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Yexoc10BaKHii MaTeMaTHYeCKHii skypHana, T. 15 (90) 1965, Ilpara

A FRACTIONAL MEAN VALUE THEOREM,
AND A TAYLOR THEOREM,
FOR STRONGLY CONTINUOUS VECTOR VALUED FUNCTIONS

JoaQuIN B. Diaz,*) Maryland and R. VYBORNY*), Praha
(Received March 14, 1964)

1. Introduction. The conclusion of the classical (Lagrange) mean value theorem
for a, suitably restricted, real valued function x(t) of a real variable ¢, asserts the
existence of a mean value ¢, with a < ¢ < b, such that (x(b) — x(a))/(b — a) = x'(c),
where x’ denotes theusual first derivative. Several extensions of this classical theorem,
to vector valued functions of the real variable ¢, have appeared recently (see, e.g. [1],
[2]).

Now, again in the case of real valued x(t), there is a more general mean value
theorem (Cauchy) — which has been variously called the “generalized*, or “fractio-
nal”’, mean value theorem-whose conclusion asserts the existence of an intermediate
value ¢ such that (x(b) — x(a))/(g(b) — g(a)) = (x'(c))/(9'(c)), where g(1) is a real
valued, suitably restricted, auxiliary function of the real variable t. The purpose of
the present paper is to prove a mean value theorem (of “fractional type”) for vector
valued functions x(f), which is an extension of the mean value theorem (which may
be said to be “of classical type”) for vector valued functions given earlier as “mean
value theorem 27 of [ 1]. This desired fractional type theorem is theorem I of section 2.
As a corollary of theorem I (not the most general corollary deducible, but merely one
which is convenient to state), section 3 contains the proof of theorem II, which is
a “Taylor theorem for vector valued functions”.

2. A fractional theorem of the mean. This section contains the proof of the following.

Mean value theorem I. If (1) the vector valued function x(1) is defined for all
real t such that a <t < b, where a < b, both a and b being finite, and its values
are in a linear normed space B (the norm in B will be denoted by “ ”, the
scalars may be real, complex, or quaternion); (2) the function x(t) is strongly
continuous on a < t < b; (3) the real valued function (1) is continuous and strictly
monotonic for all real t such that a < t < b; then there always exists a number c,
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with a < ¢ < b, such that either, whenever both h > 0 and a £ ¢ + h £ b, one has

|><(b) - x(a)| _
9(6) — g(a)|| =

or, whenever both h > 0Qand a < ¢ — h £ b, one has

x(b) = x(a)|| _ ||x(c) = x(c = h)|
o) = ata)| = ot —ote =)

Proof. Suppose, for definiteness, that the function g(t) is strictly increasing, and
consider the real valued function f, defined on a < t < b by the equation

Ix(b) — x(a)
a(b) - a@)|’

This function f is real valued and continuous on the closed interval ¢ < t < b; and,
further, f(a) = f(b) = 0. Therefore, there is a number ¢, a < ¢ < b, such that the
function f has either a maximum or minimum, over the closed interval a <t < b,
at the (interior) number c.

Suppose first that the function f has a maximum at ¢. Then, whenever both 7 > 0
anda < ¢ — h £ b, one has

fle) = fle = h) = [x(c) = x(a)]| = [x(c = h) = x(a)]| +

# Lofe) + olc = ] =2 = 0

x(c + h) — x(c)l|.
llg(c + h)

O]

1) = x(t) = x(@)] = [9(t) = 9(a)] -

therefore
[x(c) = x(c = B)]| = [x(c) = x(a)]| = [|x(c — h) = x(a)] =

> Ta(e) — a(c — my]|[FEL =@
2 [g(c) = g(c — )] o5 — 9@

Consequently, the inequality (2) follows, since g(c) — g(c — h) > 0.

If f has a minimum at ¢ one obtains by a similar argument the inequality (1).

Remark 1. The conclusion of the theorem implies the weaker conclusion that,
at ¢, either

x(b) — x(a) x(c + h) — x(c)

< lim inf

g(b) — 9(a) w-+0 ||g(c + h) — g(c) ’
x(b) — x(a) < Lim inf [x(c) — x(c — h)“
19(6) = 9(@)]| = w0 |lg(e) — glc = )|’

where h — +0 denotes, as usual, both 2 > Oand h — 0.
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Remark 2. In the special case when g(f) = ¢ throughout the interval ¢ < t < b,

the present mean value theorem I, together with remark 1 above, reduce to the
“mean value theorem 2 of [1].

Remark 3. If the vector valued function x(f) possesses, whenever a < t < b,
both a finite strong right hand derivative

*,(1) = lim XU 1) = x(0)

ho+0 h

and a finite strong left hand derivative

x'_(t)‘ = lim ‘~—————x(t> = x(t = h)

s
h—+0 h

and the real valued function g(t) possesses both a finite (non zero) right hand
derivative g’,(t), and a finite (non zero) left hand derivative g’ (f), throughout

a <t < b, then the present mean value theorem I implies the existence of an
intermediate value ¢ such that either

x(b) — x(a) < x',(c) ’
(b) = g(a)]| ~ [l (c)
x(b) — x(a) < Hx_(0)]!

g(b) — g(a)|| = |lg-(c) \

If we replace the assumption of the existence of one sided derivatives by the assump-
tion of the existence of derivatives we obtain the inequality

x(b) — x(a) x'(c)
g(b) — g(a)]| ~ [lg'(c)
In the special case when g(t) t throughout the interval a < t < b, then the

inequality just written reduces precisely to the conclusion of the “mean value theorem
of the differential calculus of vector valued functions” of [2, p. 261].

Remark 4. Suppose, in particular, that the continuous function x(z) is real valued.

In this special case, by considering the real valued continuous function f, defined on
a <t £ b by the equation

1) = x(0) = x(@) = [o(0) - o(c)] E’;; =,

which vanishes at a and at b, the conclusion of the theorem can be strengthened to
read as follows: there is a number ¢, with a < ¢ < b, such that, whenever both & > 0
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anda £ ¢c— h <c<c+ h £b, then either

x(c + h) — x(c) < x(b) — x(a) < x(c) — x(c — h)
glc + h) = g(c) ~ g(b) = g(a) ~ g(c) = glc ~ k)’

or the inequalities just written hold with the inequality signs reversed. From these
inequalities one can obtain results of the nature of those of Remarks 1 and 2. These
results are related to the mean theorem of W. H. and G. C. Young concerning the
Dini derivates (see [3, p. 10], in case g(f) = t; and also pp. 19—24 of [3], for
a “general” g(t)).

3. Mean value theorem II (Taylor’ s theorem). If (1) the vector valued function
x(t) is defined for all real t such that a <t < b, where a < b, both a and b being
finite, and its values are in a linear normed space B (the norm in B will be denoted

by H ”, the scalars may be real, complex, or quaternion); (2) n is a non-
negative integer, and the function x(t) possesses n (successive) strong derivatives,
x®(1), k=0, 1, ..., n, which are finite and continuous throughout the closed interval

a <t £ b (these derivatives are understood to be “one sided” at a and at b; for
example,
*(a) = lim x(a + h) — x(a) :
h—=+0 h
(3) the function x(t) possesses a finite derivative of order n + 1, x("“)(t) on the
open interval a <t < b; (4) the real valued function g(t) is defined on the closed
interval a <t £ b, possesses a finite, non-zero derivative on a <t < b, and is
continuous at a and at b; then there always exists a number ¢, with a < ¢ < b,
such that
n (b _ a)i

x(b) — ¥ xa)———

i=0 i! ‘ ix‘"“)(c)
g(b) — g(a) | g

Proof. If n =0, theorem I gives the result. Therefore, suppose that n > 0.
Consider the auxiliary vector valued function F, defined on a < t < b by the equation

(_b - c)"
| n! :

lIA

Fi) = x(5) - ¥ x0() L=

i=0 i

Notice that F is strongly continuous on a £ t £ b, and that F(b) is the zero vector,
while

Fla) = x(b) - 3 x0(a) =)
i=0 1.
Further, ona < t < b:

F() = —xoo =0
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Now applying Remark 3 above to the vector valued function F(t) it follows that
there is a number ¢ such that a < ¢ < b, for which

) F(b) — F(a) F(a)|| HF'(C)
lg(b) — g(a 19'(c)

and this is, except for notation, precisely the desired inequality.

Remark 5. Let r be a real number satisfying 0 < r < n, and choose g(t) =
= (b — t)"“". Then one obtains, as a special case of theorem 1I., that

b — a)n+1—r(b - c)r
(n+1—r)n!

For r = 0 one obtains what may be called “Taylor’s theorem with Lagrange’s form
of the remainder”; while for r = n one obtains what may be called “Taylor’s theorem
with Cauchy’s form of the remainder”.

i!

() -3 ) (o

5 )

Remark 6. If, instead of hypothesis (3) of theorem II, one assumes that the right
and left hand derivatives of x(t) are finite on a <t < b (let them be denoted
by x " V(1) and x"*1)(t), respectively); while, at the same time, instead of hypothesis
(4). one assumes that the real valued function g() defined on the closed interval
a <t < b, possesses finite, non-zero, right and left hand derivatives, g, (¢) and g"(¢),
ona <t < b, and is continuous at a and at b; then one can deduce the existence of
a number ¢, such that a < ¢ < b, and such that either ‘

x(b (g ( - a)i
( ) — Z ( ) i - i {n+1)(c) (b _ c),,,
g(b) — g(a) NIACH R
Wb — 3 x(g (b —a)
S G IR
g(b) — g(a) g | m
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Pe3rome

TEOPEMA O CPEIHEM 3HAYEHUU U TEOPEMA TEWMJIOPA
JJ1 HENPEPBIBHBIX BEKTOPHBIX ®VHKLUW

. b. IUA3 (J. B. Diaz), Mepsuiena 1 PYJOJIb® BbIEOPHBI (Rudolf Vyborny), Ilpara

Lemnpro padoThl saBseTCst GOPMYIMPOBKA U 3JIEMEHTAPHOE M0KA3aTEIbCTBO TEO-
PEeMBI O CpeJlHEM 3HA4YEHUM [JIT BEKTOPHBIX (DYHKIMH, KOTOpasi sBISETCS B OIpe-
JIeJICHHOM CMBICJIE aHAJIOTOM TeopeMbl Ko o cpeiHeM 3Ha4YeHUH. B cTaThe TaxxKe
BBICKa3aHa u Hoka3aHa Teopema Teilstopa Iyisi BEKTOPHBIX (QYHKIIHIT.

- 304



		webmaster@dml.cz
	2020-07-02T20:02:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




