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CHARACTERISTICS OF MODULAR FINITE-LENGTH LATTICES

OToMAR HAJEK, Praha

(Received December 12, 1963)

Two integer-valued characteristics of modular lattices of finite length are
described, and their relation with the defect (as introduced in [1]) exhibited.

This paper is closely connected with [1], and the notation, terminology and
definitions of [1] are assumed (the results of [1] will be referred to directly). In
particular, m. 1. f. I. means modular lattice of finite length.

We shall introduce, in definitions 1 and 2, two integer-valued characteristics of
m. L. f. 1., with apparently intuitive meaning.

Definition 1. Let L be a lattice not 1. The discriminator d(L) of Lis the least cardinal
n such that for any x = y in Lthere is a lattice M with [,; < n and a homomorphism
h : L— M such that hx + hy.

We have immzdiately the following elemsntary properties: d{L) is not changed
if we also require h to be onto. Also d(L) < I,, so that d/L) is finite if L has finite
length. If L, is a sublattice or a factor lattice of L (i.e. L, = L[0 for some congruence
relation 0 on L) then d|L,) < d L). Finally,

(1) L simple implies dL) = I, .

Lemma 1. If Lis a m. L. f. 1. then d{L) in definition I is not changed if we require
further that M be simple.

Proof. Let  : L - M be a homomorphism onto; then M ~ L/0 for the congruence
relation @ defined by x = y () iff h(x) = h(y). Since the congruence lattice @, of
am. L. f. 1. is a Boolean algebra, 0 is the intersection of all dual atoms 8 = 0. Thus,
if hx % hy, then x % y(0) and hence x #% y (f) for some dual atom f. But then S =
= L/ﬁ is simple, the natural homomorphism L— S does not identify x, y, and
I(L/B) < I{L|0) = I,. This completes the proof.

For m. L. f. I. L, let B be the set of all dual atoms f in @ (i. e. the set of all con-
gruence relations 6 such that L6 is simple nontrivial). Then we have from lemma 1

® dr) = max (L/p)
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and thus, since é,, = [, — 2 for simple m. . f. 1.,

(3) d(L) =2+ mix S(L/B) .

From (1) and (2) we then conclude

(4) d(L) = max d(L/p) .
B

Lemma 2. Let Lbea m. . f. 1. If L< PL, then
(5) d(L) = max d(L,) .
Lis simple if and only if d/L) = I,.

Proof. Let L, = L[0,. Then d{L,) = d{L/6,) < d(L), so that
(6) max d(L,) < d(L).

Since the decomposition is subdirect, we have Af, = O, so that each dual atom
B = 6, for some 0,, and then

(LIB) < max {I[L]B) : 0, < pe B} = d(L,)

on applying (2). Thus I(L/B) < max d(L,), and (2) again yields d(L) < max d(L,).
With (6), this proves (5). As for the second statement of lemma 2, we already have
(1). If Lis not simple, then it is an exact subdirect product of more than one simple
nontrivial m. 1. f. 1. (cf. [1], lemmas 9, 13, and (12)): L < PM; with

I—1=Y(M)-1), I(M;)=2,
and hence (5 and 1)
d{L) = max d(M;) = max I(M;) = (M,) < [,

so that d(L) = [ is excluded. This completes the proof of lemma 2.
Definition 2. The trivialiser #(L) of a ﬁn.ite—length lattice L (#1) is the maximal
integer n such that every homomorphism h : L M with [, < n is constant.
Obviously 1 < (L) < I(L); also

(7) L simple implies t(L) = I(L) — 1.

Lemma 3. In definition 2, if Lis a m.l. f.l. then we may add the requirement
that M be simple.

Proof. Definition 2 may also be formulated thus (h denotes a homomorphism):
(L) = niff h : L— M is constant whenever I, < n. Now define: t,(L) = niffh: L—
—» M is constant whenever I,; < n and M is simple. ‘

Then obviously #L) < t,(L). Now assume #(L) + 1 < t,(L), and aim at a contra-
diction. There is a nonconstant h : L— M with I,, < t(L) + 1; necessarily though,
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Iyy = t{L) + 1. Since h is nonconstant and I,; < ¢;(L), M cannot be simple. Then,
as in the proof of lemma 2,

M < PM;., M;simplenott,
(M) =1 < Ly — 1 =1(L) < 1,(L).
Thus [(M;) < t,(L); by definition, every n;h : L— M is constant (i, is the natural
projection M — M ;). But then h itself is constant; this contradiction proves (L) =

= t,(L) and our lemma.
Using lemma 3, we may conclude immediately that

(8) (L) = —1 + min I[(L/B)

where B is the set of all dual atoms f8 of @;. Using (7).
9) t(L) = min f(L[B) = 1 + min 6(L/B) .
B B

From (3) and (9) there follows
1LYy < d(L).

Lemma 4. If L isa m. I. f. I. and L £ PL, then (L) = min #(L,).

Proof. Essentially, the proof is similar to that of lemma 2. Let L, = L[0,, A0, = O.
By (8), #(L) = min(—1 + I(L/f)) = min min (—1 + [(L/B)) = min ¢(L,) .

BeB a f=20, a

Lemma 5. Let Lbe a m. I. f. I. Then d{L) = t(L) + 1 if and only if Lis a subdirect
product of simple lattices all with length d L) (i.e. defect d(L) — 2).

The proof follows from lemmas 2, 4 and formulae (2), (8).

The representation theorems of [1], theorems 4 and 5, may now be completed by
the following (D and M have the samz mzaning as in theorem 4, l.c.).

Theorem. Let L be a m. I. f. I. Then there is a unique subdirect decomposition
L=< PL; (0 £j £ 1, — 1) such that, for each j, either L; = 1 or

(10) dlL) —2=4L)—1=]j.

Furthermore the decomposition is then exact, L, = D is finite distributive, every L;
is exactly decomposable into say n; simple lattices with defects j (n; = 0 iff L; = 1);

L) =mn;.j, (L)=1+n{j+1)., AL)=1+n;;
o, = Z'7j~j~ I, =1+ an(j + l.)- Ap =1+ Z”j;
y=1+Yn+1), iy=1+n;.

jz1 jz1

Proof. First prove existence. If B is the set of all dual atoms of @, set
Bj={peB:(L[p)=j}. 0;=AB:BpeB;}. L;=L0;.
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Then either B; is empty and L; = 1, or (10) holds (lemma 5: L; is an exact subdirect
product of simple L/f with § € B;). Obviously B = |JB, is a disjoint decomposition,
so that Ldecomposes subdirectly into the L; and this decomposition is exact.

As meationed, L; is an exact subdirect product of simple lattices, say M,;, with
the same defect j. By exactness, then, §(L;) = Y 6(M;) = n;.j with n; integral (and

n; = 0 iff L; =1). Then n; is the number of simple exact factors of L;; thus (cf.
[1], lemma 9) A, — 1 =Yn;. Alsol, — 1 =6, + A, — 1 = Yn;.j+ Y n;bythe
previous result. This proves the formulae for 4,, I, ; those for 4, , I;, are similar.
Finally, consider unicity. Thus, let L < PL/rj with At; = O, and either 7; = I
or
dLlt;) —2=1tLlt))—1=j.
Take any t; # I; let f = 7; be any dual atom. Then by (2),

(LIP) = max (LIf) = diLft;) = j + 2

and by (8),
—1 + I(L[B) = min (=1 + LB)) = t(L]t;)) =j + 1.
Bz
Thus I'L/B) = j + 2, and since L/ is simple, §(L[f) = j. Summarising, if § < 7; for
a dual atom B, then §(L/B) = j, and hence, by construction, fe B;, p = 0;. This
proves that t; = 0; for each j; from At; = O it then follows that 7; = 0; for all j.
This completes the proof of the theorem.

The two following corollaries may be proved as in [1], corollary to theorem 4,
corollary 2 to theorem 5.

Corollary 1. In the theorem, if L is complemented, then the subdirect decomposi-
tions (of L and of L;) are direct.

Corollary 2. Let L, L, be m. . f. I. Let L; and L,; be the factors of the decomposi-
tions described in the theorem, of L and L,, respectively. Then if Lis a subdirect
(exact, direct) product of L,j’s, then L;is-a subdirect (exact, direct) product of the
L,;’s.

=1
Next, consider some elementary consequences of the formula I, — 1 = ), nj(j + 1).
0

(Write [ in place of 1;.) Since all summands are nonnegative, we have immediately
that

n_y =0, ie L_;=1.

Now, assume that some L; is non-simple (L is not “square-free”), i.e. that some
nj=2 Then 1 —122(j+1),j=<31-1)—1, and we conclude

for j > 31 —1)—1, L;issimple.
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If (and only if) n,_, = 1 then necessarily all other n; = Oand n,_, = 1, i.e.
L,_, +1 implies L= L,_, is simple.

Now assume that this is not the case. Then n,_, = 0, [ = 3, and if n,_3 % 0 then
we have, principially, several cases:

(i) n,-3 = 3implies I — 1 = 3{l — 2) and | £ 2, a contradiction;
(ii) n,_;=2implies! — 1 > 2(1 - 2) and | < 3, thus I = 3; since L was assumed
non-simple, the only possibilities are L = 3 or L = 2?;

1—-1

-4
(ii) nyjoy=1; then I =1 =Y n(j+1)=1-2+ Y nfj+ 1) and we con-
0 0

clude ny =1 and all other n; = 0 (for 0 # j & I — 3); thus the only nontrivial
factors L; are

Ly =2, simple L, 5.

Thus we have that n; = 0 for j = I — 3 with the following exceptions: L is simple
or a subdirect product of a simple lattice and 2.
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Pesrome

XAPAKTEPUCTUKU NEJEKMHIOBBLIX CTPYKTVYP
KOHEUHOW AJIMHBI

OTOMAP T'AEK (Otomar Hajek) Ipara

B HacrosiuieM npojosokeHiu pabotsl [1] onpeiensiores ABe YMCIEHHbIE XapaKTe-
PMCTUKH JE/ICKMHIOBBIX CTPYKTYP L KOHCUHOI JUTHHBI (4. ¢. K. [.) — AUCKPUMUHATOD
d(L) w Tpusnamusatop #(L). JlokasaHa cieyromas Teopema:

Jnst Beskoit . c. k. A, L cymiecTByeT €IMHCTBEHHOE MOJYNpSMOE pa3jioKEHUE
L< P L;rakoe, yro wii L= 1 wm d(L;)) — 2 = «(L;)) — 1 = j.

0=j<lL
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