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1.
Consider a linear control system
(L.1) 9 _ Ax + Bu
dt

where x is an n-vector, u is an m-vector, A is an n X n- and B an n x m-matrix.
Denote by, ..., b,, the columns of B.

It is known ([7]) that if the system (1.1) is controllable, i.e. if at least n of the
vectors by, ..., b, Aby, ..., Ab,, ..., A" by, ..., A" 'b,, are linearly independent,
then there exists a bounded control function u(x) such that the solution of the system

dx
— = Ax + Bu(x
4 (x)

starting at the origin is trivial and every solution starting in a sufficiently small
neighbourhood of the origin reaches the origin in a finite time.

Let us now consider a system

(1.2) d—x=Ax+Bu+p
dt
where x, u, A, B satisfy similar conditions as in (1.1), p are n-dimensional “‘pertur-
tions” about which we know only that they are measurable and uniformly bounded
by a small constant. It is shown in [8] that if m = n, B is nonsingular and the pertur-
bations are sufficiently small, we are able to keep the solution of (1.2) at the origin
and bring every solution of (1.2) to the origin from a sufficiently small neighbourhood
of it in a finite time by an appropriate control function u(x) which is independent of
the perturbations.
If m < n, such a control need not exist.

329



In this article there is discussed the problem, whether it is possible in the case
m = 1,n = 2to keep the solution of (1.2) in some connected compact region contain-
ing the origin by a bounded measurable control u(x) which is independent on the
perturbations, if only the perturbations are sufficiently small and whether it is
possible to choose a control function such that this region is in a certain sense
minimal.

This problem leads to a discontinuous control function and, hence, to a differential
system with discontinuous right-hand sides. Therefore, for preserving the real
sense of the solution of the problem it is necessary to generalize the notion of the
solution of a differential system ([4], [5]).

There are used the notions and methods of the theory of contingens-equations
(11, [31. [51. [6))

The problems considered in this article may be exactly formulated as follows:
Let us consider a control system

dx!
— =ajx! + aix® + blu + rt,
dt .
(o) dx?
o = a?x® + a2x® + b*u + r?,
t

in vector form

£Iic=Ax+bu+r
dt ~

under the following assumptions:

1. a, b5, j = 1, 2 are constants,

2. u = u(x), the control function, is a measurable function of x!, x2, defined almost
everywhere in some open domain and satisfying the condition |u| <1,

3.r= r(t) are perturbatlons i.e. measurable functions of ¢, satisfying the condition
reeR 1) where R is a convex compact set, symmetric with respect to the origin,

4. the system (o,) is controllable, i.e. the vectors b, Ab are linearly independent.

Let | x” be the Euclidean norm in the two-dimensional Euclidean space E,, V(x, §)=

= {x": [|x" — x| < 8}, conv X the convex closure of X.

The function x(f) is said to be a solution of the system (o,) on the interval <t,, t2>
if it is absolutely continuous and satisfies the relation

x4 b0 N convu(V(x(e), 5) — N) + ()
dt 6>0 mesN=0
for almost every 't € (t;,1,), where r(t) is an arbitrary measurable function of t,
satisfying the condition r(f) € &R (see § 3). ‘
DX ={forxeXx} X+Y={x+ryxeX,yer}
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If we denote
Ux)=N N convu(¥(x,d) — N),
6>0 mesN=0
then the function x(t) is a solution of the system (o,) if, and only if it is a solution of
the contingens-equation.

(z) j_x € Ax + b U(x) + R
t

(see §2).

The control u(x) will be said e-stabilizing, if there exists a connected compact
region G containing the origin such that for every solution x(f) with x(t,) € G the
relation x() € G for ¢ 2 1, is valid. The region G will be said (u, ¢)-invariant.

Let |x| be a given norm in E, ([11], I, 3.1) and let |X| = max |x| for an arbitrary
xeX

compact set X < E,. The control ﬁ(x) will be called the best e-stabilizing control in
the sense of the given norm, if there exists such a (17, s)-invariant set Gy, that for
every (u, ¢)-invariant set G

G4l < 6]
is valid.
The control ﬁ(x) will be called g,-invariant best e-stabilizing, if it is the best e-stabiliz-
ing control for every ¢ € (0, £o)-

The aim of this article is to show that for sufficiently small ¢ > O there exists
a best e-stabilizing control in the sense of a given norm (which may be arbitrary) and
that under some further assumptions there exists an gy-universal best e-stabilizing
control in the sense of a given norm.

In §§ 2,3 there are given some notions and theorems of the theory of contingens-
equations and differential systems with discontinuous right-hand sides. In § 4 a control
function for a particular system is constructed, which is proved in § 5 to be for suf-
ficiently small ¢ > 0 the best e-stabilizing control in the sense of the Euclidean norm.
In § 6 there is shown that under certain assumptions an g,-universal best e-stabilizing
control exists. In § 7 the case of a general norm is considered. In § 8 there is shown,
that the general problem can be transformed to the special problem investigated in
§§4—7. In §9 two examples of special systems are solved. In § 10 our problem is
considered from the viewpoint of the theory of games. ’

2.
Let E, be the k-dimensional Euclidean space.

Definition 2.1. By a multi-valued function F(x), defined in a domain D < E,, with
the values in E, we shall denote a mapping which to every point x € D assigns
a non-empty connected compact set F(x) < E,.
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Let us denote V(X, ) = {x€E, : ¢(X, x) < &} foraset X = E,, where o(X, x) =
= inf ”x - x’”.
‘eX

Definition 2.2. The multi-valued function F (x) will be called upper semicontinuous
in the sense of inclusion (briefly p-continuous) at x, € D, if the following condition is
satisfied:

For every ¢ > 0 there exists sucha & > 0 that for every x € D such that | x — x,| <
< & the relation

F(x) = V(F(xo), )
is valid.

Remark 2.1. It is easy to see that the function F(x) is f-continuous at x, € D if and
only if from X, = X, ¥» = Yo» Vu € F(x,) it follows that y, € F(x,).

Definition 2.3. Let ¢(f) be a continuous function in the neighbourhood of ¢, with
values from E,. The set

cont g(f) = {lim olto + 1) = "’(“’)},

k— oo hk

where {h,} is an arbitrary sequence tending to zero such that the limit (also + oo,
— o0) on the right-hand side exists, will be called the contingens of o(1) at t,.

Definition 2.4. Let F(t, x) be a multi-valued function defined in some domain
D c E,, with values from E,. The symbol ‘

(2.1) 3? eF(t, x).

will be called the contingens-equation. The function x(t) will be called a solution
of (2.1) on the interval {t,, t,) if it is defined and continuous on {t,, t,) and satisfies
the conditions

(t; x(t))e D, cont x(t) = F(t, x(1))
for each telty, ty). '
Theorem 2.1. Let the multi-valued funﬁtion F(t, x) be defined and f-continuous
in D  E,,, and let the set F(t, x) be convex in every point (t, x) € D. Then:
1. For every (to, Xo) € D there exists a solution x(t) of (2.1) with x(t,) = Xo.
2. x(t) is a solution of (2.1) on (ty, t,) if and only if

a) x(t) is absolutely continuous on {t, t,),

b) (t, x(1)) € D for t €<ty 1),
c) x(t) € F(t, x(z)) for almost every t €t t,).

(dx/dt will be frequently denoted by X.)
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Remark 2.2. If further some statement concerning the derivative of a solution of
a contingens-equation for ¢t € T will be given, it will be understood that it is valid for
almost every t € T.

Definition 2.5. Let every solution of (2.1) with x(f,) = x, be prolongable on the
interval (t,, t,>. By the zone of emission Z(x, o, t;) of the equation (2.1) we shall
denote the set of points (t, x) belonging to the solutions of (2.1) with t € {to, t,>. By
the lateral boundary H(xo, to, ;) of Z(xo, o, t;) the closure of the set of boundary
points (¢, x) of Z(xq, to, 1) With t € (to, t,) will be denoted.

Theorem 2.2. Let the conditions of Theorem 2.1 and definition 2.5 be satisfied.
Then:

1. Z(xo, to, t,) and the intersection of Z(x, to, t1) with every hyperplane t = t',
t' €{ty, t;» are connected compact sets.

2. For every (t', x') € H(xo, to, t;) there exists a solution x(t) with x(to) = Xo»
x(t') = x', (t, x(t)) € H(xo, to, t1) for t € {to, t').
3. From (t, x') € Z(Xo, to, 1), t; €t}, ;) it follows that
Z(x', t', ty) < Z(Xos tos ty) -
The proof of this theorem may be found in [6].

Theorem 2.3. Let the assumptions of Theorem 2.2 be satisfied and let the contingens-
equation

(22) j—;‘ € G(t, %)

satisfy analogous conditions as (2.1). Let for some u > 0
F(t, x) = G(t, x)

for (1, x)€ W= [V(Zg(Xo» to tr)s 1) = Zg(X0» tos t1)] N {(t: X) 1 1 E (to, 11)}

(Denote Zy, Zg the zones of emission of the equations (2.1), (2.2), respectively.)
Then

Z(x05 tos 1) = Z (o5 tos t1) -

Proof. Let us suppose that there exists a point (¢, X') € Zg(xo, to, t1) —
— Zg(Xo» to» t1). Then there exists a solution x(f) of (2.1) such that x(to) = x,,
x(t) = x', cont x(t) € F(t, x(t)) for t€(to, t') is valid. As (¢, x') ¢ Zg(xo5 tos ty) it
follows from Theorem 2.2 that there exists a point (£, x") € Zg(Xo» tos t1) to S 1" < t'
and a t > 0 such that :

(2.3) x(t")=x", (t,x(t))eWw for te(t',t"+ 1>, 1>0
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For te{t’,t" + t) we have x(f)€e F(t, x(t)) = G(t, x(t)) and hence, (r,x(t)) €
EZx", 1", 7).
Due to Theorem 2.2 we have (1, x(1)) € Zg(xo, to, t;) Which contradicts (2.3). Thus,
the theorem is proved.

Now, let x € E; and let the assumptions of Theorem 2.3 be satisfied. Denote the
lateral boundaries of Zz, Z; by Hg, Hg, respectively. It follows from Theorem 2.2
that Hp(xo, to, t,) consists from the lower boundary x = h,;(t) and upper boundary

x = hyp(t), where hyi(t) = min x, h,(f) = max x and both of the functions
(t,x)eZr (t,x)eZf

hy§(t), h,x(t) are solutions of (2.1). Similarly, we denote the lower and upper boundary
of Zg(Xo, tos t1) by hyg(t), hag(t), respectively.
In a similar way as Theorem 2.3 we may prove

Theorem 2.4. Let the assumptions of Theorem 2 2 and the similar assumptions on
the equation (2.2) be satisfied.

L. If F(t,x) < G(t,x) for (t,x) such that t€(to, ;) hyg(f) — n < x < hyg(t),
p > 0 then for every (t, x) € Zg(xo, to, t;) it holds x = hy(1).

2. If F(t,x) = G(t, x) for ‘(t, x) such that t€(to, t;), hag(t) < x < hag(t) + p,
p > 0 then for every (t, x) € Zg(xo, to, t1) it holds x < hyg(1).

Remark 2.3. The analogue of Definition 2.5, Theorems 2.2, 2.3 and 2.4 may easily
formulated for t, < t,.

Theorem 2.5. Let x € E, and let the assumptions of Theorem 2.2 be satisfied.
Let min F(t, x) be continuous in some neighbourhood of the lower boundary h(t)
of the zone of emission Z(x,, to, 1), t; > to of the equation (2.1). Then h,(t) is
a solution of the differential equation

dx .
2.4 -~ = min F(¢,
(4 o = min F(1, )

for te(to, t,). Similarly, if max F(t, x) is continuous in some neighbourhood of
hy(1), then hy(t) is a solution of the differential equation

dx
2.5 — = max F(t, x
29) T = max F(, )

for te(tg, ty).

Proof. Suppose that h,(f) does not satisfy (2.4) for some ¢, € (to, t;). Let x, =
= x(tz) It follows from Theorem 2.2 that h,(t) is a solution of (2.1) and, therefore,
cont h,(t,) = F(t,, x,); as simultaneously h,(t) does not satisfy at t, the equation
(2.4), there exists a sequence {t,}, 7, — 0 such that

D= tim M2t %) = I) o b (s).

n— o T

n
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Let an infinite number of t,’s be positive. From the continuity of the function min F
in the neighbourhood of the point (#,, x,) we conclude that there exists a solution ¢(t)
of (2.4) with ¢(t,) = x,. For sufficiently large n such that 7, > 0 we have

(2.6) oty + 1,) < hy(ty + 1,) .
As ¢(¢) is a solution of (2.1), we have

(t2 + T 0t + 7)) € Z(x3, 15, ty) = Z(xo, to, ty)

which contradicts (2.6).
Let now 1, < O for infinitely many n’s. As min F is continuous in the neigh-
bourhood of (t,, x,), the relations

min F(t, x) < hy(ts + ) = hu(ta) » ((ty + ) hy(t, + )€V
™

will be satisfied for sufficiently large N and for (¢, x) from a sufficiently small neigh-
bourhood ¥V of (t,, x,). Denote y(t) the solution of (2.4) with Y(t, + ty) =
= hy(t, + ty). Y(t) either leaves V below the curve h,(t) or we have

t2

W(t) = Ity + o) + J min F(t, y(9) dt < h(t, + 1) + Iy < hy(t) = x,

tatTn

In both cases we get a contradiction as y(t) is a solution of (2.1) and, therefore, must
be contained in Z(xo, o, ty)-
Similarly the second part of the theorem may be proved.

Remark 2.4. Theorem 2.5 may be concluded from the maximum principle of L. S.
Pontrjagin ([7]).

Theorem 2.6. Let Z be a differentiable n — 1-dimensional manifold defined by
the equation s(x) = 0 in an open domain V < E,. Denote S*(S™) the set of points
of V, for which s(x) > 0 (s(x) < 0). Let the multi-valued function F(t, x) satisfy the
assumptions of Theorem 2.1 for (t,x)e{ty,t,> x V and let from ze€ F(t, x),
tedt, t,, xSt follow that

(2.7) (grad s(x), z) < 0.
Then no solution x(t) of(2 1) leaves S™ U X into S+ in {t,, t,> without leaving V.

Proof. Suppose the contrary Then there exists a to € {ty, t,» such that (t,, x(to)) €
ez, (1 x(t)) eS* forte (to, to + r) From (2.7) it follows that

s(x(to + 'c)) = s(x(to +7)) — s(x to) ‘1 ( grad s(x), (t)) dt <0

v o

which contradicts x(rO +1)eSt. -
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3.

Let us have a system of differential equations
dx
3.1 — = f(t, x
(1) &= ()

where f(t, x) is defined in some open domain D < E,  with values from E,. If £(t, x)
is not continuous, a solution through every point in the classical sense need not exist.
However, it turns out that in real systems which are described by differential systems
in an idealised way there appear solutions having the character of “sliding” along the
surfaces of discontinuity of f. They may be described mathematically by solutions in
a generalized sense. We shall use the notion of solution due to Filippov ([4D.

Definition 3.1. The function x(¢) will be said to be a solution of the system (3.1) on
the interval {t,, ,) if it is absolutely continuous on {t,, t,) and satisfies the relations
(t, x(t)) € D for te {1y, t,)

dx
— =N N convf(t, V(x(t), 5) — N)

dt 5>0 mesN=0

for almost every t € {ty, t;).

Theorem 3.1. Let f(x) be a measurable function, bounded almost everywhere in
a closed domain D < E,. The function x({) is a solution of the differential system

(32) = 1

if, and only if it is a solution of the contingens-equation

(3:3) 3—: € F(sc) ,

where

(3.4) F(x)=N N convf(V(x,8) — N).
6>0 mesN=0

The function F(x) satisfies the assumptions of Theorem 2.1.

Proof. The equivalence of the system (3.2) and the equation (3.3) follows from
Theorem 2.2 if we prove that F satisfies the assumptions of this theorem. This
follows from

Lemma 3.1. Let f(x) be measurable and bounded almost everywhere on
a measurable set A < E, with positive measure. Denote A, the set of points of
density of A. The multi-valued function F given by (3.4) is defined and B-continuous
on A, and the sets F(x) are convex for every x € Ay.
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Proof. Denote A, the set of the points of asymptotic continuity of F on 4. We
have mes(4 — Ay) = 0, mes (4 — 4;) = 0. Denote N, = A — (4, U A4,). For
x € Ay, F(x) is a non empty compact set and,

F(x) = N conv f(V(x, §) — No) = conv (N f(V(x, ) — No)

(see [4], Lemma 1).

As from the p-continuity of a multi-valued function @(x) evidently follows the

B-continuity of the function conv ®(x), it suffices to prove the f-continuity of the
function

Fo(x) = N f(V(x,6) — Ny)
>0
on A,.
Let x, € A, and suppose that F is not f-continuous at x,. Then there existsa 4 > 0
such that for every k > 0 there exists a x; € Ao, X; € V(xo, k™) such that Fo(x,) ¢
& V(Fo(xo), #). For k and x, there exists a 1, > 0 such that V(x;, n,) = V(xo, k™)

and an y, such that y, € f(V(x,, m) — No), e(Fo(Xo), yi) > u — k™'. The sequence
{y«} is bounded and therefore it has a point of accumulation y for which we have

yexol{yk}fz,( ckolf(V(xo, k"l) — NO) =ﬁnof(V(x0, 5) - Fo(xo) = Fo(xo).
There exists a subsequence {y, } of {y,} such that y, — y. We have
o(Fo(x0)s ¥i,) < i, = ¥|| + e(Fo(x0), »)
Q(Fo(xo), J’) 2 Q(Fo(xo), ka) - ”ka - .V” =p— k;l - “yk., - y|| .

From k;' — 0 and |y, — y| = 0 we get o(Fo(x,), y) = 1 which contradicts y €
€ Fo(xo).

4.

In §§ 4—7 we shall consider the special control system

() y' =y +p',
y2 =ay' + By* +u + p*, (p',p*)ceP
in vector form

y=My+eu+rp,

() o) o-)

where
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In addition to the assumptions imposed on the system (Gg) in § 1 we shall assume that

(4.1) max |p'| = 1.

peP

We shall further denote

| = max |p?|.
peP

The contingens-equation, corresponding to (s,) will be
(S, yeMy + e, U(y) + ¢P.
Consider the contingens-equations
(85) yEMy + e; + &P,
(s7) yEMy — e, + ¢P.
Lemma 4.1. For every & € (0, 1) there exists an &d) > 0 such that every solution

¥(t) of (S.") starting at a point y, = (vo, —&) such that —oays < 1 — 6, intersects
the line y* = ¢ and it holds y*(t) > 0 as far as |y e

Proof. Suppose a > 0 (the cases o = 0, « < 0 may be treated similarly). Let
¢ < 6K~! where K = max {4(I + |B|), 42x)*}. Denote C, the set | se y 2
> —a '+ 5207

For y(t) € C, we have
(4.2) yl = y? + pt = —2e,
(4.3) PP=ay' + B +1+p2 230 —(1+|f)e=245>0.
Let y) > —a™! + da™", y(0) = yo. Suppose that y(¢) intersects the segment yl =

= —a"' +6.27%"!, |y?| £ & which we shall denote by 4,. Let 7, be the least
number such that y(¢,) belongs to 4,. Then from (4.2) it follows that ¢, = 5(4oe) ™.

From (4.3) it follows that

2

2
yi(t) =z —& + %(40(8)_1 > —e+ e>¢

160

contrary to y(t,) € 4,. Thus, the lemma is proved.

Lemma 4.2. Let y(t) be a solution of (S)), & < &), starting at a point y, =
= (y5, —¢), —ayg < 1 — 8. The function y' = yi(t7(y*) ") is a solution of the

1) By t"(yz) we denote the inverse function to yz(t).
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contingens-equation

dy! y> + p'
RS ——c =f*(y,p): pe€eP
(R) dy? {ay1+ﬁy2+1+p2 v2): » }

for y*el—¢, +¢).

Proof. Due to Lemma 4.1, we have y%(¢) > 0 for |y?| < e. Hence, the function
1 !(y?) is defined for [y2| < &. Thus, for almost every y?, ]yzl < & we have

dy' _y! +

— =€ , P).

dy*  y* 70.7)
Denote

2, 1
. . y+r
m, () = min f *(y, p) = min — 5 5
peeP peeP Oy~ + By + 1+ )4

Further, denote D, the set of points y satisfying the inequality

(4.4) —(ay' + By <1 — I,
and D the set of points satisfying the inequalities
(4.5) — (" + )1 —-(I+KY)s |y K.

Lemma 4.3. 1. The function m)(y) is a continuous function of the variables
y', y%, ¢ in the domain D = {(y', y*,¢) : ¢ > 0, ye D,}.

2. In the domain D, m;(y) satisfies the Lipschitz condition with respect to y'

with the constant
L (K +¢)

C(K'ep
3. In D, a measurable function p,(y) exists such that

(4.6) pu(y)€EP, [H(y, pu(y)) = mS(y).
4. Let 0 < &, < &,. Then m},(y) < m;(y) < O for y € D, such that y* < e.

Proof. 1. Let (y', y?, &) € D. Then m;(y) is defined. Let (y,, y7, ¢) = (', y?, ¢).
For sufficiently large n we have evidently (y,, y7,€) € D. From {m;(y,)} we may

select a subsequence which converges to a (a may be a real number or + oo).
Suppose a > m(y). For sufficiently large n we have -
+
m(y,) > +_;”,(L) ,

Denote p, € ¢P such, that
mS(y) = f*(y, po) -
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Evidently

2 -1 1 2 1
8,, yn + & SnPo y + pO +
f5 (v = po) = - = m,
P ayl + By: + 1+ ¢ te,ps  ay' + By* + 1+ p) 2

and therefore,

I (v € 2eapo) < ¥a + m;f(y)) < m;(y,) for sufficiently large n. As &6~ 'po € &,P
we got a contrary to
Mg (y,) = min f*(y,, p) -

peenP

Suppose a < m, (). Denote p, such a perturbation that

‘ S (Vs Pw) = Mo () -
From {p,} we select a convergent subsequence {p, } and denote § = lim p,,. We
have € eP and ke
(. B) = im f*(yno Pu) = @ < m;(y)
k—

contrary to the definition of m; ().
2. Let (y1, ¥1): (¥2, ¥1) € Dog and let

my (1, ¥} = mS(y3, ¥1) -
Denote p,, p, € eP such perturbations that
oL yh p) = mf (v yh), £ (e v p) = mi (v, ¥i) -
Then
Im¥ (L 2 = mf (43, ¥D)| = md (vh 1) — m/ (v2, 1) =
= Ly p) = £ (v 0h ) S 1 ¥E pa) — £ (028 p) =
(i + p2) vz — 1) <K+

= C
C(ayi+ By 1+ p3) (ayy + By: + 1 + p2) = (K e |y2 J’1| )

which completes the proof.
3. Denote
P,(y) = {peeP:f*(y,p) = m (»)}-

We prove that P,(y) is a p-continuous multi-valued function in D,. The set P,(y) is
evidently compact, convex and non-empty. Hence, due to Remark 2.1 it is sufficient
to prove that from y, — ¥, P, = B> Py € P,(y,) it follows that j € P,(y).

Suppose f ¢ P,(y) and let po€ P,(y). Then f*(y, p) > f*(», po) . Hence, as
(v, p) is evidently continuous, we have for sufficiently large n,f*(Vu Ps) >
> f (¥ Po) contrary to the definition of p,.
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- Denote
Pm(y) = minlex P,(y)
ie.
pa(y) = min p', pa(y) = min p*.
PEPm(y) ' PEPm(3), P' = pm'(¥)

Due to Wazewski’s lemma ([2]), p,(y) is measurable.

4. Due to the assumption (4.1) there exists a number p, such that (—¢, p*) € eP.
Denote further p, € & P so that f *(y, p;) = m, (y). Then for y*> < ¢ we have

2

0> o 2 mi(y) =
ay' + By? + 1 + p?

2 1 2 -1.1
- — y :‘P1 > — y 2"‘8231 D1 2 m:z(y)
ayt + By* + 1+ p1 ey’ + By* + 1 + &8 py

which was to be proved.

Corollary 4.1. Denote I';(yg) the lower boundary of the zone of emission Z(yg,
—é&, €) of the equation (R;). Let y* = y,(»?, yg) be its equation. From Theorem 2.6
and Lemma 4.3 it follows that y* = 9 (y%, yg) is a solution of the differential equation

dy!
mR;} —— =mf(y).
(nR?) o = mi0)
Corollary 4.2. Exactly one solution of the differential equation (mR;") passes
through every point of D,.

Corollary 4.3. The solutions of (mR,") depend continuously on the initial values
and on the parameter ¢ in the domain D. (See [ 10], chapter 1.)

Remark 4.1. The following example shows that the function m(y) need not be
differentiable:

Leta =0,3=0,P = {p:lpll <1, ]pzl < 1}. Then

2—..

}; t, yr<s,
2 1 — &
m?(0, ) = min 2L —J
peaP1+p y—8, y2>8,
1+4+¢

[@m; (0, y*)]/0y* evidently does not exist at the point y* = .
Lemma 4.4. For sufficiently small ¢ > 0 there exists exactly one y! > 0 such that
(47) ')’:(8, yal) = _yel >
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i.e. the points of intersection of I'; (y,) with the lines y* = +¢ are symmetric with
respect to the origin. y! is a continuous and increasing function of & and it holds
y! =0 fore—0.

Proof. Let ¢ > 0 be so small that
a) 4elo (]ﬁl +)t<1— 2(][%] + 1) e

b) the function y' = 9,(y% yo) satisfies the equation (mR;") for Iy(l,‘ <

< 48(lﬁl + )7t

c) the function m;(y) is a continuous function of y and satisfies the Lipschitz
condition with respect to y! for [y!| < 4e(|g| + 1), |y?| < 2e.

The validity of the conditions a), b), ¢) for sufficiently small ¢ > 0 follows from the
Lemmas 4.1, 4.3.

From Lemma 4.3 it follows that

(4.9) va (e, de(|B] + 1)) < 4e(|B] + )7
Let |yg| < 4e(|B| + 1)™". Due to a) we have
—2 1 4e

+e
e,y =yl + | miOFOALya)y)dyr = yo + 2 = yg — -
72 (e, ¥0) = ¥o j_a (32 yo) ¥ dy* = yo EE Yo TEX
Hence
(4.10) 77 (e, 4e((Bl + )71 2 0.

From c) it follows that 9, (e, yg) depends continuously on o for |ys| <
< 46(|B + 1)™". From this, (4.8) and (4.10) we conclude that there exists a yle
€ (0, 4(|| + 1)~") which satisfies (4.7). :

Let y! > y!. Due to Corollary 4.2 we have y; (¢, y1) > 7. (&, y;) = —yl > —yl
Similarly it may be proved that y; (e, y1) < —y} for y; < y,. From this the unique-
ness of y! follows. ‘

Now, let ¢, — ¢. If y, does not converge to y!, then there exists a subsequence of
{y..} which converges to a number y& # yi. We have

— Ve = Yo + I

It follows from Lemma 4.3 and Corollary 4.3 that

+é&n
mr (v (v2 o), ¥7) dy*.

—&,

+e
—y6 = yo + J m}(vF(»2, yo), ¥) dy?,
ie. v ’
(8 v8) = — Yo »

contrary to the uniqueness of y.
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Let ¢ > ¢ and suppose y. < y!. Denote y' = n(y?) the solution of (mR;") with
n(—¢') = yl. From Lemma 4.3 we conclude n(—&) < y,. Hence

—yh = 90(e y2) < n(e) < (e n(—2) < pf(evl) = —yi £ =y

which is impossible. Thus, we have y;, > y}.
From the continuity of m;"(y) it follows that for & < &, it holds |m;" (. (¥*), y*)| <
< M. Hence

+e&
|2yi] = j m, (3} (%), y*)| dy* < 2Me .
Thus i

limy!=0.

=0

Further, we shall denote briefly I'J(y}) = I and 9, (y?, yi) = y. (»?). By the

transformation y = —z we get from (S:r ) the equation (§,.); similarly we get from
the equation (R,") the equation

_ dz! z2 + pt
R; f(zp : peeP
(R) dz? { (=) = az! + pz? — 1 + p?
and from (mR,") the equation

_ dz* . 2 ! _
(mR;) . _ min Z+p = m,; (z).
dz? az' + pz2 — 1 + p?

Hence, the solutions of the equations (S;),(R;), (mR;) are symmetric with
respect to the origin to the solutions of (S;°), (R,"), (mR,"), respectively and the
solution y, (»%, yo) = —7. (- y yg) of the equation (mR; ) is the lower boundary
of the zone of emission Z(—ys, &, —¢) of the equation (R;"). The graph I'; of the
function y; (y?) = y, (¥% —y:) intersects I'; at the pomts yE = ( e, ya) -y, =

(8 _yS)

We shall prove that I}, I, have no common points such that | y I < &

Denote s, = inf m;"(y), where B, = D, n {y : |y?| < &} and D, is given by (4.4).

veB; '

Lemma 4.5. Let s.be a given number, s, < s < 0. Then, the set of points y € B,
such that y € B, m:(y) = s is an intersection of a straight line with B,.

Proof. Consider the expression

— '1
+(y,—s)—mm etp
peePO(y—ﬁ8+1+p

for (y', —¢) € B,. Evidently
(4.11) m}(y', —e) >0 for ay' — fe— 0. '
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We prove that
(4.12) mf(y', —g) > s, for ay' —pe—> —1+1,.
Let y, € B,. For y! satisfying the inequality

—1+ls<“y1—ﬂsgay}+ﬁy§

we have
_ 1 _ 1
m}(y', —¢) = min etp < &+ pn(y1) 5 <
veep ay' — fe + 1+ p>  ay' = fe + 1 + pu(yy)
i+ puly)
ayi + By + 1+ paly1)
herefrom we get (4.12) (p,(y) is given by (4.6)).

Due to the continuity of m, (y*, —¢) it follows from (4.11), (4.12) that there exists
a point y, = (y:, —¢) such that m;(y,, —¢) = s.

IIA

= m:(h) 5

Let
(4.13) (1 = sB) < say* — yi) + &(sp — 1).
Then
(4.14) e+ 2 < sf[a(y' — yi) + B(* + ¢)].
Simultaneously,
(4.15) —& + p(ys) = s(oys — Be + L+ pa(yy) .-

Adding (4.15) to (4.14) we get
¥? + pa(ys) < sfoy* + By* + 1 + pA(y)],

L Y2+ pul(vs) '
o)) = <s.
Iy, pul(y)) oyt — yi)+ By +ayl + 1+ pri(ys)

Hence,

m;(y) = f:jfﬁ(y’ p) <s.
Now, let
(4.16) y¥(1 — sB) > sa(y* — y3) + &(sB — 1),
ie.
(417) v > s[oy' = ) + B+ 8)] - e
Suppose
(4.18) mf(y)<s.
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Le. y2 + pa(y)
ay' + By* + 1 + pi(y)

IIA

S.

Due to (4.17) we have
syt — sayl + spy? + sPe — & + pa(y) < s(ay' + By* + 1+ pA(»))»

—& + pi(y) < s(ays — Be + 1 + pa(¥))

pa(y) — & s
T~ fet 1+ 720) =f*(ye Pul¥)) < s

contrary to the definition of y,. Hence, from (4.16) it follows m)(y) > s, and

from (4.13), m;(y) < s, for y€ B,. As m;(y) is continuous, m;f(y) = sfor yeB,
if and only if

(4.19) yA(1 = sB) = sa(y" — y5) + &(sP — 1)

which is an equation of a straight line.

Lemma 4.6
7i(0%) < —ylely? for Y| <e.
Proof. Suppose the contrary. Denote T the open segment yl = —yle71y?,
|¥?| < & We have
(2
@)y Oy cmin— P o,
dy® |- peep —oyl + Pe+ 1+ p?

and therefore, y; (y?) < —eyly? for y sufficiently near to &. Hence, there exists
a common point y, of I'; and T with the largest second coordinate. Evidently,

(4_21) / +( 1) d)’e (Y ) < —g7iyl.

As I} has with Talso the point + y, in common, there exists a point y, € T, y2 <3
such that

(4.22) mi(y) = —e 'y, .

From (4.20), (4.21), (4.22) and the continuity of m; (y) the existence of at least two
points of the segment T follows such that '

(423) mi() = -

From this due to Lemma 4.5 it follows that (4.23) holds for each y € T. This contra-
dicts (4.20). This completes the proof.
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As
e (V) = =0 (=),
we have
e () > =&y y7.
Hence, I UI'; is the boundary of a compact connected set G, containing the
origin in its interior and such that

e (%) £y 297007
for every point (y', y?) € G,.
Denote ¥, the graph of the function y' =y, (y?) defined and continuous for
y*€<{e, e + 1), n > 0 and satisfying the conditions ¥ (e) = — ], ¥, (v} = -yt
for y> > e. Further denote ¥ the curve

) symmetric to ¥, with respect to the origin.
\%’(\ ! Denote _
NN K. =V(G,n) — (G,u¥Suw)).
€ .
© e \ The curves ¥, ¥, divide K, into two
: \ , parts. Denote K,* the part of K, to the
'& G " boundary of which I'f belongs and K,
w ”z the other part. (Fig. 1.)
AN We define the control function u,(y) as
&NW ) follows
3
Fig. 1. +1 for yeK],
uy) = .
-1 for yek, .

Outside K, the function u, may be defined arbitrarily.

In the following paragraph we shall prove that u, is the best e-stabilizing control
for the given class of perturbations in the sense of the Euclidean norm with the
minimal (u, ¢)-invariant region G,. :

5.

Theorem 5.1. u, is an e-stabilizing control and G, is an (u,, &)-invariant region for
sufficiently small ¢ > 0.

Proof. It follows from Theorem 2.4 that a solution of (S,) starting in G, cannot
leave G, in a point distinct from the points =+ y,.

Suppose that there exists a solution j(r) which leaves G, through the point —y,
Let j(to) = —y,, (1) ¢ G, for t € (to, t,, t; > t,. There are three possibilities:
a) J(t)e K for t€(ty, ty + s), 5 > 0.
b) #(r) e K, for te(ty, ty + s), s > 0.
c) There exists a decreasing sequence {t,}, 1, — t,, Ht)ew .
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In the case a) ji(1) satisfies for € (to, t, + s) the equation (S;7) and, therefore,
y'(t7*(»?)) is a solution of (R, ). But for y* > ¢, p € eP we have

2
fr(y.p) = y —° >0.
. ay' + By* + 1+ Ie

From this due to the properties of ¥, we get that the zone of emission Z(—y:, g€+
+ 1), n > 0 of (R") is contained in K, . Hence, a) is impossible.

In the case b) y(t) is for € (to, 1o + s) a solution of (S, ) and, hence, 7(¢) is
decreasing. From this it follows that for ¢ sufficiently near to ¢, ﬁ(t) is contained in
the zone of emission Z(—y,, ¢ ¢ — ), n> 0 of (R;). But from Theorem 2.4 it
follows that Z(—y,, ¢ ¢ — n) cannot contain points from K, . Hence, b) is also
impossible.

In the case c) there exists a s > 0 such that j(1) e V(—y,, n) for te<ty, 1, + s)
and such ty, ty, 4 € {to, to + s) that

(5.1) P(tyeq) > 7'(ty) -

If such ty, ty,; would not exist, it would be §'(t,.;) < 5'(1,) for n = nq suf-
ficiently large. From this it would follow j'(t,) < j'(t, ) for n = no. But j(1,)
belongs to ¥, and is distinct from — y,; thus it must be j'(z, ) < —y,. From this it

follows that j(¢) could not be continuous at .

For 1€ {ty,, tyy we have J(t)e H = {y:y* < —y!, y* = &}. To prove this,
observe that as j(t) € V(—y,, 1), ¥(t) ¢ G, for t € {ty. 4, ty», J(t) can leave H only by
intersecting one of the open segments T, = {y:y> =¢ —y, —n <y < —yi},
T, ={y:y' = —y,, e <y* <&+ n}. But from Theorem 2.6 it follows that j(t)
cannot leave H through T;. If j(¢) would leave H through T, it had to return into H
through T,, which leads to a contradiction with Theorem 2.6 again.

As j(t)e H for t€{ty,q, tyy, we have 5'(f) = > + p' 2 5> — e = 0 for te
€{ty+y, tyy. Thus, (5.1) is impossible. Hence, c) is also impossible, which completes
the proof, as at y, the situation is symmetric.

Theorem 5.2. u, is the best e-stabilizing control and G, is the minimal (u, ¢)-
invariant region in the sense of the Euclidean norm, for sufficiently small ¢ > 0.

For the proof we shall need two lemmas.

Lemma 5.1. Let G < D, be an (u, ¢)-invariant region.’Denote G=Gn{y: ]y2| <

< ¢}. Then from y, €G’, y} = min y', y*€ G’, y; = max y' it follows y} = &,

y: = —e. yeG yeG

[SENY

Proof. Suppose yi < &. Let y(t,) = y,. There exists such a ¢, that for every
solution y(t) starting at y, for t = t, we have y*(t) < ¢ for t € (t,, t,». With a per-

347



turbation p(t) such that p'(t) = —e for t € {t,, t,) it will be
153
Y1) = »'(to) +J (v* = &) dr < y(to)
to
contrary to the assumption. Similarly the second part of the lemma may be proved.

Lemma 5.2. Let G = D, be an (u, ¢)-invariant region. Then G contains either
a point y, with y} = ¢, y} £ —y! or a point y, with y2 = —e, y3 = yl.

Proof. Due to Lemma 5.1 there exists a point y, € G with y3 = —&. Suppose
y5 < yL Let the function pm(y) be defined by (4.3) Consider the contingens-
equations '

(52) JEMy + e,J + pu(y) = Fy(y)
(5:3) YEMy + e, U(y) + pu(y) = Fo»),

where J = {—1, +1).
The right-hand sides of the equations (5.2), (5.3) are evidently f-continuous in y,
and every solution of (5.3) is a solution of (S,). As F,(y) = F,(y) due to Theorem 2.3,

every solution of (5.3) is a solution of (5.2). From (4.1) the existence of a number p?
follows such that (—e, p?) € eP.

We have evidently

2 _
fE 0 paly) S 70, (=2 07)) = ayt + ;yz +81 + p?

for y € D,. From this it follows y!(f) = y* + pa(y) < Ofor ye D, y* <.

From this we conclude similarly as in Lemma 4.2 that if y(t) is a solution of (5.2),
the function y*(¢~*(y')) satisfies the contingens-equation

2 1 2 2
o o o)
dy y* + pu(¥)
Due to the Remark 2.4, the upper boundary of the zone of emission Z(—z¢, y3, y*),
y' < y} of the equation (5.4) satisfies the differential equation

dy? ooyt + Byt 4+ o+ pA(y) _ ay' + By: + 1+ pi(y)
(55 —— = min =

dy'  ve<-1,+1> ¥ + pu(y) »? + pu(y)
as far as y € D,, y* < &. Now, it is easy to see that y*(¢~*(y?) is also a solution of the
equation (mR,"). Thus, due to Corollary 4.2, its graph is identical with I';"(y3). From
Corollary 4.2 it follows further that I'; (y3) and I';” cannot have points in common.
Hence, for the point of intersection y; of I';(y3) with the line y? = ¢ it holds y} <
< -yl
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Due to Theorem 2.1 there exists a solution y(t) of (5.3) through y,. As for y € D,
we have y!(t) = y*(t) + pa(¥(t)), there are only the following possibilities:
1. y(t) leaves D,,

2. y!(f) » —oo for t —» oo,
3. y*(t) > e for t > oo or y¥(T) = & for some T.

In the first case G does not satisfy the condition G = D, and in the second one G
is not an (u, &)-invariant region. In the third case G contains a point y, on the line
y2 = ¢ which is contained in the zone of emission Z(—¢, y3, y'), y* < yi of (5.3)
and therefore also in that of (5.2). Hence, for y, it holds y! < —yl. This completes
the proof.

The proof of Theorem 5.2 is now simple enough. It follows from Lemma 5.1
that G, is contained in the rectangle formed by the lines y! = +y;, y* = +&. From
this it follows

(5.6) : 1G] = [yl -

Due to Lemma 4.4 we have y, — 0 for ¢ - 0. As D,, = D, for ¢; > ¢, > 0, for
sufficiently small ¢ > 0 it holds
el < min fly].
»¢D;

From Lemma 5.2 it follows that every (u, ¢)-invariant set contains a point y, with
either yo ¢ D, or |y3| =&, |yg| = yi. In both cases we have [vo] > [y.| and due
to (5.6) also _

16 2 lyoll 2 Iyl =[G

which completes the proof.

Theorem 5.3. For ¢ > 0 sufficiently small G, is the unique minimal (u, s)-invariant
region in the sense of the Euclidean norm.

Proof. It suffices to prove that if G # G, is an (u, ¢)-invariant region contained
in D, n {y :|y?| £ &}, then G contains either a point y; with < -yl yl=¢or
a point y, with y3 > yl, y; = —e. ‘

As G + G,, it contains either a point with y' < y(y?) or a point with y* > y; (y?).
Similarly as in Lemma 5.2 it may be proved that in the first case G contains a point y,
with y! < —y!, 2 = & and in the second one a point y, with y; > +y;, y; = —¢.

6.

Theorem 6.1. Let u, be for ¢ < &, the best e-stabilizing control with the minimal
(u, &)-invariant region G, in the sense of the Euclidean norm. Let for each & =
<&, < g hold y,, € G, and let G,, = D,,. Denote

(6.1) o(e) = —yi, >0, ¢0)=0, o(—¢ = —ofe),

349



(6.2)

i0) = {

+1 for yegG,, ¥t < 90()12):
—1 for yeG,, y' > ¢(y?).

Then ﬁ(y) is a gy-universal best e-stabilizing control in the sense of the Euclidean
norm. Moreover, for every solution y(t) of (Ss) starting in G, we have

(6.3)

lim o(G,, y(f)) = 0.
t— o0

Remark 6.1. The assumption y, € G,, fore; < &, < ¢, is not always satisfied even
for &, small as it will be seen from Example 9.1.

Proof. Denote @ the graph of the function ¢, further ®* its part for y2 <0
and @7 its part for y* = 0. From Lemma 4.4 it follows that ¢(»?) is continuous and

decreasing for |y?| < &,.

The gy-universality of @ follows from the fact that in the neighbourhood of every
point + y,® satisfies the conditions imposed on ¥,.
For the proof of the second part of the theorem denote

o

YZ L+

W

>/l

Fig. 2.

€ ={y:yEGso_Ges ,Vl <(P(y2)}=
Ly ={y:yeG, — G, y' > o(3*)} .

Consider a solution y(f)
of (S,) such that y(0) € L}
and suppose that y() does
not enter into G, in a finite
time.

¥(t) cannot enter into L,
by intersecting ®*. Sup-
pose the contrary. Then
there exists a ¢, such that
Wto)e @ and y(t)eL;
for te(ty, ty + 15, T > 0.
If 1>0 is sufficiently
small, we have
VA1) = ay' + By — 1 +

+p2 <0
for telty, ty + 7).

Thus, y*(1) < & for t e {t,,
to + 7). From this it fol-
lows that

V(@) =y (1) +p' < y2 + <0 for tety,ty + 1>.

This is impossible, as y(t, + t) € L; and ¢ is decreasing.
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If ye Lt and y' > pl, then y* < —e¢ and, therefore,
(6.4) J () £ Y1) +e<0.

Hence, either y(t) - y, or y(t) leaves @™. In the second case we have y2 = ay' +
+ By* + 1+ p>>c > 0as far as y € L}. y(¢) is evidently also a solution of (S,,)
and, therefore, it cannot leave G,,. Due to the assumption it cannot enter into G,,
hence, it intersects @ .

By repeating this consideration and a similar consideration for L, we conclude
that either y(t) converges to one of the points y,, —y, or it continues in passing from
L? to L, and conversely till infinity and “spirals” around G,. As in the first case (6.3)
is evidently satisfied, it suffices to consider the second case.

Let T* = {t:y(t)e ®*}, T~ = {t: y(t)e &~ }. The sets T*, T~ are closed and
divide each other into a sequence of compact sets T, , T, n = 1,2,3, ... such that
between any two points of T, there does not lie any point from T~ and conversely,
between any two points of 7, there does not lie any point from T*. Denote t,,_; =
=min T, Ty—y = max T, , t,, = minT,", 1,, =maxT,, n=1,2,3,... The
sequences {t,} and {,} are evidently increasing. From (6.4) it follows that y'(z,,) <
< y'(t,,) and therefore, as ¢ is decreasing,

(6.5) Vi (t) Z ¥¥(ta), n=1,2,3,...
Similarly we have
(6.6) V(tan-1) £ V(tzn-1), n=1,2,3,...

Consider the solution y' = 5(y% yo) of (mR;) through a point y,€ &,
y2 < —¢. Denoting ¢ = y2 we have y, = y,. The solution of (mR,") through
Yo = y,- is the function y,(y*) which intersects @~ at — y,..

From Lemma 4.3 it follows that

(6.7) 1(y%, yo) > 1 (y?) for y* > yi.

Hence, 7(y?, y,) intersects ¢~ sooner than . (y?), i.e. if we denote j the point of
intersection of n(y?, y,) with @7, then we have

(6.8) jP<e =y3.

Denote &, = y*(t,,). Then from (6.5), (6.6), (6.7) and from the similar relation for
the solutions of (mR;) it follows that {g,} is a decreasing sequence. Denote its limit
by ¢*. Evidently, ¢ < ¢*. )

Suppose &* > &. From Corollary 4.3 it follows that the solution of (mR.")
through y,. intersects @~ in the point — y,. which contradicts (6.8). Thus, ¢* = .

From Corollary 4.3 it follows further,

(6.9) lim max o(G,, (n(y?, y,,), ¥*)) = 0.

t—o0 y2
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The function y* = y*(17*(y?)) is for £ € {t,,, t5,4 a solution of (R;"). As y! =
= n(y%, y,,,) is the lower boundary of the zone of emission Z(y2,.s €am Y (t2ns 1))
of (R;"), y() is contained for t € (t,,, t5,,,> in a domain, bounded by curves r,
@*, &~ and the graph of y' = #(y?, y,, ). From this it follows that

Q(Ge’ y(t)) é mf'x Q(Ge, (’7(}’2’ yBZn)’ yZ) fOI’ te <12m t2n+ 1> .
y

Similarly we have
Q(Gs’ y(t)) é max Q(Ga) (rl(.vz) YVean— l)’ pZ) fOl‘ te <1'-2n— 1 t2n>
yZ

From this and (6.9) we get
lim o(G,, y(t)) = 0.
t— o0

7.

Consider now an arbitrary norm | y! in E,. We shall choose the best e-stabilizing
control in the sense of this norm in the special system (Se).

It appears that it is necessary to distinguish two cases according to whether a point
of minjmal norm on the line y*> = 1 is in the right halfplane or not. In the first case
the control u, is also the best ¢-stabilizing control in the sense of I yl for sufficiently
small ¢ > 0. In the second case the best ¢-stabilizing control has to be constructed in
another form.

Theorem 7.1. Let a point y, = (yg, 1) exist such that

(7.1) [yo] = min |(»',1)], ys=o0.
)'1

Then u, is for sufficiently small ¢ > O the best e-stabilizing control in the sense
of |y| and G, is the minimal (u, &)-invariant region. If a point y1 = (y1, 1) such that

(1.2) |yi| = min |(»1, 1)], yi<o0
yl

does not exist, then for sufficiently small & > 0, G, is the unique minimal (u, €)-inva-
riant region.

Remark 7.1. The fact that u, is the best e-stabilizing control in the sense of the
Euclidean norm for some ¢ is not sufficient for u, to be the best e-stabilizing control
in the sense of l y]; we state this only for ¢ sufficiently small. The reason lies in the
fact that while (5.6) is satisfied provided u, and G, can be constructed, the equality
|v:| = |G| need not yet be satisfied.

For the proof of Theorem 7.1 we shall need three lemmas.
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Lemma 7.1.
(.2
(7.3) tim 2207 _ o
e—0 dyz
uniformly for |y*| < e and y} = o(e), i.e
(1.4) fim %2 — 0.

e=0 &
Proof. For sufficiently small ¢ > 0 we have’

v (0?) + By* + 1+ p?| > 4 for peeP.
Hence,

(7.5) ‘@d—f(;vz)ﬁ = [mS )] = 2A]y*| + o) = 4e,

from which we get (7.3). From (7.5) it follows that

+e +(,,2 +e
2y} = — G 07) (?) dy* £ 4e dy? < 8¢?
& _ dy2

from which we get (7.4).

Lemma 7.2. Let y* = ¢(y') be a convex') continuous functlon on {a, by and let
a < ¢ < b. Then a number K > 0 exists such that for every yj, yiede, b), yi <y}
we have

() — o(r3) < K(ys — »1) -

Proof. Suppose the contrary. Then a sequence {y,} exists such that y3, > Y1
and

O(ya1) — @(¥3a) Z n(V3n — Viu-1)

forn = 1,2, 3, ... Denote u = min ¢(y'). From the convexity of ¢(y') we conclude
yie(a,b)

v

o(a) 2 o(y3n) + ——2— (co(yzn ) - <p(y§n))‘ p—n(a—yy)zu+n(c—a)

Zn -1
for an arbitrary n, which is impossible.

Lemma 7.3. Let lyl be an arbitrary norm in E,. Then for sufficiently small ¢ > 0,

(7.6) (G = Iyl -

1y The function @(y') is said to be convex on {a, b) if <p(%(y} +y) < %(q:(y}) + ()
for arbitrary y1, »1 € (a, b).
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Proof. Denote
S,={y:ly| =n},

sy (¥') = max {y*: l(yls yz)l =1}, s,;(»")=min {y*: |(y1, yz)[ =1}.

The set S, is convex ([11], II. 4.1) and contains the origin in its interior. From
this it follows that a h > 0 exists such that the function y* = s;(y') is defined,
continuous and convex on {—2h, 2h). Due to Lemma 7.2 a K > 0 exists such that
for every yy, y; €<—h, h), y3 = yi,

(7.7) st(v1) — st (v2) < K(vs — »).

From the homogenity of the norm it follows that s, (y") is defined on { —2yh, 2nh)>
and

s (V) = nsi(n'y").
From this and (7.7) we have for every yi, y3e{—nh,nhd, yi=> yl,
(7.8)
s, (1) = s, (v2) = msT(n™"'vi) = mst(n ™' va) S nK(r7'yh — 07 'yl) = K(vh — »h)
with K > 0 independent on 7.

From Lemma 7.1 it follows that
0, ) = [0 9) = |(=yere) = (=35 O = [v] + |(=250)] = || + ofe).
el = €l(0, D] + ofe),

1
—1 .1 Ve

(7.9) Ve yszs](O—,l)l—ti—o—(s)_)O for e-0.
Denote n = |y,|. From (7.9) we conclude that for & > 0 sufficiently small it holds
(7.10) yl < nh
and -
(7.11) min & (%) S

prse dy? K
From (7.11) it follows that
y2 +7 2 y2
(7.12) S (y*) — »t =J d__y(;)g )dyz > —j K~ 'dy? = =K7'()* + ¢).
Due to Lemma 4.4 we have
dy; (»*) _

dy? mS (v (y*), »*) <0 for y*<e.
y
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From this it follows that on {—y}, y!> there exists a function y* = (y,)~" (»")
inverse to the function y' = ;" (y?), for which due to (7.12) we have

GO ez Ky, - ).
From (7.8) and (7.10) we conclude that for y' € =yt yby,
sy (") = sy (v2) 2 K(y; — y").
As Iy,;[ =1, we have —¢ = s, (y,) and therefore s, (y') + & < K(y: — y'), from

which we get

(7.13) )70 2z 5 (Y
Similarly, it may be proved that
(7.14) )TN =50Y.

Let now y € G,. Then y' e {—yL, y2>, (v)) " (v") £ »* £ (v.)" ' (") from which
due to (7.14), (7.15) we have y € S,. Thus |y| < n = |y,| , from which we get (7.6).

Proof of Theorem 7.1. Let &€ > 0 be so small that (7.6) is valid. From the homo-
genity of the norm we have

(7.15) |evo| = mlin (v, €)] -
y

Let y; = (y1, ) be an arbitrary point such that yj < —y,. Then —y, belongs to
the segment with the endpoints y,, y, and, therefore,

—ye=Adyr+(1 =2y, 0<is=1.

Hence

(7116) |y = [=0] < Awa] + (1 = Dyo| < Ayal + (1 = Hya] = [yl -
Similarly, for an arbitrary point y, = (y, —¢), y; 2 ys we have

(7.17) [ < |v2] -

Due to Lemma 5.2 every (u, ¢)-invariant region G contains either a point y; =
= (y1, &) such that y! < —y! or a point y, = (y3, —&) such that y; 2 y,. In both
cases we have from (7.6), (7.16) and (7.17), |G| = |G,| i.e. G is the minimal (u, ¢)-in-
variant region.

If (7.2) is valid, then for y; < —y;, y} > y, the strong inequalities (7.16), (7.17)
hold and thus the uniqueness of the minimal invariant region G, follows from the
fact that it is the only region having no other points than +y, in common with the
lines y*> = +¢ (see the proof of Theorem (5.3)).

Corollary 7.1. Let ¢, satisfy the assumptions of Theorem 6.1 and let (7.6) hold for
¢ < ¢,. Denote ¢, = min {g,, ¢,}. Then the control d(y), defined by (6.2) is the &,-
universal best e-stabilizing control in the sense of the norm ] yl.
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Let us now suppose that the given norm does not satisfy (7.1), i.e. there exists
a point y, = (yg, 1) such that

(7.18) [yo] = min (', 1)|, yi <o,
yl
and that for every y! > y&

(719 6% 0] > [

(by yo we denote the point with the minimal norm and maximal first coordinate on
the line y* = 1).

From (7.18), (7.19) due to the homogenity of the norm we have
(7.20) |eyo| = min 6% 8, [, g)| > glyo| for y' > eys.
yl

For the proof of the minimality of G, we have essentially used the fact that for
sufficiently small ¢ > 0 (7.6), (7.16) and (7.17) was valid.

For sufficiently small ¢ > 0 we have, due to (7.4),
(7.21) —yl > eyl

From (7.20) it follows that for & > 0 satisfying (7.21) the inequalities (7.16) and (7. 17)
will not be valid and thus the region G, need not be minimal. However, we shall
prove that there exists an e-stabilizing control u; with an (u, ¢)-invariant region. G,
having exactly the points +¢y, in common with the lines y?> = +¢ and satisfying for
sufficiently small ¢ > 0 the relation

|G| = levo] -

From Lemma 5.2 and (7 20) it follows that G/ will be the minimal (u, ¢)-invariant
region.

Theorem 7.2. Let y, = (yq, 1) satisfy the condition (7.18). Then

(7‘22)1 w(y) = +1 for. y' < yiy?,
" =1 for y'> ysy*,-

is the best e-stabilizing control in the sense of [y| for ¢ > 0 sufficiently small.

Proof. Let & < ¢(9) for 6 = 1 + aeyg (see Lemma 4.1). Denote © the segment
with the endpoints —ey,, +&y,. We shall distinguish two cases according to the
validity of the inequalities

(7.23) m;(—eyo) Z 5
(7.24) : m)(—eyo) < ys .
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If (7.23) is valid, then at every interior point y of @ the inequality

(7.25) m)(y) > ys

is true. To prove this observe that

1
(7.26) m (eyo) = min et p

=0> y}
peck 0gYg + fe + 1 + p? 0

as the denominator of the minimized fraction is positive and p' = —e. If at some
interior point of @ (7.25) would fail to hold, then due to the continuity of m, ()
there would exist an interior point y’ of ® such that

(7.27) mS(y) = o -

From the continuity of m;(y), (7.23), (7.26) and (7.27) it follows that there exist at
least two points of @ with the same value of m,(y) and thus, due to Lemma 4.5,
m(y) is constant on ©. This contradicts (7.23) and (7.27).

From the symmetry of m;(y), m; (y) we have

(7.28) m; (y) > yo

at every interior point y of ©.

From (7.25), (7.28) due to Theorem 2.6 it follows that no solution of (S,) can
leave @ in its interior point. Similarly as in Theorem 5.1 it may be proved that any
solution of (Sa) cannot leave © even through the points +é&y,. Hence, under the
assumption (7.23), © is a (u’, ¢)-invariant region. In this case, we denote G, = ©.
(Fig. 3a).)

Suppose now, that (7.24) holds. Then for y? sufficiently near to —& we have
7. (¥% ys) < y*. However, there exists an y?, |y?| < & such that y;(y%, y5) = yy®
(ie. I (—yg) crosses @). This follows from the fact that due to Corollary 4.2 we
have 7, (e, —eyg) > —y..

Denote y, the common point of I'; (— yg) and © with the least second coordinate.
At y, we have evidently m,; (y') = y5. Hence, from (7.24) it follows that between
points —¢y, and y, there exists a point y’ € @ at which (7.27) is true. From Lemma
4.5 and (7.26) it follows that (7.27) may be true at most at one point of @. From this
we conclude that between points y, and &y, there cannot exist any point in common
of I','(—yg) and ©. Further we get that in the interior of the segment with endpoints
V1, €Yo (7.25) is valid. From this it follows that a solution y() of (S,) cannot leave the
segment with endpoints y,, ey, into the halfplane y* < ygy®. From the symmetry of
the curves I'f(—y3), I'; (vs) and of the functions m, (y), m; (y) it follows that
I';(ys) crosses © at a unique point —y; and no solution of (S;) can leave the
segment with the endpoints —y,, —&y, at its interior pointinto the halfplane y* >
> yoy®. As I'f(—y3), I'; (v5) are the lower boundaries of the zones of emission
Z(— s, —¢, &) of (R}) and Z(yj, —¢, €) of (R,”) respectively, we conclude from this
that the region bounded by the curve I';} (- y(l,) between points —egy,, y,, the curve

357



I';(ys) between points &yo, —y, and the segment @ is (u;, ¢)-invariant. This region
we denote by G,. That y(f) cannot leave G, at points +¢y, may be proved similarly
as in Theorem 5.1. (Fig. 3b),c).)

y? Y
\'F Yo

\éyo \as,,

uys-f
U=-f ”}\ w--f

unef re \ r’ usst

& -6y \ Y

a) Fig. 3. 4

o

From Lemma 7.1 it follows that for sufficiently small ¢ > 0 we have (7.23), and
therefore, G, will be identical with ©®. Then evidently [G; = |ay0|, which due to
Lemma 5.1 and (7.18) implies the minimality of the region G,. Thus, the e-stabilizing
control u’ is best in the sense of the norm l y].

Remark 7.2. For the proof of Theorem 7.3 alone it was not necessary to prove that u’
is e-stabilizing provided (7.24) is valid, as for sufficiently small & > 0 (7.23) holds.
However, a following proposition, which we shall need in Theorems 7.3, 7.4, is true:

If [G;ll = |81y0|, then

(7.29) |G| = |evo|, for e=<e.
In order to prove this observe that for ¢ < ¢, G, is contained in the region bounded

by the segment @, the solutions of the equations (mR,"), (mR;) starting at —g,y,,
~+¢, Y0, respectively, and that this region is contained in G;,. Hence

e 1e,G. = Gl Is*‘angl < ]Gell = l81YO| s |G;I < ’syo[.

&1
As ey, € G., we have (7.29).

Remark 7.3. Similarly as the control u, also u’ might be arbitrary except for a set
of exterior points of G, from an arbitrary small neighbourhood of it.

Remark 7.4. Evidently, the minimal (u, &)-invariant region G, is not unique.

Theorem 7.3. Let |y| satisfy (7.18), (7.19). Let u’ be e-stabilizing for ¢ < ¢, and
]Gs.,[ = ]aoyO[. Then, u' is a ey-universal best e-stabilizing control in the sense of |y],
and for every solution of (S,) starting at G,  we have

lim o(G;, y(t)) = 0.

t— 0
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Proof. The first part of the theorem is evident. The second one may be proved
similarly as in Theorem 6.1.

Theorem 7.4. Let |y| satisfy (7.18), (7.19). Let u, be e-stabilizing with the (u,, &)-
invariant region G, for ¢ < ¢,. Let ¢, be such a number that

(7.30) — Ve, = €1V, — Vs 2 Yo fore < .
Let
(7.31) [y = |G| for ee<ey, &0,
(7.32) —yi,, = &Yo, Gy < Dy,
(7.33) yo€G, for g, e <e=<eg.
Denote
N N T
9(8)= Ve 1 Ve = €Yo
evo if —y: Zeyg-

9(—¢e) = —9(s) for £>0.
Then the control
+1 for y' < 3(y?),
-1 for y'> 9(y?),

u¥(y) = {

is an gy-universal best g-stabilizing control in the sense of | yl with the minimal (u, &)-
invariant region
G*= Ge if _y: égy(l)s
) G:: if _y: >8y(1)a
and for every solution y(t) of (S,) starting in G,, it holds
lim (G}, ¥(1)) = 0.

t— 0

Proof. From Theorems 5.1, 5.2 it follows that u, is the best e-stabilizing control
for ¢ satisfying the inequality

(7.34) ~¥: S €Yo,

as |y,| = |G,| and 9(y?) satisfies the conditions imposed on ¥ ~(»?) in the neighbour-
hood of every point —y, satisfying (7.34). From (7.30) and (7.33) it follows that
the graph of the function y' = %(y?), |y?| < ¢ is contained in G}. From (7.32) it
follows that Lfor every se(O, so) satisfying — y! = ey{ there exists such an & =
> max {s, ¢} that —yl, = "y} for ¢’ € (e, &’) and —y} = &'y,. As |GE| = [G,| =
= le'] we have also[G;| = |s’yol and due to Remark 7.2,

(7.35) |G)| = |eyo| for =&
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From Theorem 6.1 and Remark 7.3 it follows that u* is ¢-stabilizing and (7.31), (7.35)
imply that it is the best for every & < &,. The remaining part of the theorem may
again be proved similarly as in Theorem 6.1.

8.

Before proceeding to the general system we shall investigate the system (s,) if (4.1)
is not satisfied.

Theorem 8.1. Let in the system (s,) be P = {p: p' = 0, Ipzl < I}. Then a control
u(y) exists such that for sufficiently small ¢ > O we have:

1. The only solution starting at y(zo) = 0 is the trivial solution.

2. There exists such a neighbourhood V(O, d), 5 > 0 of the origin that for every
solution y(t) starting in V(0, §) we have lim () = 0.

t— o0

Proof. Denote
+1 for y' < —y2,
u(y) = y1 y2
—1 for y'> —y*.

We shall prove that u(y) has the desired properties.

In Lemmas 4.1—4.5 (with the exception of point 4 of Lemma 4.3 which will not
be used) only the inequality max I p‘| < 1 from the assumption (4.1) was used. Hence,
P

they are valid also under the assumptions of this theorem.

From Lemmas 4.1, 4.2 and 4.3 it follows that for sufficiently small¢ > O ann > 0
exists such that if y(f) is a solution of (S.7) and y(t) € V(0, n), then y'(¢~Y(y?)) is
a solution of (R;") and the lower boundary of the zone of emission Z(y3, y2, y2 + h),
h > 0 of (R") is a solution of (mR,") for y, € V(0, ) and h > 0 sufficiently small.

We have m,;(0) = m;(0) = 0; as m,(y) is continuous, in a sufficiently small
neighbourhood of the origin we have

(8.1) mS(y) > =1, m;(y)> —1.

Suppose that # > 0 is so small that in ¥(0, 5) (8.1) is valid. Denote T the line y! =
= —y?, T, the part of T belonging to ¥(0, 5). From (8.1) due to Theorem 2.6 it
follows that y(f) cannot leave T at any point from T,

Let y(to) € T, Then y'(t) = y*(1) = —y'(t) asfaras y(f)eT,.
From this it follows that
(8.2 Y =y (1) e T asfaras y(1)eT,.

From (8.2) it follows that if y'(t,) = 0 then y'(f) = 0 for t > 1o, i.e. also y¥(t)=0
for t = t,. Hence, the first part of the theorem is proved.

360



As y(1) cannot leave T in any point from T,, it follows from (8.2) that if y(t) € T,
t = t,, then y'(f) is decreasing as far as y'(f) > 0 and increasing as far as y'(f) < 0.
Hence, (8.2) is valid for every t = t, and thus y'(f) - 0. From this it follows that
y*(t) = —»'(f) > 0 and, hence, y(t) - 0.

Let 6 €(0, 4n) be so small that 6 < 47'(1 — ¢l) and |oy' + By?| < 271 — &)
for |y‘| < 26, |y2| < 26. Consider a solution y(¢) of (S,) with y(t,) € ¥(0, 9), y* <
< —y'. Then y(?) is a solution of (S;) in the region

L= {y:lyll <25, =20<y*< -y,
and therefore,
(53) 70) = () = —,
(8.4) V() = ay'(t) + By (1) + 1+ p* 2 271 — ¢l).
Suppose that y(¢) does not intersect T,. From (8.4) it follows that y?(f) is increasing

in Land, therefore, a t; > t, exists such that y'(t,) = —26, y*(t,) < 26 fir y(f)€ L.
From (8.3) it follows that

3 = yl(to) = () = — ftlyl(t) dt < 8(t, — to) .

Hence ¢; — t, = 1. From this and (8.4) we get

Y1) = ¥(to) + ‘[n

to

(31

y¥(t)dt = -6 +j 271 —el)dt = =6 + 2711 — el) 2 26
to

contrary to the assumption.

Hence, every solution of (S,), starting in a point y, € V(0; 8), y5 < —yp inter-
sects T,. From the symmetry of the equations (S,"), (S,) we conclude that every
solution of (S,) starting in a point y, € ¥(0, §), yo < —y3 intersects T,. As for every
solution starting in T, we have y(f) > 0, we have y(f) - 0 also for every solution
starting in (0, 6).

Consider now the control system (08) or the corresponding contingens-equation (Z‘e).

Denote
11
cl! C2
C = ,
2 2
C1,C2
: 2
ci = a3b? — alb', I = —alb® + alb', c;=>b', 3 =0b>.

We have
— det C = (—a3b* + a3b') b — (ajb® + aib') b =
= b'(alb' + a3b®) — bz(alb1 + a3b?)
which is the value of the determinant with the columns b, Ab, which is non-zero
according to assumption 4, § 1. Hence, C is nonsingular.
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It may easily be verified that

01

cuc=M=<
o« B

), C'b=e,,

where o = —det A, f =spA = al + dl.

Suppose that there exists such a r € R for which
(8.5) r2bl — rlb? £ 0.
Denote p = C~'r. From (8.5) it follows that

(8.6) ol = ric2 — r2ck _ rib? — r2p!
det C det C

As R is symmetrical with respect to the origin, the same is true about C~!R. From
(8.6) we have

max|p|—1>0
peC~

Denote
P=21"'C'R, ¢ = 2e.

Then max | p‘l = 1 and the linear transformation x = Cy transforms the equation (Zg)

pe
into the equation (S,) satisfying all assumptions of § 4, i.e. y(¢) is a solution of (ng)
if and only if x(f) = Cy(¢) is a solution of (Z,) (see [5], Theorem 7).

Let le be a given norm in the x-space. Then in the y-space we may define a norm I y]

as follows
ly| = |cy] .

The transformation x = Cy is then a norm-preserving one and hence, if u(y) is
the best &-stabilizing control with the minimal (u, ¢)-invariant region G in the sense
of the norm |y| in the y-space, then iI(x) = u(C™'x) is the best (u, ¢)-stabilizing
control with the minimal (u, ¢)-invariant region G, = CG in the sense of the norm |x|
in the x-space.

It remains to investigate the case that for every r € R we have
bt —r'b? =0.

Then from (8.6) it follows that p' = 0 for pe C™!'R and thus the assumptlons of
Theorem 8.1 are satisfied.

By this also the case of a general linear control system with constant coefficients
is completely solved.
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Example 9.1. Consider the system

= v+, P={p:(p") + (") = 1}.
=yt 4 pt
Let us choose the control u, and the region G..

The system (S, ) will be as follows:

.1

=y +p, peeP.
=-y+p-1,
The equation (R;):

1 2 1
©.1) dy __»y+p

= , DEEP.
dy? —yt+p* -1

The right-hand side of (9.1) is minimal for such p for which the vector (> +p's
—y' + p* — 1) is tangent to the circle (y?, —y' — 1) + &P, ie. if the vectors
(»* + p', —y' — 1 + p?), (p", p’) are orthogonal and the point (p", p*) belongs to

the boundary of ¢P, i.e. if

(92) p(y* +p)+p(—=y —1+p*)=0, v

(") + (p2)? = & ¢

| AN
(see Fig. 4). . /I_\
|

By the transformation }\
(3

yl=—14+rcos@®, y*>=rsin®

we get from (9.1) a system Fig. 4
(93) 7 =p'cos® + p’sin@, O = -1+ r~1(p* cos @ — p' sin O)
and from (9.2) the condition

(9-4) p'(rsin @ + p') + p*(—rcos® + p’) =0, (p')? + (p?)* = &*.
From (9.2) it follows that

1

plsin® — p2cos@ = —r~'¢?, plcos@ + p*sin® =&l — er ).

Hence, I'; satisfies the differential system

Fo=el —er ), &= -1+ 2.
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As# > 0, I'; satisfies the differential equation

doe 1
— = —=(1—&r 2,
dr €
Integrating it we obtain
0= —¢'(r* — &*)* — arcsiner™! + c.

Now, we have to find such r,, @4, r,, ©,, ¢ that
0, = —&¢ }(r} — &) —arcsiner; ' +¢, i=12,
rsin@; =¢, r,8in@, = —¢, (r} — &) + (13 —&)F =2
is satisfied. From this we get an equation which r, has to satisfy;
(9.5) rosine”'[1 — (1} — &2)F] = e.

By the coordinates y? = ¢, r = r, the point —y, is determined. From this we get the
equation of I'; :

(9.6) O = —&e ![(r? — ) + (r] — &?)* — 2] — arcsiner™!
From (9.5) we obtain the equation of the curve @ in the coordinates r, ©:
9.7) r@sin® + rcos® —1=0.

Now we are going to show that it is possible to construct the g,-universal e-stabilizing
control i. For this it suffices to show that the assumptions of Theorem 6.1 are satisfied.
For I', we have at —y,,

dr € _ _1sn®
de (1 —er 2t r cos @
and for @ at the same point,
dr 1 O cos O
de r ©sin@® + cos®

It is easy to verify that for 0 < ® < ix it holds

sin @ O cos O
<

cos @ Osin® + cosO ’

which implies that for sufficiently small ¢, = ¢, > 0 we have G,, = G,
Example 9.2. Consider the system
V=4, =yt +u, e,
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where « + 0. The equations (R;") and (mR,") are as follows:

1 2 1
GV EP <,
dy? oyt +1
1 2
(©-8) vy _y-e
dy?  ayt+1

Integrating (9.8) we obtain
(99 2OAhye) = {1+ [(1 + ays)? + of(y?)? — 2ey* — 3¢%)]*}.
From the equation y; (¢, yi) = —y; we get
(0,10 | yim
and from this the equation of the curve &,
(9.11) yh=o(y?) = ().
Substituing from (9.10) into (9.9) we obtain the equation of r},
yr=al () = o =1+ (1 e+ a(57)? — 26y = 3]

From (9.8) we get

dy;(—¢) = —2
dy? a? + 1~
and from (9.11),
V d(p(—s) 2¢
dy?
For o« > 0 we have
+
dy;(—e) _ —2e > —% > = d(p(—s).
dy? ag? + 1 dy?

Hence, the assumptions of Theorem 6.1 are not satisfied.

10.

The problem discussed in this article may be interpreted as a two-person game
(a game against the nature). The aim of the first player is to ensure by an appropriate
control u(y) the smallest possible deviation of the solution of (o,) from the origin
whatever the action of the second may be; conversely the aim of the second is to
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enlarge with the aid of the perturbations p according to the given possibilities the
deviation of the solution of (o,) from the origin independently on the control selected
by the first.

Further we shall consider only the system (s,) satisfying (4.1) with the Euclidean

norm. However, the considerations may be transferred without difficulty to the
other cases.

A two-person zero-sum game is given by a triplet
H = {4,B,h},

where A is the set of the strategies of the first player, B is the set of the strategies of
the second player and h(a, b) is a real-valued pay-off function on 4 x B (see [9],
2.1).

The game H is said to have a solution in the domain of pure strategies, if
(10.1) max inf h(a, b) = min sup h(a, b) =k ;

acA beB beB acA

h is called the value of the game, the strategies a, b for which

h = inf h(a, b) = sup h(a, b) = h(a, b)

beB acA

are called the optimal strategies. It is easy to see that a, b are optimal strategies if
and only if

(10.2) h(a, b) < h(a, b) < h(a, b)

for every ae A, be B.

For our case it is convenient to generalize the notion of the game by weakening
the assumption on h(a, b) as follows: We shall suppose that h(a, b) is a multi-valued
function, i.e. for every a€ A, b€ B, h(a, b) is a set of real numbers. We shall say
that the game H has a solution in the domain of pure strategies, if there exist such
strategies @, b that h(a, b) is a one-point-set and

max inf sup h(a, b) = h(@, b) = min sup inf h(a, b) ;
acA; beBg beB: acAg
h = h(a, b) will be called the value of the game and a, b the optimal strategies.
Similarly as in (10.2) we see that a sufficient condition for @, b to be optimal is

(10.3) sup h(a, b) < h(a, b) < inf h(a, b)

for every ae A, b€ B.

Denote 4, the set of measurable functions p(y) = (p'(y), p*(y)) defined almost
everywhere in a domain from E, satisfying p(y) € eP; further denote B, the set of
measurable functions u( y), defined almost everywhere in some domain from E, and
satisfying |u| < 1.
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Let the assumptions of Theorem 6.1 be satisfied. Denote y(l, Yo P» u) the solution
of (s,) under the control u and the perturbation p passing through y, at t = 0 and

hy(p, u) = {lim sup || y(t, yo. P, u)|| : yo € Geo} -
t— oo

Theorem 10.1. Let the assumptions of Theorem 6.1 be satisfied and let V(0, |y,|) =
< D,,. Then the generalized game H, = {A,, B,, h,} has for ¢ < &, a solution in
the domain of pure strategies and h, = ||y,| -

Proof. Denote

_ [ paly) for yeV(O, |y]). y' < o(¥?),
o) {—pm(Y) for yeV(0,[y.), »' > o(y*),

where p,(y) is given by (4.6) and ¢ by (6.1). We are going to show that p,(y), i#(y)
(defined by (6.2)) are optimal strategies for every & < &,.
From the proof of Theorem 6.1 it follows that for every solution y(t, yo, p, i)
with y, € G,, we have lim sup || y(t, yo, p, @) < |y.| , and hence,
t— o0

(10.4) sup lim sup || y(t, yo, p, @)| < |y.| -

YoeGy, t—®
Consider the solution y(t) = y(t, yo, p, u) and suppose that a point y(f;) = y,
exists such that

(10.5) y1€(V(0, |y]) = G)u (I ury)

i.e. a point y, belonging to the | y,|-neighbourhood of the origin but not to the interior
of G,. Show that then a ¢, = ¢, exists such that

(10.6) Wt2) ¢ VO, 5] -

Due to the symmetry it suffices to consider the case y' < ¢(y?). In this case it may
be seen from the proof of Lemma 5.2 that for te{ty, t; + 1), v > 0 y(f) will be
contained in the zone of emission Z(y3, yi, y'(t; + 7)) of (5.4) and y'(¢) < O for
y? < ¢; therefore it either leaves D, or crosses y*> = ¢ to the left of —y,. In both
cases the desired ¢, exists.

From the fact just proved it follows that if y(f) contains a point satisfying (10.5),
then

(10.7) lim sup [|y(t)]| = lim sup [ ¥(t, yo, por )] Z [v.] -
t— o t=> o0

Hence, it remains to prove (10.7) for the solutions contained in the interior of G,
for t = t,. Let y(t,) lie below @, i.e. yi(to) < @(y*(to)). From Lemma 4.3 it follows
that p'(t) = y*(f) + pa(¥(t)) < 0 as far as y' < @(y*). Hence, y(t) either tends
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to —y, (in this case (10.7) is evidently satisfied), or it crosses @; from this and from
the symmetry it follows that every solution which does not leave the interior of G,
either tends to one of the points + y, or has a point in common with .

Suppose that y(z,) € ®*. Then an ¢, < & exists such that y(¢,) = y,,. From
Theorem 2.6 it follows that for ¢ > t, sufficiently near to ¢ it holds y'(#) < @(y*(?))
and, therefore, y(f) is contained in the zone of emission Z(y*(t;), y'(t,), y'(t; + 7)),
7 > 0 of (5.4). From this and from the assumptions of Theorem 6.1 it follows that
y'(t) < o(y*(t)) for te(t;, t; + t); due to Lemma 4.3 we have either y(t) - y, or
that y(f) crosses @~ in a point y,,, &, > &,;. Continuing in the same way we conclude
that if y(f) does not tend to any one of the points +y,, then a sequence {t,}, t, = o
exists such that y(ty,—1) = Ve, , € PT, Wt2) = V,,, € @~ and &, < &,4q, 1 =
=1,2,3,... Similarly as in the proof of Lemma 5.2 we conclude that ¢, — ¢ and
thus

lim sup |y(1)] = lim [y(s,)] = lim [y,,| = .|

Hence, also in this case (10.7) holds. From (10.4), (10.7) it follows that p,, @ satisfy
(10.3) which completes the proof.

The author wishes to express his gratitude to JAROSLAV KURZWEIL DrSc for the
statement of the problem and for valuable suggestions.
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Pe3ome

O HAMJIVUIIEM CTABWJIM3UPYIOIEM VIIPABJIEHUUA
NP1 JAHHOM KJIACCE BO3MYIIEHUI

ITABOJI BPYHOBCKMU (Pavol Brunovsky), Bpatucnasa

PaccmaTpuBaeTcs JIMHEHHAS. CUCTEMA YIPABJICHUSI BTOPOTO IOPSIKA C HOCTOSH-
HBIMU K03 dumenTaMu

(o) X=Ax + bu +r

rae r(f) — MOCTOSIHHO JeiCTBYIOUIME BO3MYLUCHHUS, T.C. U3MepUMbIe (GYHKLUUH 1,
YIIOBJIETBOPSIOIIME OTPAHUYEHHUIO F € eR, Tie R — BBIMYKJIBIA KOMIIAKT, CUMMETPMY-
HBII OTHOCHTEILHO Hayajga KOOPIUHAT. _

Vnpaienne u(X) Ha3bBAaeTCs &-CTAGMIM3MPYIOIMM, €CIH CYIECTBYET TaKas
KOMIakTHasi 06acts G, cojepxalias HAYallo, YTO HU OHO PELICHHe CHCTeMBI (o)
HE NOKUJAET ee, KakoB Gbl HU ObUT BUAX Bo3MyLieHus r(f). G Ha3biBaeTcs (u, ¢)-MHBa-
PHAHTHOI} 06JIaCTHIO.

IIycte le — 3amanHasg HopMa B E,. ITosoxum |G| = max ]xl
xeG

Joka3pIBaeTcs, 4YTO €CJIM CUCTEMA (cre) yIpapisiema, T.e. BEKTOpH b, Ab muHeiHO
HE3aBUCHUMBI, TO IS JOCTATOYHO MAJIOTO & > 0 CyLIeCTBYeT HAWIyYllee E-CTaOWIIH-
3upyomuee ynpapienue i ¢ (i, ¢)-HHBAPHAHTHON 06JacThI0 G B TOM CMBICIE, 4TO
ISt JIr000it (u, a)-HHBapnaHTHoﬁ obyracti G BBIIOJIHAETCS [Go| < IG]

TIp HEKOTOPBIX HONOJIHUTENBHBIX YCIOBHSAX CyLIECTBYeT ympaBieHue di(x),
SIBJISIFOLLICECS] HAMIYYIIMM &-CTa0MIM3UPYIOLMM [UTsL BCEX € < &.

Tak kak 3Ta 3a/a4a BeJeT K Pa3spblBHOMY YIIPABICHUIO, TO PELICHHEe IOHUMAETCS
B 06061eHHOM cMBbicie Pununmosa [4].
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