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YexocH0BaUKHi MaTeMaTHYeCKuit xkypHan, 1. 15 (90) 1965, Ilpara

REPRESENTATION OF FINITE-LENGTH MODULAR LATTICES

OTOoMAR HAJEK, Praha

(Received November 20, 1963)

A canonic representation of modular lattices of finite length is given, in
terms of simple nondistributive and finite distributive lattices. A fundamental
characteristic, the defect of lattice, is defined and some of its properties
exhibited.

There is a fundamental theorem stating that every distributive lattice is the sub-
direct product of replicas of 2, the 2-element lattice [1, ch. IX, th. 6]. This completely
characterises the structure of distributive lattices, at least if we are only concerned
with the algebraic (finitary) properties of the lattice operations. (On the other hand,
if infinite meets and joins are studied, there remains an infinite variety of further
properties.)

Naturally, the next step would be a representation theorem for modular lattices,
and a reasonable first step in this direction is representation of finite-length modular
lattices. For complemented finite length modular lattices, we already have an elegant
representation: a direct product of a finite Boolean algebra and a finite system of
projective geometries [1, ch. VIIIL, th. 6]. It may be then said that the results of the
present paper notice the consequences of omitting the complementation hypothesis;
however, interest centers more on unicity of representation (for the direct representa-
tion of complemented lattices, this is trivial).

The main results, theorems 4 and 5, may be stated as follows (all for lattices of
finite length):

1. Every modular lattice L is the subdirect product of a distributive D and a modular
M;

2. M may be taken as the subdirect product of a finite system of simple non-
distributive lattices M;; with this condition, the decomposition of L — and hence
also D and M — is determined uniquely by L;

3. the subdirect representation of M by the M;’s may be taken in a certain economic
fashion (determined by a relation between certain lattice-theoretic characteristics
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of M and M;); with this condition, the representation of M is determined uniquely
by either of M or L.

For assumed results and most of notation and terminology, the reader is referred
to [1]. If Lis a lattice, then the set of all congruence relations of L(ordered naturally,
[1], ch. 11, §§ S, 6) forms a distributive lattice which will be denoted by ©, or OL),
and called the congruence lattice of L(an unsatisfactory translation of Kongruenz-
verband). If Lis a lattice and 6 € ©, then the lattice of equivalence classes of L
modulo 6 will be denoted by L/0. Homomorphism will always mean a lattice-homo-
morphism. The length of a lattice Lis the maximum cardinality of subchains if this
is finite, and oo if not; it will be denoted by I, or (L), the length of @ by 2, or A(L),
etc. For conciseness, m.l.f.I. will mean ‘modular lattice of finite length’.

Between lattices, L, = L, means that L, is isomorphic to L,; and

L=PL, or LZPL,

(and also L=L; x ... x L, or LS L; x ... x L,) will be used to mean that L
is the direct (cardinal in [1]) product, or a subdirect product, respectively, of the L,’s.
This notation is rather unfortunate in one respect: a subdirect decomposition is
not determined by the system {L,}, but by a system of “decomposing” homomor-
phisms L — L, — or equivalently, by a system of ‘“‘decomposing” congruence rela-
tions {0,} on L, whereupon L, ~ L[0,, A0, = O. (An instance of the difficulties this
may lead to appears in [3], th. 12.) By a system {L,}, say, we mean a mapping of the
indices a into the set with elements L,; in a related sense, e.g. ““there are n distributive
lattices in the system {L,}” will mean that there are n distinct indices a such that L,
is a distributive lattice.

1. FIRST RESULTS

In this section some relations between the lengths [/, and A, are considered. As
working apparatus, the following two basic theorems will be used, often without
further reference.

The congruence relations on a m.l.f.1."L are in 1 — I correspondence with the sets
of classes of projective prime quotients which they annul. Hence @y is a finite
Boolean algebra [1, ch. V, th. 10]. In particular, an atom of @, corresponds to
a single class of projective prime quotients in L, and there are precisely 4, — 1 of
these atoms.

In a modular lattice, any two finite chains between the same end-points possess
refinements such that each quotient in either refinement is projective to some quo-
tient in the other (cf. [1], ch. V, corollary to th. 5). In particular, in a m.Lf.1., each
prime quotient in a given maximal chain is projective to some prime quotient in any
other maximal chain. For completeness we also recall that in modular lattices all
maximal chains have the same length [1, ch. V, th. 3]. '

There follows immediately the
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Lemma 1. Let C be a maximal chain in a m. . f. l. L. Then there are A, — |
not mutually projective prime quotients in C, and any prime quotient in L is pro-
jective to one of these.

Lemma 2. For modular lattices L, /; < I;.
(Proof. It suffices to consider only the case of /; finite, whereupon the result follows

from lemma 1.)

Lemma 3. If Lis distributive, then A, = 1.

Proof. In view of lemma 2 it suffices to show that, if there is a chain x; < x, <
< ... < X, in L, then there exist 0, > 0, > ... > 0,, in ©,. Now, either L = 1 and
the assertion is trivially true; or L is subdirectly decomposable into replicas of 2
[1, ch. IX, th. 6], and hence there exist homomorphisms h; : L — 2 with

0 = hfx;)) < h{x;p,) =1 for 1 <i<m,

and h,(x,) = O. With each h; associate a ;€ @ in the usual manner, defining
x = p(p)iff h,.(x) = h,»(y); andset @; = A u;, 0, = I. Then these 0; are as asserted,

j<i
since evidently 0; = 0,,, and since it is lreadily verified that x; = x;,,(0;) iff i < j
(for1 <ig<m 12 j<m).

Lemma 4. If Lisa m. l. f. I. and A, = I, then Lis distributive.

Proof. Assume L is not distributive; then L must have the 4-element modular
nondistributive lattice of fig. 1 as sublattice (cf. [1], ch. IX, th. 2 and ch. V, th. 2).
Construct a maximal refinement C of {0, a} with the same end-points. Now use
[1, ch. V, th. 6] to obtain mappings

X—=>xVvb, xo>oxAc, xX>xVa

()
Fig. 1. Fig. 2.

which map C into, in turn, [b, i], [o, c], [a, i]; the result is a maximal chain C’

between end points a, i, and prime quotients of C are mapped into projective prime

quotients of C’. Finally take a maximal chain in L prolonging C u C’. The resulting
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chain has at least one pair of distinct projective prime quotients. From lemma 1
we then conclude that 4, — 1 < I, — 1, i.e. A, < I as asserted.

yn-M¢ 2

© xn-m +2

Fig. 3.

Ym—nd

Fig. 4.

k Some examples may be illu-
strative at this stage.

Examples. The modularity
assumption is rather essential
inlemma?2:ifn > m = 4 then
there is a (nonmodular) lattice
L with prescribed I, = m,
Ay = n. Thus for m = 4 such
a lattice is easily described by
its graph, fig. 2; its congruence
lattice is a Boolean algebra
whose atoms o; annul only [x;,
yj];there aren — latoms,and
hence A, = n.

For m = 4 we may take,
analogously, the latitce of
fig. 3.(There are obvious modi-
fications for m or n infinite.)

If 2 £ n £ m then there is
a modular lattice L with pre-
scribed I; =m, A, =n (cf.
fig. 4).

From these examples it may
be concluded that the estimate
2 <2, =1, cannot be im-
proved for modular lattices
L + 1, and also that infinite
lengths are not allowed in
lemma 4.

2. THE DEFECT
OF AM. L F L.

The results of lemmas 2 to 4
may be conveniently formula-
ted using the

Definition 1. If Lis a m. L. £. 1, then the defect ., (or §(L), etc.) of Lis defined by

(2) 6L=1L_1L'

We then have 0 < §;, < I, — 2 (exept for the singular case L = 1, where I = 4 = 1,
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& = 0); and 6, = 0if and only if Lis distributive. Thus the defect of a lattice may be
thought of as a measure of its departure from distributivity. The “most defective”
lattices have 6, = I, — 2, i.e. 4, = 2; these are precisely the simple m. I. f. . This
section is devoted to the study of elementary properties of .

Theorem 1. Let L, be a sublattice of a m. I. f. I. L,; then §(L,) < §(L,).

Proof. Denote concepts pertaining to L; or L, by the corresponding indices. In
L, take a maximal chain C,, and in each class of projective prime quotients select
one belonging to C; (cf. lemma 1); thus there are precisely A, — 1 distinguished
prime quotients in C,. Now in L,, prolong C, to a maximal chain C,. In C,, at least
(Iy = 1) = (A4 — 1) = &, of its prime quotients are contained within quotients
of C, distinct from all the distinguished ones; and each of these prime quotients of C,
is carried by the projectivities obtaining in L, into a prime quotient of C, contained
within some distinguished quotient. Thus there remain, in C,, (I, — 1) — &, prime
quotients with the property that any other prime quotient in L, is projective to one
of these. Hence

=15 (l,—1) =9,
ord; (I, — 1) — (4, — 1) £ 9, as it was required to prove.

We have shown that for sublattices Lof a fixed m. 1. f. l. L,, the characteristic J, is
nondecreasing as a function of L. Obviously [/, also has this property; also obviously,
Ay, is neither nonincreasing nor nondecreasing. However, for sublattices L with [, =
= lp,, A, is nonincreasing (this follows from theorem 1 and (2), or from lemma
1 directly); and we have the

Corollary. If a m. L. f. l. Lhas a simple sublattice of the same length, then Litself
is simple.

Theorem 1 may be interpreted as treating changes of decrement when the lattice
is subjected to a 1—1 homomorphism (into). Naturally, one then inquires about
changes of 6 when Lis homomorphically mapped onto.

Theorem 2. If Lis a m. I. f. I. then 5(L|0) is a nonpositive valuation on ©,.

For the proof it will be useful to recall or introduce, more or less provisionally,
some further notions. Let d[ . ] be the dimension function on @ [1, ch. I, § 9].

Given a m. L. f. 1. Land a congruence relation 6 on L, define 5(0) as follows. Take
a maximal chain C in L; then let 5(0) be the number of prime quotients of C which 0
annuls. (It may be shown directly that 5(0) is independent of the choice of C; this also
follows from (5).) '

For a m. L. f. I. L, its congruence lattice @ is a Boolean algebra [1, ch. V, th 10].
By our lemma 2, @, has a finite length A ; hence Oy itself is finite and has precisely
A, — 1 atoms a; and 4, — 1 dual atoms f;.

Next we shall need two lemmas.
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Lemma 5. Given, a m. . f. I. L. Then, on ©,
(i) &(.) is a positive valuation with §(0) = 0, (1) = I, — 1;
(i) &(.) — d[.] is a nonnegative valuation with terminal values 0 and §,.

Proof. We know that d[.] is a positive valuation with terminal values 0 and
Ay, — 1. From the definition of J(.) it is immediate that it is a valuation, obviously
nonnegative with terminal values 0, I, — 1. Hence &(.) — d[.] is a valuation with
3(0) — d[0] = 0. For every atom a of @ we have d[a] = 1 < d(«), and hence

8(0) — d[0] = Y, <o(6{x) — d[«]) 2 0.
Since d[ . ] is positive, so is &(.). Finally,
3(I) = d[I] = (I, = 1) = (4 — 1) = &y,

This completes the proof.

\

Lemma 6. If 0 is a congruence relation on a'm. l. f. . L, then
(3) A(LJ0) = 5, — ((0) — d[0]).
Proof. From lemma 5 it follows that, for any m. . f. 1. L,

o0 = (1) = d[1] = Y.(0(e) — d(z]) = Yalo(a) — 1),

summing over all atoms « of @,. We may then apply this to the lattice L[0,
o(L[0) = (o(y) — 1)

summing over all atoms y in ©(L/6) (6(y) is of course the corresponding function on
O(L/0), not on ;). Now, these atoms y correspond, via a 1—1 homomorphism, to
elements 0 v o« of ©®, with o an atom, 0 A « = O; the next step is to prove that
3(y) = (). Recall the definition of J(.), take a maximal chain C in L, and the
corresponding maximal chain C’ in L[0; consider any prime quotient [x, y] in C.
If 0 annuls [x, y], then by assumption 6 A a = O it contributes 0 towards («) and
does not occur in C'. If x % y (0), then [, y] is in C’, and is annuled by y iff it is
annuled by a in C; thus its contributions towards &(y) and («) coincide.
Observing there are precisely A, — 1 — d[0] such o’s, one may continue,

OLIO) = Y (o) — Y 1=(l,—1~- Eeé(a)) — (A, — 1 = d[0]),

and=0 anf=0
having used

b1 =300 = o)+ o)

AB=0 as6

and thus
S(LJ0) = (I, — 1 — 8(6)) — (3, — 1 — d[0]) = &, — (5(0) — d[0]) .
This proves (3).
As for the proof of theorem 2, it suffices to apply Lemma 5 to (3).
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Corollary 1. We have the following formulae (all for m. I. f. L.):

“ (Lj0) = 5,
) ALIO) = 2, — a[0], L[0) =1, — &(0),
(6) S(Ly x ... x L) =Y,0L)).

Proof. (4) follows directly from theorem 2: O < 0 implies 6, = J(L/O) = 5(L|0)-

Since @, is a Boolean algebra, and @{L[0) is isomorphic to the dual ideal of all
n =0 in O, we have A(L/0) = A, — d[0]. Hence and from (2), (3) there follows
I(LJ0) = 1, — 5(0).

For (6), consider L= L, x L,; there exist 0, € @, such that

Lo~ L0, 0, A0, =0, 0, v0,=1I.
From theorem 2 we then have that
SILJ0, v 0,)) + O(LJ0, A 0,)) = O(LJ0,) + (L]0,)
0+ 0, = o(L,) + o(Ly) .

Since direct products are associative, we immediately obtain (6).

Corollary 2. If L= PL, isa m. l. f. ., then there are at most d, nondistributive
factors in the system.

Proof. Let the nondistributive factors be L{a;), | < i < n,andset M = P L{a)).

1<i<n
Then, obviously, M is isomorphic to a sublattice of L, so that according to theorem 1
and (6),

0L Z oy = )iy 5(””:’))-

By assumption, each L(a;) is nondistributive, so that 6(L(a;)) = 1, and the displayed
inequality then yields 6, = n as asserted.
Corollary 3. If Lis a subdirect product of L; (1 < j < n, all m. I f. L), then

(7) max &(L;) < 6, < Y1 8(L;).

Proof. The first inequality follows from (4). The second from theorem 1, §, <
<Ly x ... x L,), and (6).

3. PLAIN M. L. F. L. |

For conciseness of formulation in the representation theorems, we will introduce
two new notions, that of a plain lattice and of an exact decomposition. (In a sense,
these generalise, respectively, simple lattices and direct decompositions.) The aim
of this and the following sections is the study of these notions.
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Definition 2. A lattice Lis called plain if every homomorphism of Linto a distri-
butive lattice is constant.

Equivalent formulations: every homomorphism of Linto a given distributive lattice
not 1 (e.g., into 2) is constant; or, I is the only congruence relation 0 on Lfor which
L/0 is distributive. Obviously the only plain distributive lattice is 1. Some elementary
properties of plain lattices are formulated in the following lemma; the proofs are
trivial.

Lemma 7. Every simple lattice not2 is plain. The homomorphic image of a plain
lattice is plain. If Lis a lattice of finite length and has a plain sublattice of the
same length , then Litself is plain.

The last statemznt is a counterpart to the corollary to theorem 1. Now let us return
to our main interest, m. 1. f. 1.

Lemma 8. A m. I. f. I. L(not1) is plain if and only if it is the subdirect product
of nondistributive simple m. . f. I. In the positive case the set of factors is determined
uniquely.

Part of the proof may be conveniently separated out:

Lemma 9. Every m. l. f. I. L is the subdirect product of A, — 1 simple lattices;
the set of factors is determined uniquely.

Definition 3. The decomposition of a m. L. f. 1. Lto be constructed will be termed
the canonic decomposition of L.

Proof of lemma 9. Every lattice Lis the subdirect product of subdirectly irreduc-
ible lattices [1, ch. VI, th. 10]. Interpreting this in the congruence lattice, L/H is
subdirectly irreducible iff

(8) A0, = 0 implies some 0, = 0

[1, L c.]. Now, if Lis a m. L f. I, then @, is a finite Boolean algebra and (8) holds
iff 0 is a dual atom, i.e. iff L[0 is simple. This proves the first part of the lemma.

Now leta m. L. f. 1. Lbe the subdirect product of simple L,; let {0,} be the congruence
relations defining the product, L, = L[0,and A0, = O. Since L/6, issimple, 0, is a dual
atom of @; since A0, = O, the set of all 0, must consist of all dual atoms of ©;.
This completes lemma 9.

Proof of lemma 8. First let Lbe a plain m. L. f. . not 1. There is a subdirect decom-
position into simple factors (lemma 9); since L is plain, so are the factors (lemma 8).
Omit trivial factors 1, if necessary. Then each factor is nondistributive (lemma 8 again);
thus the factors are nondistributive simple m. 1. f. 1.

Now, conversely, let a m. 1. f. 1. L £ PL, with the L, simple nondistributive. To
prove L is plain, consider a homomorphism k : L— 2. Assume k is nonconstant.
Then the congruence relation 0, defined on Lby x = y(6,) iff kx = ky has 0, < I,
so that there is a dual atom f = 6,. By unicity (lemma 9), L, = LB for some a.
On L,, define gt = kx if ¢ is the a-th cooordinate of x (i.c. if x € ¢, ¢ an equivalence
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class of L modulo ). From f = 0, it follows that g is defined unequivocally,
and obviously it is a nonconstant homomorphism g : L, - 2. But L, is simple non-
distributive, i.e. plain; this contradiction completes the proof.

It may be said that lemma 8 characterises plain m. I. f. I. constructively; however
it also makes possible a simple descriptive characterisation: The plain m. 1. f. I. form
the least set (of lattices) which contains all nondistributive simple m. I. f. I. and is
closed under the operation of taking finite subdirect products (or of taking subdirect
products of finite length). This follows from the

Corollary. Foram. 1. f. l. let L < PL, with the L, plain ; then L itself is plain.

Proof. According to lemma 8, L, < P,L,, with the L,, simple nondistributive;
hence L £ P, ,L,;; again from lemma 8, Lis plain.

Plain m. 1. f. 1. may also be characterised in terms of their congruence lattices:

Lemma 10. Let Lbe a m. . f. |.; Lis plain if and only ifé(L/O) is a negative valua-
tion on O

Proof. In any case, 5(L/0) is a nonpositive valuation (theorem 2). It is a negative
valuation iff 6(«) — d[«] > 0 on every atom o of @, (lemma 6), or, symmetrically,
if

o(p) — d[p] <o, (=d(I) —d[I])
for every dual atom f.
Now, if Lis plain, then L/0 is nondistributive for every 6 < I, and thus

0 < &(L[0) = 5, — (5(0) — d[0]). ie. o(0) —d[6] <4,

for 0 < I, and in particular for all dual atoms f.

Conversely if 6(L/6) is a negative valuation, then in a decomposition L < PL/0,
into simple factors every 0, is a dual atom; hence §(6,) — d[0,] < J, by assumption,
and therefore 6(L[0,) > 0 (lemma 6), i.e. L]0, is nondistributive, L is plain (lemma 8).
This proves lemma 10 in entirety.

4. EXACT DECOMPOSITIONS

Definition 4. A subdirect decomposition L < PL[, of a m. 1. f. 1. will be termed
exact if
0, = Apso 0, foralla.

(0, is, of course, the complement of 0, in @ ; also see remarks at the end of the paper.)

Lemma 11. Each of the following subdirect decompositions of a m. 1. f. I. L is
exact: any direct decomposition, the canonic decomposition into simple factors,
the subdirect decomposition corresponding to a neutral element.
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Proof. Let L= PL/0, be a direct decomposition; then also
L~ L[0, x Py, L0, = L0, XL[( Apsa0s) = Ly x L,

is a direct decomposition. Set 0 = 0,, T = Ay+, 0,; we are to prove that 0 v 7 = 1.
Take any x = [xy, x,], ¥ = [y, ¥2] € L. Since the decomposition into L, x L, is
direct, the element z = [x,, y,] € L, and thus

x=z(0), z=y(r), ie. x=y(0r).
This proves 0t = I in ©; thus
O vi=0uvrtulrutdubibu..=>0t=1I

and hence 0 v © = I, as was to be proved.

As for the canonic decomposition into simple factors, the decomposing congruence
relations are all the dual atoms of @, ; the exactness condition is then immediate,
since @y, is a finite Boolean algebra.

(The final part of lemma 11 is only included for completeness and is not needed
in the sequel.) Consider the subdirect decomposition L < L; x L, corresponding
to a neutral element ce L ([3,§2], [1, ch. IL, § 10]; the decomposing congruence
relations 0, 0, are defined by x = y (0,)iff x Ae=y A e,x =y (0,)iff x ve=
=y V e). Then e = [I, O]. We shall show that, more generally, if [I, 0] or [0, I] €
eL=< L, x L, then 0,0,0, =1 = 0,0,0, and thus 0, v 0, = I, the decomposition
is exact. Assume e = [I, O] € L.

Take any x = [x;, X,], ¥ = [»y, y,] € L. The both [x,, O] = x A e, [y, O] =
= y A earein Land hence

x=x Ae(0,), x Ae=y ne(,), yae=y(d)

so that x = y(0,0,0,). Thus we have shown that 6,0,0, = I. (Similarly 0,0,0, = I;
for the proof use x v eand y v e.) The final step is as in the first part of the proof:

0, vO,=0,00,0U0,0,0V0,0,0V0,0,0,f U...=0.0,0,=1I.
This completes the proof of Lemma 11. '
Since O is finite Boolean we have immediately the

Lemma 12. Exact decompositions are associative in the following sense: if
L= P4L[0, is exact, Lm. L. f. I, and if A = U,A(b) is a decomposition into disjoint
summands, then L < P,LI(Aeaw) 0.) is exact.

Lemma 13. If L £ PL, is an exact decomposition of a m. l. f. I. L, then the num-
ber of nontrivial factors in the system is finite,

(10) o =Y 8(L,),
(11) 6.~ PO(L,),
(12) L=1+YUL)—1), =1+ Y(AL) = 1).
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Proof. Let L, = L[0, The congruence lattice @, is finite, so that the number
of distinct 0, is also finite. Now assume some 0, is repeated, i.e. that 0, = 0, for some
a # b. Then 0, = A,,,0. <0,=0, 0, <0, 0, =1. Thus the only repeated 0,
is I and L[0; =1 is trivial.

As for (10) we may then repeat the proof (but not the statement!) of (6}, corollary 1
to theorem 2, for a finite system of factors, e.g. for all non-trivial factors, and the
trivial factors contribute 6(L,) = 6;1) = 0.

Formula (11) is simple for two factors: we have L< L; x L, with L, = L0,
L, = L[0" (complement in ©,). Every element of a Boolean algebra is centrzl; hence
O, ~ 0 x 0" and dually ©, = 0 x 0" = O(L,) x O(L,) (cf. [1, ch. I, § 8], [3, th.
3d]; 0 denotes the set of all « < 0, and dually 0 the set of all & = 0). The extension
to several factors is trivial.

From (11) we conclude immediately the second formula in (12); the first follows
hence and from (10). This completes the proof of lemma 13.

Theorem 3. There is a unique exact decomposition of a m. I. f. l. into simple
factors, namely the canonic decomposition.

Proof. Let 0, be the congruence relations associated with an exact decomposition
L = PL, into simple factors. Then each 0, is a dual atom in @}, and since A0, = O,
the system {0,} contains all the dual atoms; easily from exactness, each dual atom
oceurs precisely once in {0,}. Thus L < PL/0, is precisely the canonic decomposition,
and L < PL, coincides with it up to factor isomorphism L, =~ L/0,,.

Corollary 1. Each exact decomposition of a complemented m. 1. f. l. is direct.

Proof. Let L < PL, be exact, L complemented m. 1. f. I. Let L, < P,L,, be the

canonic decomposition of L, into simple factors L,,, an exact decomposition accord-
ing to lemma 11. It follows easily that

(13) L _—<_ Pa,bLab

is also exact. Now, there also exists a direct decomposition Lof into simple factors
(Dilworth’s theorem [ 1, ch. I, th. 8]). This is exact according to lemma 11, and coin-
cides with (13) according to theorem 3. Hence (13) is direct, and thus so are all the
decompositions from which (13) is composed. Thus, indeed, L < PL, is direct.

Corollary 2. Let L < PL; be the canonic decomposition of a m. L. f. l. L into
nontrivial simple factors. Then

(14) YUL) =2l — 5, — 2.

Proof. The canonic decomposition is exact, hence d, = 26(Lj); the factors are
simple, so that 6(L;) = I(L,) — 2, and there are A, — 1 terms; A, = I, — 6, All
this implies our formula.

It is almost obvious that (11) in lemma 13 is a necessary and sufficient condition
for exactness. Now notice condition (10); it is unaffected by zero terms, i.e. by the

513



presence of distributive subdirect factors. On the other hand, for plain, m. 1. f. 1.
the condition is quite stringznt:

Lemma 14. Let M be a plain m. I. f. l. Then a subdirect decomposition M < PM,
is exact if and only if 6y = Y 05(M,).

Proof. Necessity was proved in lemma 13. Let M be a plainm. L. f. 1., M < PM,,.
We may omit trivial factors 1; denote the resulting set of indices by 4, its cardinality
by n. Let 0, be the congruence relations defining the decomposition, M, = M/Oa,
N0, = O. The proof seems to need a rather elaborate formal apparatus. Let «;,
1 £j £ Ay — 1, be all the atoms of @,,; thus

either «; £ 0, or a; A 0, = 0.

Define (analogues of Kronecker symbols)

07 =1 and di =1if «;

IIA
>

05=0and dj=0if a; AO,=0.

Thus we have 0, = Vj{a; A 89). Also, to every j there is an a with 6 = O, since
otherwise O < o; < A0, = O. Hence we conclude

(15) Yadi < n — 1 forevery j.

Next, consider 5(M,) = §(M/0,) (cf. lemmas 5 and 6):

(M) = 3y — (8(6) — d[0,]) = dp — 2 f(3(e; A 8%) — do; A 3%])
oy — 2i{8(oy) = dfe]) dj.

The assumption ,, = Y6(M,) then implies

I

O = ndy = Y0 ;(0(w;) = d[;]) df = ndp —3570(ay) = do;] (Lads) »

and from (15) and lemma 5 we conclude

(n = 1) 8y = 3 8(;) = d[og]) (Rud) = (n — 1) 3 (6(erj) — d[o]) =
=(n—1)(0(I) = d[I]) = (n — 1) &y .

Since (from lemmas 6 and 10) all the coefficients 6(c;) — d[«;] are positive, it follows
hence that all Zad‘} = n — 1. Thus to every j there is precisely one a € A with o; A 0, =

= 0; in other words, the relation a; A 0, = O defines a mapping j — a(j) of the j’s
into A.

Nzxt we shall show that this is a mapping onto A. We have o} Z 0,;, and thus
Ay = 0. Now, suppress repetitions in {0,;};, obtaining say {0b}pcs- Obviously
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Awbs = O, the 0, define a subdirect decomposition, and thus (corollary 3 to theorem 2)

oy = Zbé(Mb) = Za‘s(Ma) = Oy -

Since all (M,) > 0, we conclude B = A4, and the mapping j — a(j) is indeed onto A.

Now return to the statement of our lemma. Since the decomposition is subdirect,
we have 0, A Ap+a 0, = O, i.e. 0, = Ap+o 0,. Now assume the decomposition is not
exact; then in the last relation we must have > for some «a. Thus there is an atom
o; with

0o =05, o« A Apsaly=0.

But then 0, A o; = O, i.e. a = a(j); and therefore, for all b = a, not 0, A a; = O,
ie. a; < 0,. We conclude
0<ua; < Nb+a Op

a contradiction. This proves lemma 14.

5. REPRESENTATION THEOREMS

Theorem 4. To a m. I. f. I. L there is a unique subdirect decomposition
LD xM

into a distributive D and a plain M. Furthermore, D is finite, the decomposition
is exact and thus

(16) Sp =0y, Ip=lp+ly—1, Ap=ip+ipy—1.

Proof. Let Lbe a m. I. f. I. For every homomorphism / : L — 2 define a relation 6,
on Lby

(17) x=y(0,) iffl hx=hy.

Obviously 0, is a congruence relation. Set 4 = A,0,; thus 4 is the least congruence
relation 0 on L for which L/0 is distributive.

Define D = L[4, M = L|4" (4’ is the complement of 4 in @,). Obviously L <
< D x M, D is distributive; since D has finite length [, < [, it is a sublattice of the
Boolean algebra 27", and hence D is finite. From the estimates (7) (corollary 3 to
theorem 2) we conclude &, < J;. Exactness is immediate; (16) then follows from
lemma 13.

Now consider any homomorphism h: M — 2;letp: L—> M = L/A’ be the natural
homomorphism. Define a congruence relation 0 on Lby x = y () iff hpx = hpy.
Obviously 0 = A’; and L/O is either 1 or 2, i.e. distributive, and therefore 60 = 4.
Thus 0 = A4 A A" = I; hence hp is constant on L, hence h constant on M. In con-
clusion, any homomorphism M — 2 is constant, i.e. M is plain.

It remains to prove unicity. Let L < D, x M, with D, distributive and M, plain;
let Dy = L[A, M, = L[A°, A A A° = O. Since M, is plain, no dual atom § > A°
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is of ths form 0, (as in (17)); thus A° = 4'. Since D, = L|A is distributive, 4 = 4.
Then from A A A° = O there follows A = 4, A° = A’; this completes the proof.

Corollary. Let L, L, be m. I. f. l., let L< D x M and L, < D, x M, be decom-
positions as in theorem 4. If L is a subdirect (or exact, direct) product of the L,,
then both

D <PD,, M<PM,

are subdirect, exact, direct, respectively.
Onz aspzact of these results may be summarized as follows. Given a m. 1. f. l. L,
several integer-valued characteristics of L have been introduced:

Io A, 05 lps Aps Op s Dngs Apps O -

These are not independent (6 = I — A in each group, (16), distributivity cf D implying
dp = 0, inequalities such as 0 < 6 <1 — 2, (21), etc.); and we may distinguish
subsets of “independent™ characteristics, e.g. Iy, d;, Iy Then form. 1. £. 1. L, §, = 0
characterises distributive lattices, 6, = I, — 2 characterises simple lattices, I; = I,
characterises plain lattices (this last follows from theorem 4).

Theorem 5. To a m. . f. . Lthere is a unique subdirect decomposition
LEDxM; x...x M,

with D distributive, M; simple modular nondistributive, 5, =y 5(M ). Furthermore,
D is finite, the decomposition is exact, and

(18) ZI(MJ') = 2(1L - lD) — 0.

Proof. Existence follows from theorem 4, the canonic exact decomposition of M
(lemmas 9, 11) and (16), (10).

Next, consider unicity. Let a subdirect decomposition of L be given as described;
let D = L[4, M; = L[0;. Set M = L/'A0;}. Thon M £ PM;, so that M is plain
(lemma 8); hence M is determined uniquely (theorem 4), 6, = 6, = ».6(M ;). But
then M < PM; is exact (I:xmma 14), so that this decomposition is unique (theorem 3).

It remains to prove (18). From {14) (corollary 2 to theorem 3), we have ) [[M;) =
=2l — 8y — 2. Now &, = 5., and from (16) [y — 1 = (I, — 1) — (I, — 1);
hence Y IIM;) = 2{ly — 1) — 8y = 2(I, — Ip) — ., i.e. (18). This completes the
proof.

Corollary 1. With the notation of theorems 4 and 5,

(19) W —lp) S8, 21— Iy,
(20) o £ YIM;) < 35,5
(21) Ly S 1425,.
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Proof. Consider (18); all M ; are modular nondistributive, hence l(Mj) = 3, and
there are precisely 4, — 1 of these. Hence

2l — Ip) — 0y = 3(Ay — 1).

Now Ay — 1= (4, — 1) — (A — 1) since we have (12) and the decomposition
L=< D x M is exact; also A, =1,, 4, =4, — ;.. Thus Ay — 1 =4, — A, =
=l — I, — &, and therefore 2(I;, — Ip) — &, = 3(I, — Ip) — 35,; this is the first
inequality of (19).

Since D = L[4, wehave A, < 4, ,ie. I, < A5and thend, = I, — A, <1, — I,
the second inequality of (19). (It may be noticed that (19) generalizes the statement
that 6, = 0iff the m. L. f. 1. L is distributive.)

If we use (19) to estimate [, — /5, in (18), (20) results.

From theorem 5 we have Y 6(M;) = &, with precisely 1, — 1 summands all >1.
Thus 1, — 1 < 8 with Ay = Iy, — 85y = Iyy — 6y, this implies (21).

Fig. 5. Fig. 6.

Example. From (21) we have that for plain m. L f. 1. L, I, < 1 + 25,. However,
this condition does not characterise plain lattices among m. 1. f. I. Indeed, there is
no relation at all between I, and &, (or equivalently, between I, and ) which
characterises plain lattices among m. L. f. 1.

Let S; be the lattice of fig. 1, S, that of fig. 6. Obviously both are simple m. . f. 1.,

I(S;) =3, I(S,) =4, hence d(S;) =1, 6(S,)=2.
Set L, = S; x S3, L, = S, x 2. Since direct decompositions are exact,
L)) =5=1IL,), 0L =2=5L,)
(lemma 12, (10) and (12)). By lemma 8, L, is plain and L, is not.
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Corollary 2. If L is complemented, then the decompositions of theorems 4 and 5
are direct.

This follows immediately from corollary 1 to theorem 3.

We may now attempt classification of m. I. f. I. according to their defects, and obtain
some information about their structure. As an illustration, we will state the two
following lemmas.

Lemma 15. A m. [. f. I. Lwith defect 1 and length | is the subdirect product of
a simple modular nondistributive lattice of length 3 and a distributive lattice of
length | — 2.

Proof. The number n of simple nondistributive factors in the canonic decomposi-
tion has n = 1, since L is nondistributive (5, = 1), and also n < ), = 5, = L.
Thus there is a unique simple nondistributive factor M; it has J,, = 1 and hence
length 3. (Alternately, (21) may be used.) The length [, of the distributive factor
satisfies (16), ie. I = I, + 3 — 1. '

Lemma 16. A m. . f. I. Lwith defect 2 and length | is the subdirect product of

either

(i) two simple modular nondistributive lattices of length 3 and a distributive
lattice of length | — 4, or

(ii) a simple modular nondistributive lattice of length 4 and a distributive lattice
of length I — 3.

The proofis similar to the preceding. If 4, — 1 = 5, we have case (i), if Ay — 1 <
< & we have case (ii).

We then have the following:

Lemma 17. 4 modular lattice of length 3 is either

(i) @ simple modular (nondistributive) lattice of length 3, or

(it} 3, or

(iii) 2 x 2.

Lemma 18. A modular lattice of length 4 is either

(i) a simple lattice of length 4 (iff = 2), or

(it) a subdirect product of a simple lattice of length 3 and 2 (iff 6 = 1), or
(iti) a distributive lattice of length 4 (iff 6 = 0).

Lemma 19. A modular lattice of length 5 is either

(i) a simple lattice of length 5 (6 = 3), or

(ii) a subdirect product of two simple lattices of length 3 (6 = 2), or
(iii) dtto, of a simple lattice of length 4 and 2 (6 = 2 again), or

(iv) dtto, of a simple lattice of length 4 and 3 (6 = 1), or

518



(v) dtto, of a simple lattice of length 3 and 2 x 2 (5 = 1), or
(vi) a distributive lattice of length 5 (iff & = 0).

Several interesting questions, raised by the preceding results, remain open.

1. Given a finite distributive lattice D and a plain m. I. f. I. M, determine all lattices
which are subdirects products of D, M.

2. Given a finite system of simple nondistributive m. I. f. 1. M;, determine all
(plain) lattices with canonic decomposition M; X ... X M,,.

3. Determine all simple modular lattices of given length.

4. How much of the preceding results remains true if the finiteness of length as-
sumption is dropped?

5. Does the defect of a direct product of projective geometries have simple geo-
metrical significance? (The defect of a projective geometry is length — 2 = dimension
—1).

Remarks. The referee, M. KOLIBIAR, has been good enough to bring to the author’s
attention the following references.

1. In [5, p- 100], Maeda defined canonic factorisations of general lattices L as
those subdirect decompositions L < PL[6, which have 0} = A4, 0, foralla(0,€ 0,;
0¥ denotes the pseudocomplement of 0,). Since for m. 1. f. 1., @, is a finite Boolean
algebra, one has 0F = 0.; thus the exact decompositions of definition 4 are merely
a special case of canonic factorisations.

2. The existence part of theorem 3 (i.e. lemma 9) may also be obtained from Dil-
worth’s theorem [4, th. 3.3]; of course, the proof of this latter also proceeds via [1,
ch. VI, th. 10].

3. The second assertion in lemma 11 follows from [6], lemma 4.

4. It may also be noted that, for canonic factorisations, Maeda obtained a theorem
[5, th. 2.4] analogous to the Birkhoff factor theorem [1, ch. II, th. 7]; it seems
probable that, using this, one might obtain a unicity theorem extending the present
theorem 3 to general lattices.
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Pe3iome

MMPEJACTABJIEHUE AENEKMHIOBBIX CTPYKTVP
KOHEYHOM OJIMHBI

OTOMAP T'AEK (Otomar Héjek), Praha

B pabote uieTcsi kaHOHWYECKOE NMPELCTABIICHUE NEIEKUHIOBBIX CTPYKTYP KOHEY-
HOIT gmuHEL (4. ¢. k. 1.). Hasosém crpykrypy L noaynpocmoii (plain) eciu ne cye-
CTBYET CTPYKTYPHBIX roMomop®hu3MoB, W3oOpaiiaroliMx L Ha JOBYX-3JIEMEHTHYIO
CTPYKTYpY.

Teopema 4. Cywecmgyem eduncmeennoe noAYRpAMOe pasdodxcenue 0. c¢. k. 0. L
6 ducmpubypusnyrto cmpykmypy D u noaynpocmyto cmpykmypy M.

Onpenenum degpexm 1. c. K. A. Lxak 6, = I, — A, rne I, — mmHa Lu A, — niuHa
CTPYKTYpPBI OTHOUIEHUI KOHIpyIHTHOCTH Ha L. [Tonynpsimoe npoussenenue L B cucre-
My CTpyKTYp Ly, ..., L, Ha3biBaeTcs mounsim, ecd 8y, = ¥ 0,; (,,To4HOE npoussee-
Hue‘* — exact decomposition — ucnojb3dyercs B pabote B Ipyrom CMbICJ'Ie).

Teopema 5. Cywecmsyem edurncmeenroe mounoe npoussedenue 0. c. k. 0. L 6 Ouc-
mpubymugnyio cmpykmypy D u KoHeuHoe uucA0 HpOCMbIX HeOUCHPUOYMUBHBIX

9.c.x. 0. M;.
B paGore mmeercs Takke Oosiee HETaJbHOE MCCIEJOBAHWE MOHATHS HedeKTa

(11. 1, 2) MOJIYPOCTO! CTPYKTYPbI M TOYHOTO MpezcTasieHus (. 3, 4); NIPUBEICHBI
TaKXe HEKOTOPBIE COOTHOWIEHUS MeXAY Jiunamu L, M, D, M ; (n. 4).
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