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INDUCTION IN FORMAL LANGUAGES.
SOME PROPERTIES OF REDUCING TRANSFORMATIONS
AND OF ISOLABLE SETS

Jozer GRUSKA, Bratislava

(Received October 3, 1964)

1. INTRODUCTION AND SUMMARY

In this paper we consider languages in the sense of [3] satisfying some additional
conditions (see Section 2), particularly the condition of non-cyclicity (see [5]). The
class of these languages will be denoted by €.

In Section 1 we shall show that in order to prove some assertion about languages
from %, we can use the induction with respect to maximal length of derivation which
is often a very useful means for proving. Moreover, a strengthening of the theorem
on structural induction (Theorem 6.7, [3]) is given.

One of the most important concepts in [3] is the concept of a reducing transforma-
tion, which is very useful for the study of structural unambiguity. In Section 2 some
sufficient conditions for the existence of a reducing transformation are given and some
properties of reducing transformations are proved. Especially, the closure of a re-
ducing transformation and the product of two reducing transformations are, under
certain assumptions, reducing transformations, too.

In [3] it has been proved that if & is an isolable set of nonterminal symbols of the
language &, then & is structurally unambiguous (s.u.) if and only if a language £,
is, which is simpler than #. This method (and hence the concept of an isolable set,
too) has been shown to be very useful for the investigation of structural unambiguity
of the language (see [7]) which is a slight modification of ALGOL 60. Some sufficient
conditions for the existence of isolable sets are given in [3] and [6]. In the last
section some necessary and sufficient conditions for the existence of isolable sets and
their properties are proved.

The present paper uses notations and definitions of [3]. The reader should be
familiar with sections 1 to 9, [3].
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2. INDUCTION IN LANGUAGES

In the present paper we shall consider only non-cyclic languages % (i.e. such
languages that there is no text ¢ derivable from the same text f), for which the sets
dZ and {a; AedZ, ae LA — 6, &} are finite. (It has been proved [5] that every
cyclic language is structurally ambiguous (s. a.).) Denote the class of such languages
by €.

In this section it is proved that for every grammatical element there is a derivation
with maximal length. Hence, in order to prove some assertion about the set g% it is
possible to use the induction on maximal length of derivation. The results obtained
in this section allow to strengthen the theorem on structural induction (Theorem

6.7 [3]).

Definition 2.1. Let g € g% . The set of all structures [a, 7] (such that «  [¢1] ') of
g in & will be denoted by Sgg (Sgg). (If there is no danger of misunderstanding the
symbol specifying the language will be deleted.)

Denote Qg the set
{91; [0, T] €Seyg, i€ da, g, = [ai, 1i] € gL}
Lemma 2.2. If g € 8%, then an integer n exists such that Ac < n for every [g1]-

derivation o of g2.

Proof. Suppose conversely that a grammatical element g exists such that for every
n there is a [g1]-derivation o of g2 such that Ac = n. Since oi; + oi, for iy + i,
(& is non-cyclic), the set {u; u —» g2, u € t£} has at least n — 1 elements. Since
n is arbitrary, the set {u; u —» g2, u et} is infinite which contradicts Lemma
2.10, [5].

Definition 2.3. Let g € g£. Denote
pg = max {c; o is a [g1]-derivation of g2} .

(With respect to Lemma 2.2, ug is a well defined number and the definition is
meaningful.)

Remark 2.4. In order to prove some assertion V on the set g.%, it is sufficient, by
Lemma 2.2 and Definition 2,3, to prove that Vg holds if Vg, holds for all g, such

that ug, < ug.

Lemma 2.5. Let Acd¥?, [A] > t; - t,, T be a ty-decomposition of t,, iedt,,
[t1i] = ti. Then p[t4i, ©i] < p[A, t,].

1) Note that g is a sequence of the length two and therefore if g = [A4, ¢#] then gl = 4 and
g2=1t.
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Proof. Let ¢ be a [t,i]-derivation of 7i with maximal length. Let o, be an [A]-
derivation of #,. Put t; = (""" x i x {* 14 Obviously [A] - t; = 1; 2 1,.
Let 6 be a derivation defined as follows: d = do, i = """ x gi x ({"*120,
Obviously ¢ is a t,-derivation of 5. Let g, be a t;-derivation of ¢,. Then g, =
=o' x ¢ x ¢§*? is an [A]-derivation of 1, and obviously u[t,i, ti] =
= Ao = A6 < Aoy < p[A, t,].

Corollary 2.6. If ge g%, g, € Qg then ug, < ug.

Corollary 2.7. There is no infinite sequence o such that oci € g<& for every ie do
and, if i > 1, o(i + 1) € Qui.

Proof. Immediate from Corollary 2.6.

Theorem 2.8. A g € 8% exists such that pg = 2.

Proof. Let go be such that ug, = inf {ug’, g’ € g&}, Obviously ug, = 2. Suppose

that pugo > 2. Then a structure [a, 7] and i€ da exist such that [«i, ti] € Qg (see
Lemma 6.4,[3]). By Corollary 2.6, u[«i, ti] < ug, which contradicts the choice of g,,.
Hence pgo = 2 and the Theorem is proved.

Corollary 2.9. A structurally unambiguous grammatical element exists in g%

Lemma 2.10. Let N < g% and let for every geN a g, € Qg n N exist. Then
N = A.
Proof. By Corollary 2.7.

Theorem 2.11. (Structural induction) Let M < g<£, let

(1) geM if QgeM.
Then M = g%.

Proof. If ug = 2, then Qg = A and, by (1), ge M. If ug > 2 and all g with
ug < pg are in M, then Qg = M and g € M by (1).

Remark 2.12. Condition (2.11.1) is equivalent to
(1) ge M if every structure [a, 7] of g is weakly M-regular,

and is weaker than condition (6.7.2), [3]. Note that(6.7.1), [3] may be omitted in The-
orem 2.11 since it follows from (1). On the other hand, it is convenient to verify (1)
separately for ug = 2 where Qg = A, and for pg > 2 where Qg + A.

For assertions concerning simultaneous properties of grammatical elements and
their structures the following theorem has been used implicitly in many proofs in [3].

Theorem 2.13. Let M < g&, let Ny = N = {[g, %, 7]; g € 8%, [«, 7] € Sg}. Sup-
pose that '

(1) geM if [g,a 1] €Ny for some a, <
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and
(2) [g,%t]€N, if [g,2 t]€N and [«i, ti]€ M as soon as [ai] — ti.
Then Ny = N.

Proof. If ge g& and Qg = M, then g€ M by (2) and (1). Hence M = g& by
Theorem 2.11 and No = N by (2).

3. REDUCING TRANSFORMATIONS

The concept of a reducing transformation is very important for the study of struc-
tural unambiguity (see [3]). It has been proved (Theorem 2.12, [5]) that if only
languages from %, are considered, then two conditions in the definition of a reducing
transformation are always satisfied. This permits us to simplify Theorem 9.6, [3],
(see Theorem 3.1).

Generally, the reducing transformation reduces a given grammatical element
g = [4, t] in such a way that some parts of the text ¢ are replaced by metasymbols.
Often it is easier to verify that a given transformation is reducing if for every
gramatical element g = [A, t] at most one part of the text ¢ is replaced by a meta-
symbol. We shall call such reducing transformation simple. Sufficient conditions for
the existence of a simple (5)-reducing transformation are given in Theorem 3.2.

In what follows some properties of reducing transformations are proved. Especially,
if we consider only reducing transformations such that ¢g € g.& for all g € g%, then
the product of two reducing transformations and the closure (see Def. 3.7) of a re-
ducing transformation are reducing transformations, too.

Theorem 3.1. Let V, R be transformations defined on g&. For every g = [A, tle
€ g% let the following two conditions hold:

(1) Ry is a decomposition of t, Vg is a sequence, A\Vg = ARg.

(2) For every structure [, t] of g there is an index-decomposition x, of Vg such
that the decompositions & = 8(V4g, xo) and { = 6(Rg, x,) satisfy

(22) t=({®Ryg
and, for every i€ du, at least one of conditions (2b1), (2b2) and (2b3) holds:
(2b1) 280 = 1, [oi] 2 &i > i,
(2b2) [g1] =+ o, [ai] * =i, &i = V[«i, ti], (i = R[ad, 7],
(2b3) &i = i, {i = d,(xi). '
Then conditions (9.1.1) and (9.1.4) in [3] hold for every g € % and for each of its

structures [«, T]. Moreover, if conditions (9.1.3) and (9.1.6) in [3] hold with ¢g =
= [gl, Vg], then g is a reducing transformation.
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Proof. The first assertion of the Theorem can be proved similary as in the proof
of Theorem 9.6, [3]. For proving (9.1.1) and (9.1.4) in [3] the condition & [«i, &i] <
< B[ ai, 7i] in (9.6.2b1), [3] was not used.) The second assertion of Theorem follows

from Theorem 2.12, [5].

Theorem 3.2. Let M = g% and let fy, f1, v be transformations defined on N > M.
Let for every g€ M, fog €dg2, f,g € dg2, fog < fig and let for every [, ] € Sg,
x =11, xi < fog < x(i + 1) either

(1) fog = xi, fig9 = x(i + 1) -1, [“i] = [vg] -
or

(2) [91] *# o, [ai,ti]eM, vg = vl[oi, ti], f.g = ffai, zi] + xi =1, s =0,1.
Finally let

(3) vg = g1 if [g1]= g2, ge M.
Then a simple (5)-reducing transformationlg exists such that M = {g; ¢g * g}

Proof. Let g = [A,t]. If ge g% — M, then we put Vg =t, Rg = o,t. If ge M,
then we put

(4) Vg = (Lafog—1) [vg] x 19+ 1,41) ,
(5) Ry 5p(t(1,foa—1)) % [t(foy,fxg)] % 5p(t(f19+1,“)).

We shall show that the conditions of Theorem 3.1 are satisfied. The condition (3.1.1)
is obviously satisfied. If g ¢ M then (3.1.2a) is satisfied with x, = ¢t and in this case
(3.1.2b3) holds for all i € da. Let g € M. If [o, 7] is a structure of g then obviously
Rg is finer than 7. Hence there is an index-decomposition x, of Rg (and of Vg, too,
because AVg = ARg) such that the decomposition { = &(Ry, x,) satisfies (3.1.2a).
We shall show that { and ¢ = §(Vyg, x,) satisfy, for every i € da, at least one of
conditions (3.1.2b1) to (3.1.2b3). Put x =, and let xj < fog < x(j + 1). Ifj * i,
then (3.1.2b3) holds. If j = i and (1) holds then (3.1.2b1) holds and if (2) holds
then (3.1.2b2) is satisfied. Hence, by Theorem 3.1, we get that conditions (9.1.1) and
(9.1.4),.[3] are satisfied for every g € g% and each of its structures [«, 7]. The con-
dition (9.1.3) is clearly satisfied if g ¢ M; if g € M then vg = g1 by (3), fog = 1 and
f19 = 292 (by (1) because for the structure [[ 4], [t]] = Seg the condition (2) is not
satisfied) and hence, by (4), Vg = [g1]. Put gg = [g41, Vg] for all geg¥. By
Theorem 3.1, ¢ is (5)-reducing transformation and, by (4) and (5), ¢ is simple. The
equality M = {g; og + g} follows, since % is a non-cyclic language, from the de-
finition of transformations V, R and g¢. This completes the proof of the Theorem.

Il

Definition 3.3. Let ¢, and g, be transformations defined on g%. Denote Jo; =
= {g; 019 = g}. A transformation g, is said to be complete if 0,0,9 = 0.9 for every
g € g§%. We shall say that g, is weakly equivalent with g,, if Jg; = Jg,.
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Theorem 3.4. Let o, and g, be reducing transformations. Then a reducing trans-
formation g, exists such that Jo3 = Jo; N Jg,.

Proof. Let ¢;, i = 1, 2 be induced by reducing pairs {V;, R;>. Let V3, R; and g3
be transformations defined on g.% in the following way:
If

(1) either 0,9 ¢ 8% or 0,9 €8, 0,9 *+ 9, 01029 ¢ 8%

then
(1a) Vag = V29, Ryg = Ryg, 039 = [91, Vag] = 029
If (1) does not hold, then

(2) Vag = V1029, Ryg = Ri0,9 ® Ry9. 039 = [g1, Vag]-
According to (2) we get that

(3) 239 = 01029 if (1) does not hold.
Moreover, from (1a) and (2) we obtain

(4) if either 0,9 *+ g or 0,9 * g, then 039 * g.

Using these results we get that Jo; = Jo; N Jo,. Now, we are going to show that
{V3, Ry) is a reducing pair. By Theorem 2.12, [5], it is sufficient to show that condi-
tions (9.1.1), (9.1.3), (9.1.4) and (9.1.6), [3] are satisfied for every g € g% and any
[o, 7] € Sg. Since ¢, is a reducing transformation, these conditions are certainly
satisfied if condition (1) holds; thus, we may assume that (1) does not hold, i.e.

(5) 0,9 € 8% and either 0,9 = g or 0,0,9 € 8<% .

Obviously, condition (9.1.3) is true and (9.1.6) follows from the fact that Jo; =
= Jo, n Jo,. Since {V, R;>, i = 1,2 are reducing transformations, R;0,g is a
V10,9-decomposition of (¢,g) 2 and R,g is a V,g-decomposition of g2. Obviously,
(029) 2 = V,g and, by Lemma 6.1, [3], R,0,9 ® R,g is a V;0,9-decomposition of
g2. Thus, R,g is a Vig-decomposition of g2 and (9.1.1) holds. Hence, in order to
prove the Theorem, it is sufficient to show that condition (9.1.4) holds, too. Let
geg¥ and [o, ] € Sg.

First suppose that ¢,g = g. Then R,g = 6,92. Since (9.1.4) holds for {V;, R,),
an a-decomposition ¢ of g2 exists such that 7 = ¢ ® R;g. Thent = ¢ @ R;g =
= ¢ ® (Ry029 ® Ry9) = &£ ® Ryg and (9.1.4) holds.

Now suppose that ¢,9 + g and V,g = «. In this case condition (9.1.4) is satisfied
with & = J,a, since R;0,g = d,a (note that ;0,9 € g£); hence, T = ¢ ® (R,0,9 ®
® R,9) = £ ® Ryg.

Finally suppose that ¢,9 =+ g and V,g # «. Since (9.1.4) holds for (V,, R;), an
a-decomposition &, of V29 exists such that t = &, ® R,g. Since Vog =+ a, [a, &,] €
€ S[g1, V,g]. Hence by (9-1.4) an a-decomposition &, of V3029 exists for V; and R,
such that &, = & ® R1029. Thus, t = (¢, ® R,0,9) ® Rp9 = & ® Ryg and (9.1.4)
holds.
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Corollary 3.5. Let 04, €2 be reducing transformations such that 0,9 € 8% for all
geg?, i = 1,2 Then 010, is a reducing transformation and Jo,0, = Jo, N Jo,.

Proof. The transformation g, defined in the proof of the preceding theorem is,
by that theorem, a reducing transformation and Jo; = Jo,; n Jg,. Since 9, € g%
for all g€ g% and i = 1, 2, there is no g € g% such that (3.4.1) holds; hence, by
(3.4.3), 03 = 0,0,

Remark 3.6. It can be the case that 0,0, F 0,0;.
Example: Let
d¢ = {4,B,C}, %A= {[BC]}, ¥¢B={[E]}, 2C={F]}.

Let 019 =g =00 if g=+[A[E F]] andlet o,[A,[E F]]=[A4,[B F]],
0:[A4, [E ,F]] = [A, [E, C]] . Then

010a[A, [E. FT] = [A. [E. €T] + [4.[B. F]] = 0ses[4. [E. FT].

Definition 3.7. The closure vo of a reducing transformation g is the transformation
defined on g% as follows: (vg) g = o'g where i is the smallest integer such that
0'g € Jo or ¢'g ¢ 8%; such an integer exists by Theorem 2.12, [5]

Theorem 3.8. Let ¢ be a reducing transformation such that 9g € 8% for all
g€ g%. Then vg is a complete reducing transformation weakly equivalent with o.

Proof. The relation Jo = Jvg follows from the fact that & is a non-cyclic language
and (¢g) 2 2 g2 for every g € g%. This relation also shows that v satisfies condition
(9.1.6), [3]. Indeed, let g € 8%, g, € Og. If (vo) g, * g, then g; ¢ Jvo and hence
g1 ¢ Jo. Since ¢ is a reducing transformation, gg * g, i.e., g ¢ Jo = Jvg and we
have (vo) g + g.

By Corollary 3.5, ¢' is a reducing transformation for every i = 1,2, ... Let o' be
induced by (V; R;). Let i(g) be the smallest integer such that ¢"®g = (v9) g. Put
Vg = Vg9, Rg = Ryg. Then vog = ¢'@g for every g € g&. and, as we show, vg is
induced by (¥, R). Indeed, conditions (9.1.1), (9.1.3) and (9.1.4), [3] hold for any
fixed g € g2, for R;, V; and any i. In particular, they hold for i = i(g) and consequent-
ly, they hold for ¥and R. By Theorem 2.12, [5], vg is a reducing transformation and
obviously, vg is complete.

Definition 3.9. If ¢ is a reducing transformation, then we shall denote yo the
transformation defined as follows:

(1) (x0)g = g if ng > 2, and (x0) g = g if pg = 2.

Lemma 3.10. If ¢ is a reducing transformation, then so is yo and (xg)gégz’
forall ge gZ.

412



Proof. Let ¢ be induced by <V, R). If ug > 2, then there is an [«, 7] € Sg and,
by (9.1.1), [¢g1] = « 2 Vg. Thus,(x0) 9 = eg = [g1, Vg] € g& and the last assertion
of the Lemma holds. Now, let us define transformations V;, R, on g% as follows:
Vig = Vg, Ryg = Rgif ug > 2; V19 = g2, Ryg = 6,92 if pg = 2. It is evident that
conditions (9.1.1), (9.1.3), (9.1.4), [3] are satisfied for Vy, R, if ug = 2; if pg > 2,
then this follows from the fact that these conditions hold for V and R. Now let
geg¥, g, € Qg and (x0) g, * g Then ug, > 2 and pug > 2, too. Thus, (x¢) g, =
= 09, * ¢g,. Since ¢ is a reducing transformation, ¢g, # g, implies og #+ g. Since
ug > 2, og * g implies (x¢) g =+ g and (9.1.6) holds, too. Thus, xe is a reducing
transformation.

Definition 3.11. Two reducing transformation ¢4, ¢, are said to be equivalent if
VY@1 = VXQ2-

Remark 3.12. It can be the case that ¢ is a reducing transformation, ¢g € g% for
all g € g% and there is no simple reducing transformation ¢, equivalent with g.

Example: d.¢ = {4, B,C,D,E}, YA = {[B,C]|}, ¥B = {[D]}, £C = {[E]},
ZD = {[F]}, ZE = {[G]}. Let ¢ be defined as follows: og = gifg =+ [4, [F, G]] =
= g, and gg, = [4, [D, E]].

Suppose conversely that there is a simple reducing transformation ¢, equivalent
with @. Then ¢;0,9o = [4,[D,E]]. Hence, either ¢,9, = [4,[D, G]] and
o.[4.[D. GT] = [4. [D.ET]. or 0,90 = [A.[F.ET] and o,[4.[F.E]] = [4.[D.E]]
In both cases there is a g, =% g, such that g, + 0,9, € 8% and consequently,
(vxe1) 91 + g1 = (vxe) g, Thus, g, is not equivalent with g.

4. ISOLABLE SETS

In this section isolable sets and their relationship to structural unambiguity is in-
vestigated. Some necessary and sufficient conditions for a set 7 to be isolable are
given.

Theorem 4.1. A non-empty subset of = d.% is isolable if and only if there is a re-
ducing transformation ¢ such that g1 € o/ for no g € Joy, g, € Qg. In this case we
shall say that of is g-isolable.

Proof. According to Definition 9.7, [3].
Corollary 4.2. A non-empty subset of an isolable set is isolable.

Theorem 4.3. If o/, o, are isolable sets then so is | U .

Proof. Let &; be g-isolable for i = 1, 2. Let g5 be defined as in the proof of
Lemma 3.4. Then ¢; is a reducing transformation. If 939 = g and g, € Qg, then,
by (3.4.4), 019 = g and 0,9 = g. Since &, is g-isolable, an application of Theorem
4.1 gives 911 ¢ o, U ,. Thus, again by Theorem 4.1, &/, U o, is gs-isolable.
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Theorem 4.4. A non-empty subset of = d is isolable if and only if there is
a reducing transformation o such that Jo < g, = {g9; Qg < 9L 4z -t}

Proof. First suppose that o/ is g-isolable. If Jo ¢ g,%, then a g€ Jo — g,&
exists such that ug = min {ugo, go € Jo — 8.Z}. If g, € Qg then ¢g, = g, (since
g € Jo) and, by Corollary 2.6, pg; < pg. Thus, g, € g,%. Next, since & is g-isolable,
and og = g, an application of Theorem 4.1 gives g,1 ¢ /. Thus g, € §L 4o 4
Since g, is an arbitrary element from Qg, g € g, whih contradicts our assumption
geJo — g,%. Thus, Jo < 8,%

Secondly, let ¢ be a reducing transformation and Jo < g,&. If gg = g, then
geJo = g,%. Thus g,1€ o for no g, € Qg and an application of Theorem 4.1
shows that & is g-isolable.

Theorem 4.5. If % is a s.u. language, then every non-empty subset of d.% is
isolable.

Proof. By Theorem 9.5, [3], a reducing transformation ¢ exists such that Jo = 4
and hence, by Theorem 4.4, every non-empty subset of d.# is isolable.

Theorem 4.6. Let o |, &, ..., &, be subsets of d.& such that ) &; = d&. For
i=1
a language &£ to be s. u. it is necessary and sufficient that every & ; is isolable.

Proof. The necessity follows from Theorem 4.5. The sufficiency follows from
Theorem 4.3 and 9.13, [3].

Theorem 4.7. Denote €, the class of languages & such that d¥ and {a; Ae dZ,
a€ LA} are finite sets. There is no algorithm to decide, for any given language
L €%,, whether or not d.Z is isolable.

Proof. It has been proved by many authors, [1, 2, 4], that there is no algorithm
to decide, for any given language &£ € €, whether or not % is s. u. Now, the assertion
of the theorem follows from Theorem 4.5 and Theorem 4.6.
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Pe3omMme

MHAYKIOUSA B ®OPMAJIBHBIX SI3BIKAX.
HEKOTOPBIE CBOMCTBA PEAVLMPVIOIMUX TPEOBPA3OBAHUN
N N30JIMPYEMbBIX MHOXECTB

MOCU® I'PYCKA (Jozef Gruska), BpaTucnasa

B paGote usyyarorcs GpopMabHble s3b1Ka, BBeeHHbIe B. ®abuanoM B [3]. B mep-
BOM 4acTH AOKa3aHO, YTO B HELUKJIMYECKHX SI3BIKAX IJIsL KaXXJAOro IPaMMaTHYECKOTO
3JIEMEHTa CYLIECTBYET BBIBOJL MAKCUMAJIbHOMN JIMHBL. DTO CBOXCTBO UHOI 1A MOJIE3HO
MpH A0Ka3aTeJIbCTBAX.

B ciemyromux yacTsix paboTsl U3y4aroTcsl peAyIUpPYoLLe MpeoOpa3oBanys U U30-
Jmpyemsle MHOXecTBa (cMotpu [3]). PaccmatpuBaeTcs ciydaif, KOrfa K peaymupy-
FOILMM IpeoOpa3oBaHMsIM @, U @, CYLLECTBYET TaKoe peayLpytoliee npeobpa3opa-
HYE @, KOTOpOE peAylMpyeT TaKUE U TOJILKO TaKHe IPAaMMATHYECKHE JIEMEHTHI, KO-
TOPBIE peyIUpyeT XOTh OJIHO U3 NpeoOpa3oBaHuii ¢y, 0,. Kpome Toro, moxassiBaer-
CS1 YTO S3bIK & CTPYKTYPHO OJHO3HAYEH TOTAA M TOJIBKO TOTHA, KOTAA CYIIECTBYET
pa3bueHre MHOXECTBA BCEX METACUMBOJIOB s3bIKa & Ha M30JIMPyeMbIe MHOXECTBA.
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