongs to ., and, moreover, again by
Lemma 1, that it is canonic. This fact unables us to apply Lemma B to B; and
(B; N Bj) U Bj resulting in the equality

card (B}) = card (B; \ [(B, \ Bj) v Bj]) = card ([(B, ~ By) v B3] \ By) =
= card (B}) .

The property (B5,) for .# 4 is thus established.

Lemma 3. Let (S, #) be an A-dependence structure. If M 4 possesses the property
(Bb), then the A-independence net F possesses the property (I,) and (S, #) is thus
a LA-dependence structure.

Proof. Consider I, € # and I, € # with n and n + 1 elements, respectively. Let
B, € M 4 and B, € .# , be maximal independent sets such that I; < B, and I, < B,.

If (I, n By n B,) N I; + 0, then taking an element of this set we have x €I, \ 1
and, since I; U (x) = By, also I, U (x) € J.
Thus, we can assume that

(I, nB,nB)NI; =0;

hence, every element of I, which lies in B; n B, belongs to I,. Therefore, if I, \ B,
has k < n elements, i.e. if I; " B; n B, has n — k elements, then I, n B, n B,
has at most n — k elements, i.e. I, \ B, has at least kK + 1 elements.

Now, make use of the property (E;,) applied to By, B, and I; \ B, =< B; \ B,. It
guarantees the existence of B, < B, \ B, such that B; has k elements and

(I; N\ By) U (B, \ By)e M, .

But, evidently, B, \ B} < B, n B, and, further, (I, \ B;) \ Bj + 0 ; this follows
from the fact that I, \ By has at least k + 1 while B; has only k elements. Hence,

I, = (I;\ By) U (B, \ By),

and taking an element x of (I, \.B;) \ B, we have x €I, \ I, and, because of the
inclusion I; U (x) < (I, \ B,) U (B, \ Bj),also I, u (x)e 5.
The proof of Lemma 3 is completed.

Combining the results of § 2 together with Lemma 2, Lemma 3 and Theorem of
§ 3 we get the following two lemmas:

Lemma 4. Let a family ./ of subsets of a set S possess the properties (B3) and
(Bs). Then it possesses also (Bj,).
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Lemma 5. If . possesses the properties (B5) and (Bs), then it possesses any one
of the twelve properties introduced in Theorem of § 3.

The arrows (with the appropriate quotation) in the following diagram indicate the

implications which have been proved under the assumption of validity (B,) and (B,)
for a family . of subsets of a set S:

(Blzg) «~—§5, Lemma5 —— (§;f)&<§5, Lemma 5 —— (ﬁ%g)
trivial §4, Lemma‘2\ trivial
(Blzf) ——  trivial ———— (B,) T (ﬁi)
trilTJial §4, Leinma 1 §4, Lernma 3
(Bl'zf) —— §4, Lemma2 —— (1;'2) ——— §5, Lemma 4 —— (Bizg)

From here, we deduce immediately

Theorem. Let S be a set and M a family of its subsets satisfying (B;) and (B,).
Then the nine properties (B,),(B5), (Bx), (B%), (B2g)s (Bg), (B3), (Bys) and (B,) are
equivalent one to the other.

6. DEFINITION OF A LA-DEPENDENCE STRUCTURE
IN TERMS OF BASES

Theorem of § 5 can be re-stated in another form using the following

Definition. An A-dependence structure (S, #), where # is an A-independence
covering of S, is said to be a LA-dependence structure if (S, S 4) is a LA-dependence
structure (in the sense of [2], i.e. every element of S 4 is canonic).

Thus, if (S, 93) is a LA-dependence structure, then % coincides, in view of % 4 .= B
(see § 2), with the family of the bases of S (in the sense of [2]).

The above mentioned main result can be then formulated as follows.

Theorem. Let S be a set and # + 0 a family of its subsets satisfying the properties
in one of the following groups:

() (B (Ba): (By); (i) (B3), (Bs);  (vi) (B2). (Bs);
(i) (By) (Bz) (Bs);  (v) (B)s (By);  (vii) (B2e), (Bs);
(iii) (Bi) (Bag) (Bs);  (vi) (B (Bs);  (ix) (B2e)s (Bs);

Then (S, #) is a LA-dependence structure.
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7. FINAL REMARKS

Let us conclude the paper with a remark on the converse of Lemma 1 in § 5.

Lemma. Let (S, #) be an A-dependence structure. If every element of M 4 (i.e.
every maximal independent set) is canonic, then .# 5 possesses the property (B3).

Proof. Consider B, € # 4, B, € # 4 and b, € B, \ B,. In view of Lemma A, there
is a subset Bj of B, \ B, such that

[By N (b))]UuByes and B, = Cu[B; \ (b;)] U B).
Since B, is canonic, S = C4(B,) S C4([B; \ (b;)] U B}) ; we deduce that
[By N (by)]UBseMy.

Moreover, evidently B; + 0. Take an element b, € B}, and consider

[By \ (by)] v (b,) = [By \ (by)] U B
Necessarily

bre Cy([By N (b)] v (b2)) 5

for, otherwise B; U (b,)€ #, in contradiction to the maximality of By, i.e. to
B, € M 4. But, then we have B; = C4([B; \ (b;)] L (b,)), and since B, is canonic,

S = Cy(By) < ([By~ (by)] U (b))

Hence, [By \ (b,)] U (b,) € My, ie. By = (b,), q.e.d.

Now, by virtue of Lemma and Theorem of § 6 we can derive the following

Theorem. Let (S, #) be an A-dependence structure such that every element of
M 4 (every maximal independent set) is canonic. Then (S, #) is a LA-dependence
structure and thus every element of ¥ (every independent set) is canonic.
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Pe3rome

AKCHOMATHUYECKOE UCCIEIOBAHUE BA3ULIOB
B ITPOU3BOJIBHBIX MHOXECTBAX

BJTIACTUMMWII JJIAB (Vlastimil Dlab), IIpara

I'. YutHeii onpenent B pabote [5] MaTpOuJ, pa3HbIMU 3KBUBAJIEHTHBIMHU CIIOCO-
6aMH, B 4aCTHOCTH C TOMOLIBIO CHCTEMBI 6a3umoB. MaTpOUI-KOHEYHOE MHOXECTBO S
C OMPpEeEHHON CHCTEMOM OJIMHOXECTB (He3aBUCHMBIX MHOXECTB), YIAOBIETBOD-
sirouux yeousiM (1) u (1), WM — KOHEYHOe MHOXECTBO S C CHCTEMOI MOAMHO-
xecTB (6a3UIOB) UMEIOLIMX CITE/YIOIIHE CBOHCTBA:

(Bl) Hukaxoe coOcTBEHHOE MOJIMHOXECTBO 0a3uiia He sIBJIfeTCs Ga3UIOM.
(Bz) Ecnu B, u B, nBa 6a3una, To 1is nroboro b, € B, cymecrsyer b, € B, Takoe,
aro [By \ (by)] U b, ectb Gasuc.

Jo6asnennem ycnosus (L), KOTOpOe 03HAYAET, YTO CBOUCTBO MHOXECTBA OBITH
HE3aBUCHMBIM SIBJIIETCSI CBOMCTBOM KOHEYHOIO XapakrTepa, OBUIO OIpeAeicHUue
MaTpOUIA MPU MOMOIIM HE3ABUCUMBIX MHOXECTB PACIPOCTPAHEHO HA IPOU3BOIHBIC
(6CCKOHC‘IHBIC )MHOXeCTBa, DTO 0006IIEHHOE MOHATHE MATPOKMARA COBIAJAET C TI0-
HiaTueM LA-3aBUCUMOCTHHOM CTPYKTYpBI, BBEACHHBIM aBTOPOM B [2]

B manHOI paboTe MOHATHE MAaTpoUIa 0000IAeTCs HA MHOXKECTBA IIPOU3BOJIBHOM
MOLUHOCTH B TepMuHax 6asumos. [Tomumo coiictsa (B,) aBrop onpexnenser B Teope-
Me § 3, 11 apyrux poJCTBEHHBIX CBONCTB 0a3UIOB:

(B2), (Bze), (Bir), (Bag), (Big), (Ba), (BS), (Bar)s (Bie)s (Bap): (B2e)¥)
M IOKa3bIBAET, YTO CBOMCTBA KAXIOW U3 CAEAYIOLIMX 9 KoMOUHALU

(i) (By) (By), (Bs)s (iv) . (B), (Bs); (vii) (B3), (Bs);
(i)  (By), (Bzx) (Bs)s v) (Bj), (B3); (viii) (E,Zf)’ (Bs);
(iii)  (By), (Bay), (B3); (vi) (B2e): (B3); (ix) (B2e) (B3);

BIIOJIHE XaPaKTepU3yIOT 6a3uCchl (MaKCHMAJIbHbIC He3aBUCHMble MHOXecTBa) LA-3aBn-
CHMOCTHHOI CTpyKTypbI (06061IeHHOr0 MaTpouaa) (Teopema § 6), npuuém (B;) o3ua-
vaeT ciemyrounee: ECoM KaXHoe KOHEYHOe MOAMHOXECTBO MHOXecTBa I SBASETCS
TIO/IMHOECTBOM HEKOTOPOTO MOAXOALIMM 00pa30M BbIOpaHHOro 6a3uua, To camMo [
SIBJISIETCS IO IMHOKECTBOM HEKOTOPOTo 6asuua. B § 7 3TOT pe3ynbTaT NMPUMEHSETCS
K M3YYeHHIO OOIIMX A-3aBUCUMOCTHHBIX CTPYKTYP.

* Hampumep CBOKCTBO ('ﬁ’2g) o3Havaet cienyromee: Eciu By u B, nBa 6a3uca, T0o s Joboro

noaMHoXecTBa B{ © B; \ B, cymecTByer mOAMHOXeCTBO By & B, \ B, Takoe, 4ro Bj u B)
MHOeCTBa OIMHAKOBOM MOLUHOCTH M By U (B, \ Bj) ecTh 6a3uc.
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