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YexocI0BALKHE MATEMATHYECKHH xkyprai, T. 15 (90) 1965, Ilpara

ON STRUCTURAL UNAMBIGUITY OF FORMAL LANGUAGES

Jozer GRUSKA, Bratislava
(Received February 4, 1964)

1. INTRODUCTION AND SUMMARY

The ambiguity problem of Chomsky’s context-free grammars has been attacked
primarily from the negative point of view and it has been proved by many authors
(see [1], [3], [4], e.g.) that it is unsolvable. Of course this does not mean that it is
impossible to devise methods which may be useful to decide, at least for some
languages, whether or not they are structurally ambiguous (s.a.). Some methods
of this kind have been recently investigated by Fabian [2] for slightly more general
languages. Moreover, the relationships between structural unambiguity (s.u.) and
semantics were studied in [2] and it was shown that from a point of view it is suf-
ficient to require, from a language, that it be weakly structurally unambiguous
(w.s.u.). (Strong) structural unambiguity is, however, better suited for a study.

This paper brings essentially two results, the first concerning a property of non-
cyclicity of languages, the second the relations between weak and strong structural
unambiguity.

Every cyclic (i.e. such that there is a text ¢ derivable from the same text t) language
is structurally ambiguous and, under certain reasonable conditions, weakly structural-
ly ambiguous (w.s.a.), too. There are provided quite efficient means for verifying
whether or not a language is cyclic. Hence the question of structural ambiguity is
interesting only for non-cylic languages. But the assumption of non-cyclicity may
simplify many methods and proofs used in [2]. In particular, it is shown that for
a certain class of languages, which contains Chomsky’s context-free grammars,
some conditions required for a reducing transformation (a basic concept in [2]) are
always satisfied.

In [2] it has been shown that for some languages both structural unambiguity and
weak s.u. coincide. The present paper shows that to a given language .#, which
satisfies certain conditions, a language £, may be constructed such that £ is w.s.u.
if and only if % is s.u. (If those conditions are not satisfied then % is w.s.a.). Hence
it is sufficient to study structural unambiguity of formal languages.

The present paper uses notations and definitions of [2] The reader should be
familiar with sections 1 to 8, [2] and with Definition 9.1, [2].
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2. CYCLIC LANGUAGES AND STRUCTURAL UNAMBIGUITY

2.1. Notes. We shall use sometimes the following notation:
L Ay=al,.L A=, Ay=al,.., A= o

for defining a particular language & such that d.L = {4, ..., 4,}, L4, = {a}, ..., }.
If g = [A, t] € g%, we shall denote the set of all structures of g in % by S,[4, t]
or Sgg. If there is no danger of misunderstanding the symbol specifying the
language will be deleted.

The following lemma can be easily proved using Lemmas 6.3, 6.1 and 5.5, [2].

2.2. Lemma. If t, — t,, then there exists a t,-decomposition t of t, such that
[#,i] = i at least for one i edt,.

2.3. Definition. A language % is called cyclic (primitive cyclic) if there exists
ateoc¥, (Aed¥)such that t >t ([A] - [A4]).

2.4. Lemma. Let t — t for some t € 6.Z. Then either At = 1 or thereisa toe 6 ¥
such that ty, — ty and Aty < At.

Proof. Let t - t and At > 1. By Lemma 2.2 there is a t-decomposition 7 of ¢ and
an i, edt such that [ti;] — ti;. If i = A for no i edr, then 7i = [ti] for each i and
the assertion of Lemma holds with ¢, = [ti;], which has length 1. It remains the
case that there is a j edt such that tj = A. Then the assertion of Lemma holds with
to = 7D x (U140 Indeed, since [tj] - tj = A, we have

to = [1(z* 70 x 02 = [T =t > 1,

and Aty = At — 1.

2.5. Theorem. A language £ is cyclic if and only if it is primitive cyclic.

Proof. The Theorem follows immediately from the preceding Lemma and from
Definition 2.3.

2.6. Theorem. Every cyclic language is structurally ambiguous.

Proof. By Theorem 2.5 and Theorem 7.6, [2].

2.7. Remark. The converse of this Lemma is not true.
Example: ¥: A= B,A=> D, B= D.

2.8. Remark. A cyclic language can be weakly structurally unambiguous.
Example: ¥: A= B, B= A.

2.9. Theorem. Let % be a cyclic language and let there exist an A ed¥ such
that [A] — [A], t(¥&, A) + A. Then & is not w.s.u. :

"284



Proof. Let n be the smallest integer such that there exist 4 ed.?, t € ¢, such
that [A] - [4], [4] - ¢ and [ A4, {] = n. We shall prove that [A, ] is s.a. Since
[4] > [A] and [A] ¢ £A, there is an «, such that [A] = o, > [4] > 1. Ifn =1,
then [A] =t and [4, t] has two different structures [A4, [7]] and [«;, 7,] where 7,
is an a,-decomposition of ¢t. Let n > 1. By Theorem 6.5, [2], there exists such an
[, T] € S[4, ] that

(1) o[A,f] =1+ f So[ ot 7i]

where 8q[ai, ti] = 0 if [ai] = 7i and &o[ai, 1i] = 6[wi, i] if [ai] #+ 7i. Let 7, be
an a,-decomposition of 4. Then there is an i, such that t,i, = [A]. First let tio + t
or a % o;. Denote 75 the decomposition defined as follows: dty =dt,, 73i =
= A = 1,i if t,i # [A] and 73i = 1 if 7,i = [A]. Then [A4, {] has two different
structures [«, 7] and [ay, 75]. Secondly let tiy = ¢ and « = a;. Then [aig] =1t
and [aig] = [ayig] = [A]. If aig= A, then [aiy] > ¢ and, by (1), J[4, ] =
= O[ai, ] < 6[4, t]. This is a contradiction, hence ai, + 4 and, because [aiy] =
= [A4], we get [aio] » [A]. Since [aiy] - A for i + iy, we have a — [ai,] and
[aio] = [A4] = « = [aio], 6[atiy, 1] < 6[A, 1] = n which contradicts the choice
of n. Thus, the case o« = a; and 7i, = f is impossible.

2.10. Lemma. Let & be a non-cyclic language and let
(1) d? and {o,0e LA, a¢ o, ¥} be finite sets.
Then the set Q(t) = {u; u — t} is finite for each text t.

Proof. Let ¢ be such that Q(t) is infinite. Because d. is finite there is an A ed.%
such that the set Q(4, 1) = {u, [A] = u = ¢} is infinite. The set

N, = {[a,i,7i], Aed?, [A] > t, [a, 1] € S[A. t], i eda}

is finite. Suppose that for each [a, i, 7i] € N, the set Q(ai, ti) is finite. Then the set

P = U{0(wi, ti); [ai,i,zi]eN,} is finite, too. If ueQ(A4,t), u =+ [A] and

u ¢ LA then there is an [a, ] € S[4, u] and a u-decomposition { of . By Lemma

6.1, [2], T = ¢ ® { is an a-decomposition of t, and for each i edo we have [ai] =

= ¢ 2 ti. Since [a, i, 1i] € N, we get & e P. Hence either u = [A] or ue %4,
Aa

uea & oru =[] & with ie P. Since {o, 0 £4 — ¢, %} and P are finite sets,
i=1
Q(4, 1) is finite which contradicts our assumption. Hence there is an [a, i, 7i] €
€ N, such that the set Q(A4,, ;) with A4, = ai, t, = 7i is infinite. If #; = ¢, then, since
[ai] > ti =t and [A] = a > 1, we have [A]=>a = [oi]. Hence either At; < At
or [4] - [4,]- Repeating the argument we get a sequence [4y, #,], [43, 1], ... of
grammatical elements such that for each i either At;4; < At; or [4;] = [4i44]
t; = t;4 4. Of course the first case may occur only finitely many times since if; = 0.
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Hence we get, for some i, [4;] - [4;+,] = [4i+2] -.. which is impossible since #
is non-cyclic and d.# is finite. This contradiction shows that no Q(r) is infinite.

2.11. Corollary. Let £ be a non-cyclic language for which (2.10.1) holds. Then
for no grammatical element [ A, t] there is an infinite sequence o such that [A] —
—>o(i+1)>oi—tforeachi=12,...

Proof. If for some grammatical element [A, r] such an infinite sequence exists,

then either oi = gj for some i + j and & is cyclic or Q(t) is an infinite set.

2.12. Theorem. Let £ be a non-cyclic language for which (2.10.1) holds. Let
{V, R) be a pair of transformations V and R defined on g% such that for each
g = [A, t] e 8%, each structure [«, t] of g and for og = [A, Vg]| we have
(1) Ry is a Vg-decomposition of 1. ’

(2) If[A]=1t, then Vge {A, 1}.

3) There is an a-decomposition & of Vg such that t = £ @ Rg.

(4) Ifeg =g, ieda, ai % ti, then o[ai, ti] = [ai, i].

Then g is a reducing transformation. ,

Proof. According to the definition of a reducing transformation (Def. 9.1, [2]),
it is sufficient to prove that the following two conditions are also satisfied:

(5) Ift+ Vg =[A], then « = [4].

(6) For no infinite sequence g;, g,, ... we have g;€ 8%, g,+1 = 09 9i+1 ¥ g
First let ¢ # Vg = [A]. Then, by (3), for each [0, 7] € Sg, [A] 2« = Vg. If Vg =
= [4], then [4] = « = [A4], which is possible, since £ is a non-cyclic language,
only if a = [A]. Secondly, suppose there is an infinite sequence gy, g,, ... such
that g, € 8%, 09; = g;+;and g, ¥ g;. Letg; = [A, ti]' Then [A] =ty
for each i > 1, but this contradicts Corollary 2.11.

3. RELATIONS BETWEEN LANGUAGES
3.1. Definition. Let &, %, be languages. We say that £, is a part of &, written
Z, < 2, if
n d%, cd¥ and %A c LA foreach Aed?,.

3.2. Lemma. Let £ be a language and %, be a transformation such that the
condition (1) is satisfied. Then &, is a language and £, < Z.

Proof. It is easy to verify that conditions (5.2.1) and (5.2.2), [2] hold with
A =a%.

3.3. Corollary. Let £ be a language and &, = #. Then &, is a language and
L < Z.
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34. Lemma. Let &, ¥, be languages and ¥, < 2. Then:

(1)  therelations £y: =, &: =, &,: — are stronger than the relations £: =,
L . L. —, respectively.

(2 if &, is cyclic, so is £.
(3) 8%, cgZandif geg¥, then [o, 1] € Sy,g implies [, 7] € Sgg,
4)  ifZLissu.,sois Z,. ‘ ‘

Proof. The assertion (1) is obvious, (2) and (3) follow from (1) and (4) follows
from (3).

3.5. Lemma. Let %, %, be languages and %: [A] =t implies Z,: [A4] - t.
Then g% < g%,.

Proof. Obvious.

4. CYCLIC LANGUAGES

4.1. Denote
Oy = {A; Acd?, [A] - A}

4.2. Theorem. Let &£ be a language and £ be a transformation defined in the
following way:
d%, = {A;Aed?, yA + A}, LA =yA
where
xA = {ai, xe LA, ieda and ajeO, for j=+i}.

Ifd%, = A, then £ is non-cyclic, ifd%, + A and [B] € Z,B for some BedZ,,
then % is cyclic, ifd#, = A and B € LB for no Bed¥, then %, is a language
and %, is cyclic if and only if so is &Z.

Proof. First let d%,=A and let £ be cyclic. Then there exists an A ed.¥ such
that &: [A] — [A]. Since [A] ¢ LA, there is an [«, 1] € Sy[A, 4] such that £:
[4] = « > [4]. Moreover, there is a i eda such that #: [«i] = [4] and oj = 4
for j + i. We have y4 + A which contradicts the assumption d.#, = A. Hence ¥
is non-cyclic.

Secondly letd#, + A and B € £,B for some B ed.%,,. Then it is easy to prove £:
[B] - [B] and hence . is cyclic. '

Finally, suppose that d.¥, += A and Be £, B for no Bed.¥,. Clearly, %, is
a language. ’

Suppose that .Z is cyclic. For proving that %, is cyclic it is sufficient to prove the
following assertion: ' .

(1) &£: [A] - [B] implies Z,: [A] - [B].
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Denote M the set of all grammatical elements g = [4, t]in % such thatif it = 1,
then g e g&,. If &: [A] = [B], then #,: [A] = [B] and hence [4, [B]] e M.
Let g = [A, [B]] € 8% have a weakly M-regular structure [a, 7]. Then there exists
exactly one i, eda such that ti, + A. We have ti, = [B] and «i € Oy for all i * i,
hence aiy € £ (A. Moreover, since [«, 7] is a M-regular structure of g, &: [aio] — [B]
implies Z:[aiy] — [B]. Thus, My: [A] — [B] and g € M. An application of The-
orem 6.7, [2] yields M = g.%. Hence (1) holds and %, is cyclic.

Now let Z, be cyclic. In order to prove that £ is cyclic it is sufficient, by Lemma
3.5, to prove that Z,: [A] = t implies &: [A] — t. Let £,: [A] = t. Then t = [B],
Bea¥ and there are a € £ A4, iy edo such that ai, = B and ai € O for all i eda,
i & io. By Lemma 5.5, [2], &: [4] - [B] = t. This completes the proof.

4.3. Remark. If d.Z is a finite set then so is t%, and it is easy to verify whether or
not &£, is cyclic.

The set Oy plays an important role in the theorems of this paper. The following
theorem shows a way of constructing the set Og.

4.4. Theorem. Let N, = {4; [A] = A} and N; = {4; a€ LA, aje N,_, for all
jeda} v N;_; for all integers i. Then

0. =UN,.
i=0
Proof. By induction it is easy to prove .GNi < O4. Now denote M the set
ofall g = [4, t]iegas,’ such that if t = 4, tll::)n AeG N, If [A] = 4, then Ae N,
and hence g € M. Let g = [A, A] have a weakly I\Zr(;gular structure [«, t]. Then
[ej] > A for each jeda and, with respect to M-regularity of [o, 7], oj e.G N,.
Since N; = N,,,, there is an i, such that «j e N, for ail j edx. Hence Aellil(:o+1
and g € M. An application of Theorem 6.7, [2] shows that M = g¥ and O, < G N,
i=0

5. STRUCTURAL UNAMBIGUITY AND WEAK STRUCTURAL
UNAMBIGUITY

5.1. Definition. Let .# be a language and 1€ 6.%. Denote Q, = {4; AedZ,
t(Z, A) = {A}} and O, = {i; iedt, tie O,}.

5.2. Definition. Let 1€ 6% and N = dt. Denote s(t, N) the product [t of the
decomposition 7 defined by

(1) M=Ati=ti if i¢ N and ti=A if ieN.
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Moreover, put

(2) Yt =5(1,0,).

The sequence s(t, N) is obtained from t by deleting all symbols ti such that i € N.
Similarly, the sequence Yt is obtained from ¢ by deleting all asymbols ti such that
tie Ogp.

5.3. Lemma. If te 6% and N < O,, then

1) t = s(t, N),
(2 1=yt
3) W(s(t, N)) = vt .

Proof. Straightforward from Definition 5.2.
5.4. Definition. A language % is said to be regular if t,(.f, A) + Aforeach 4 ed .

5.5. Definition. We say that a language ¢ is A-structurally unambiguous if the
following conditions are satisfied:

(1) If Aed?, a, € LA, a,e LA, oy + a,, then Yo, + Yo,.

(2 If Aed”, ae LA, iyeda, iyeda, iy < iy, aiy = ai,,
t(Z, aiy) #+ {A}, then oj ¢ O, at least for one j € iy, i,).

5.6. Lemma. Let £ be a regular language. If & is weakly structurally unambi-
gous, then £ is A-structurally unambigous.

Proof. Conversely, suppose that % is not A-structurally unambiguous. First let
condition (5.5.1) be not satisfied. Then there are 4, «,, a, such that 4 ed%, o, a, €
€ ZA, Yo, = Ya, and a; + a,. Moreover, since £ is regular, there exists a t; € t,.&
such that Yo, = yo,. Then, using Lemma 5.3, we have [4]=o; = ya, = 1,,
i =1,2. Hence [4, ;] € g% and [A4, t,] is s.a., which contradicts the assumption
of Lemma.

Secondly let the condition (5.5.2) be not satisfied. Then there are A ed?, a € A
and iy, i, eda such that iy < i,, ai; = ai,, t(Z, ai;) + {A} and aie Oy for all
i€ iy, iyy. Let A % toet(Z, ai;) and t;et(L, ai) for ie(dt — (iy, i,)). Put
P=1y Xty X oo X b g X tg Xty X o0 X tA, 0y = oy = o, d7y =d7, =do,
140 =1, = 1,0 for ie(dt — iy, ip)), T4i; = to, Toip = tg, 7,0 = A for all other
i edry and 1,i = A for all other i edr,. Then 7, #* t,and [ay, 7,], [0, T,] are two
different structures of [A, t] € g.Z, which contradicts the assumptions of Lemma.

5.7. Lemma. If % is a A-structurally unambiguous language, then each gram-
matical element [A, A] is s.u.
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Proof. Let a grammatical element [A4, A] have two different structures [a;, 7;],
i = 1,2. Obviously, o, # a,. If ay & [A] # a,, then Yo, = Yo, = A. If oy = [A] *
+ a,, then Yt = Yo, = A. Similarly for the case a; #+ [4] = «,. Hence, in all the
cases condition (5.5.1) is not satisfied which is the desired contradiction.

5.8. Definition. Let £ be a language. Denote %, the transformation defined as
follows:

(1) d¥%, =d% — Q.
and for each 4 ed%,

(2 ZLo4 ={s(a,N); ae LA, N = O,, s(a,N)ie Qg for no ieds(x, N) and
s(a, N) * A}.

5.9. Lemma. Let & be a language and £, be defined as in Definition 5.8. Then
) &, is a language, A
(2 a¥ = a?,,
(3)  Zo:[A]l > t implies £: [A] - 1.

Proof. To prove (1) it is sufficient to show that #,: [A] = [A] for no 4 ed%Z,,.
Conversely, suppose that £,: [A] = [A4] for some 4 ed.Z,,. Then there are o € L4,
N < da, such that [4] = s(a, N). By Lemma 5.3, #: o = [A]. We get £: [A] — [A]
which is impossible since £ is non-cyclic.

Now we prove (2). First let B e a,.#. Then there are A ed.¥, a € LA, i eda such
that ai = B. We have A ¢ Q, and hence A ed%,. By Definition 5.2 ya =[]z,
where At = Aa and ti = [«i] if and only if i ¢ O,. Since i € a,%, we have ai¢ Qy
and there is a v edya such that (Ya) v = ai = B which implies B € a,.%,,.

Secondly let B € a,.%,,. Then either Be a,.# or Bed.? —d%,. If Bed? — d%,;
then B € Q. Since B € a,.%,, there are 4 ed %, a € LA and i eda such that ai =
= B e Q. But this is impossible since, by (5.8.2), ai e @, for no a € #,A. Thus,
Bea % and a, ¥ = a,%,,.

In order to prove (3) it is sufficient, by Lemma 3.5, to show that Z,: [4] = ¢
implies #: [A] — . Suppose Z,: [A] = t. By Definition 5.2, there are a e ZA4,
N < O, such that #: [A] = a, t = s(2, N) and, by Lemma 5.3, we have £: [A] —
— o = t. This completes the proof.

5.10. Lemma. Let & be a non-cyclic regular and A-structurally unambiguous
language and £ be as in Definition 5.8. Let g = [A, t] e g%, t = A. Then

(1) geg ¥, and
2 if g is s.a. in &, then so is it in %, too.
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Proof. Let g = [4, t] € g% and [a, 7] € Syg. Denote
N,.={i;ieda, i = A}, a=s(aN,,) and 7=s(t,N,.).

As the first step we shall prove the assertion (1). Denote M the set of all g = [4, 1]
such that g e g%, t = A imply g € g.%,. Let g = [A, 1] where &: [A] =>tet ",
t + A. Then, by definition of £, A ed%,, L,: [A] =1 and, by (5.9.2), g € 8%,
and g € M. We have proved:

(3) IfZ:[A]l=tetZ, 1+ A, then[A, [t]]is a structure of g in Z,,.

Next, let t + 4 and g = [4, 1] € g, & have a weakly M-regular structure [a, 7].
Then o # A and Z: [aj] = 7j for each jeda and A + 7j € t, Z. By definition 5.8,
we have 4edZ,, xe £, A. Moreover, 7 is an x-decomposition of ¢t in Z. If Z:
[aj] - j, then, by weak M-regularity of g, [, 7j] € 8%, hence 7 is an x-decomposi-
tion of tin £, and Z,: o = t. Because Zy: [A] = a, we get g = [4, t] € g&, and,
by (5.9.2), g € 8,%,. This implies g € M and, moreover, if #,: a — ¢, then [a, 7] €
€S, g. By Theorem 6.7, [2], this implies M = g% and (3) holds.

Since M = g%, every structure [«, t] of a terminal grammatical element g =
= [A, 1], where t & A and [A4] = «, is weakly M-regular. Therefore, we have:

4 If [At]egd, t+ A, [o,t]eSy[A,t], «+[A], then [A4,1]egZ,,
Lot =t and, if Z,: «— t then [a,7] € Sq.g.

Now we shall prove the assertion (2). Let g = [A4, ] € g%, t + A and let g have
two different structures [«i, 7i], i = 1,2, in Z.

Let oy = [A]. Then £: [A] = a,, £: [A] =t, £: a, — t and, since Z is non-
cyclic, a, # t. By (5.5.1), Y, + yt, by (5.3.3) ya, = Ya, and hence a, =+ t. By (3)
and (4), [4, [1]] and [a,, 7,] are two different structures of g in Z,. Similarly, if
a, = [A]. It remains the case a; + [A] * .

First suppose a; # a, (this will be the case if, in particular, «; = a,, according to
(5.3.3) and (5.5.1)). If a; *+ ¢ # «, then, by (4), g is s.a. in Z,. If @, = 1 * a,, then
[4, [f]] and [a,, 7,] are two different structures of g in #,. Similarly if a; =+ t = a,.

Secondly we have the case a;, = a,, a; = a,. Denote o = a;, o = a;. Since
7, # 1,, we may determine the smallest integer j e da such that t,j + 7,j. Suppose
T j * A =1,j. If we put j, = min {i; i > j, 1,i + A}, then. since a; = a,, we
have oy jo = 0y, t(&, ayj) + {4}, ayi € Oy for i € {j, jo» which contradicts (5.5.2).
Similarly if 7,j = A = t,j. Finally let t;j + A = 1,j. Then there is an i eda such
that 7,i # 7,i. Hence atleast one 7j is not primitive, Z,: o — t and g has in £, two
different structures [, 7], [«, 7,]. Thus in all cases g is s.a. in Z,.

5.11. Lemma. Let % be a non-cyclic regular and A-structurally unambiguous
language and £, be as in Definition 5.8. Let g = [A,'t] € g, %,. Then

(1) g € g!$9
(2) Ifgiss.a.in L, then soitisin £, too.
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Proof. The assertion (1) follows from (5.9.2) and (5.9.3). Now we shall prove
that if a g € 8%, has two different structures [a;, 7], i = 1,2 in Z,, then g is s.a.
in &, too. Note that if Z,: [A] = « — 1, then, by (5.9.3), &£: [A] - « - t. We
distinguish several cases:.

Case 1. 0y = [A] # «,. Then Zy: [A] =t and [o;, 7,] = [4, []]. If te 24,
then [4, [t]] € S¢[ 4, t]. Moreover, #: [A] — «, — tand therefore there is a [, 7] €
€ Sy[A, t] such that B+ [A], i.e. [4, t]is s.a. in &£. Now let t ¢ LA. Since t € LA,
there are f1, B2, Ny and N, such that Ny < Og,, N, < Og,; By, Br € LA. s(By, Ny) =
= tand (B2, N;) = a,. We have £: [A] = B,. £: [A] = B,. By (5.3.1) Z: B, = ¢
and #: B, = «,. Since t ¢ #A, we have t + B, and #Z: B, — 1. Thus Z: [4] =
= p, > t, Z: [A] = B, > . If B; + B,, then g has two different structures in Z.
Let B, = B,- We have s(B;, Ny) = te t.Z, (see (5.9.2)), and hence t = s(By, Op,).
Because Zo: @, —» t €t %, we have o, + t and, since o, = s(B,, N;) = s(B1, N,),
we get N, + Op,. Hence Ao, > At. But this is impossible since, by using the fact
that a, — t and A € £,A for no 4 ed?, we have la, < At. Hence 8, + i, and g
is s.a.in Z.

Case 2. & * [A] = a,. The proof follows the same pattern as above.

Case 3. o; + [A] # o,. There are By, f, € £A and Ny, N, such that N, = O,
N, = Oy, and a; = s(By, Ny), o, = s(B2, N,). We have &: [A] = B, - t, and &:
[A]= B, = t. Let [iy, iy, ..., 0] and [j1sja, .., ja,] be the increasing sequences
of all ie(df; — N,), je(dB, — N,), respectively. Let 7,7, be decompositions
defined as follows: dt; =df,, 75i = A if i = i, for no ve <1, k;) and t3i, = 7,v
in the opposite case. Similarly dt, = df,, 1,i = A if i = j, for no pe<1, k,» and
T4i, = T,y in the opposite case. Since [a;, 7,] € Sy [4, t] for i = 1,2, we have Z:
a;j = 7;j for jeda and hence, according to (5.9.3), #: «;j = 7,j. Hence 7,,, is
a f-decomposition of ¢ in Z.

Obviously g is s.a. in & if f; + B,. Suppose B; = f,. If a; = o, = « then
[i1, 82, s it,] = [J1sJas ---» Ji.] and 74 & 7, implies 75 + 7,. Next, if a; # a, then
[is, 025 oos ity ] = [J1>J2s - Jip] and, since O, = A, 73 + 7,. Hence in all cases g
is s.a. in Z. '

5.12. Theorem. Let & be a non-cyclic regular and A-structurally unambiguous
language. Let % be defined as in Definition 5.8. Then & is w.s.u. if and only
if L, is s.u.

Proof. First let £ be w.s.a. Then there is a g = [4, ] € g & which is s.a. By
Lemma 5.7, t + A. According to Lemma 5.10 g € g,%,, and g is s.a. in £, and %,
is s.a.

Secondly let Z,, be s.a. Then thereis a g € 8% which is s.a. in £,. By definition
of &, and by Lemma 5.9, Z, is regular and hence, by Theorem 7.7, [2], &, is w.s.a.
if and only if % is s.a. Hence there is a g, € 8%, which is s.a. Thus, by Lemma
5.11, g, € 8% and g, is s.a. in £ and % is s.a. This completes the proof. '
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5.13. Remark. If .Z is not A-structurally unambiguous then the assertion of Theorem
can be false.

Example: ¥: A= BCCD, C= G, C= A.

In the following we study the problem of determining whether or not a given
language is regular.

5.14. Theorem. Let & be a language. Denote u# a transformation defined as
follows:
du? =d¥ — {4; ae LA, ae 6. ¥}
u¥A =LA foreach Aedu?.

Then u% is a language and & is regular if and only if u& is.

Proof. Since u¥ < &, we have, by Lemma 3.2, that u% is a language. First let
& be regular. Denote yA = min {[ 4, t]; [4, t] € g} for each 4 edZ. It is easy
to prove, by induction by yA, that u% is regular. Secondly let u be regular
and let AedZ. If Ae(d¥ — du?), there is an o€ L4 N 6,% and we have £:
[A] > aec0,Z. Let Aedu?. Then there is a t such that pu%: [A] - te tu?.
By Lemma 3.4, we have %: [4] — ;e tu?. If ti ¢ 2, %, then ti e (d¥ — duZ) and
there exists an a € £ti N ¢,%. Hence there exists a ¢, such that &: [4] - 1, e t, &
and & is regular.

5.15. Theorem. If u¥ = % + A, then & is not regular.

Proof. If &£ % A and % is regular then g% + A, L4 n 6. % + A for some
A edZ since otherwise Cl, A = A and g% = A according to Theorem 6.9, [2].

5.16. Corollary. If % is a language and d.& is a finite set then & is regular if
and only if there exists a k such that *# = A. 1)

Acknowledgement. The author wishes to acknowledge VACLAV FABIAN, who made
many suggestions which improved the presentation.
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Pe3rome

O CTPYVKTVYPHOU ONHO3HAYHOCTU ®OPMAJIbHBIX SI3bIKOB

MOCU® I'PYCKA (Josef Gruska), Bparuciasa

B paboTe M3yuaeTcs mpobieMa CTPYKTYPHOM OJHO3HAYHOCTH (GOPMAJIBHBIX S3bI-
KOB, onpelesieHHbIX B paboTte [2] B. ®abuana. Kiracc 3THX SI3BIKOB COJEPKHUT KJIACC
Xomckoro rpammatuk THna 2. Hacrosmias paboTa mpuHOCHT, B OCHOBHOM, IIBa
pe3ynbrata. IlepBblif U3 HUX KacaeTcsl COOTHOILEHHUS MEX/Iy CTPYKTYPHOI OIHO3HAY-~
HOCTBIO M IMKJIMYHOCTBIO A3BIKOB, BTOPOH KacaeTCsi COOTHOIIEHHS MEXIY CTPYKTYp-
HOI OHO3HAYHOCTBIO U CJ1ab0# CTPYKTYpHOH OIHO3HAYHOCTHIO.

B pa6oTe noka3blBaeTCs, YTO LMKJINYECKH A3BIK (T.e. TAKOH sA3BIK, B KOTOPOM
CYILIECTBYET TEKCT, BHIBOJMMBIIf M3 TOTO Xe TEKCTa), HE SBJISETCS CTPYKTYPHO OJHO-
3HAYHBIM U, IPM HEKOTOPHIX JONOJBHUTEIbHBIX YCIOBUSIX, JaXe HE SBJISETCS caado
CTPYKTYPHO O/IHO3HAYHBIM. JlaroTcs BrosHe 3(dbeKTUBHBIE CPEACTBA IS MPOBEPKH
LHUJIMYHOCTY A3bIKa. DTO 3HAYUT, YTO JOCTATOYHO M3Yy4aTh MpobieMy CTPYKTYpHOMH
OIHO3HAYHOCTH IIsi HEIUKJINYECKUX s3BIKOB. Kpome Toro, ycioBrue HEUMKINYHOCTH
MO3BOJISIET YIIPOCTHTL HEKOTOPBIE METOJIBI U J0Ka3aTeNbCTBa B pabote [2]. BuacrHo-
CTH, TOKa3bIBAETCS IS ONIPENIEJIEHHOTO KJIacca HEIMIJINYECKHX SI3BIKOB, COJIEPKAIIETo
KJacc XOMCKOIo IpaMMAaTHK THNa 2, YTO HEKOTODBIE YCJIOBHS B OIIPEICICHHH
peAynuEpyomero npeobpasosanusi (OCHBHOE IOHsATHE B [2]), Bcerga BBINOIHEHEL
Kpome TOro 10Ka3blBaeTCs, YTO €CJIU SI3BIK £ YHAOBIETBOPSET HEKOTOPHIM YCIOBUSM,
TO MOXHO ITOCTPOUTD TAKOM SI3BIK £, KOTOPBIH SBISETCA CTPYKTYPHO OJHO3HAYHBIM
TOrJ@ M TOJILKO TOT/Aa, €CIN A3bIK £ c1a60 CTPYKTYpHO ofHO3HaveH: (Eciu a1y yeio-
BHS HE BBUIOJHEHBI, TO A3BIK £ He ABJAETCA cabo CTPYKTYPHO OJHO3HAYHBIM. )
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