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Чехословацкий математический журнал, т. 15 (90) 1965, Прага 

ON А GENERALIZATION OF THE LEBESGUE INTEGRAL IN E,, 

JAN MARIK and JIRI MATYSKA, Praha 

(Received January 16, 1964) 

A generalization у of tlie integral defined in [4] and a simultaneous 
generalization a of у and of the Lebesgue integral are investigated. The 
well-known transformation formula with respect to a biunique regular 
mapping is proved for the integral a and, with the help of y, the Gauss' 
theorem on the representation of a surface integral by means of a volume 
integral is generalized. 

1. Throughout this paper let m be an integer greater than 1. The meaning of the 
symbols [Л|, ||Л||, Л ,Л° ,Л, 31, P{Ä,vl %^, Z„^Z {Z„,ZE^), U% SRX, АШ 
(Щ, X cz '^, ÄE 3), the operations in the ring J as well as the continuity and the 
additivity of a mapping of a set Э1 c= ^ into E^ are defined in [4], section 1. Further 
let ^0 be the system of all sequences {^„}^= i such that Л„ G 21 (n = 1,2,...), \\A„\\ -^ 
-> 0. (We shall see that ^o ^ ^•) 

2. Let fi be a measure on a a-algehra @. Letf^, . . . , /„ be non-negative measurable 
n 

functions on a set SE®\ suppose that qi > 1 (/ = 1, ..., ri) and ^ Ijqi = L Then 

/ Л " " / г \ i / ^ i 

(1) ^ J^n/.di-^ny/r^j ^ 
(2) f n///"d/.^nff/.d/^) 

l/n 

Proof. The relation (1) follows by induction from the Holder inequality. If we 
set in (l)/?^" in place of/^ and n in place of ^;, we get (2). 

3. Let pi be a measure on a a-algebra ®. Let f^, ---^fn {^ > 1) ^^ non-negative 
measurable functions on a set SE® and let к be a finite non-negative number. 
Then 

(3) mm 
s 

in и nfl'""''] Ф ^ ^ П [/,• ац\ 
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Proof. The relation (3) is obvious if к = 0; we may therefore assume that к; > 0. 
n 

Denote by L the left-hand side of (3). Then L = к [5 min( l , f ] ö'î ^""'̂ )̂ d/̂  with 
i=l 

g. = я^(1-")/"./.. Since min (1, a^'^"-^^) S min (1, a^^") g a'^" for every a ^ 0, we 

have by (2) L g /< j , f l dV" d/x ^ к f l (h Qi ФО^ ' " = (^ f l Ssff ^f'Y^" • 

4. Let /c, w be integers, 1 ^ /c ̂  w, w > 1. For x = [x^, ..., x„] G E„ put pij(^x) = 
= [xi, ...,Xfc_i,Xfe+i, ..., x„]. For M с= £„, j ; = [ j i , ..., y n - i ] e £ : n - b 2 G E^ 
let M^ be the set of all t e E^ such that [y^, ..., yj^_ j , t, y^y ..., y„-1] e M and let Ml 
be the set of all x = [xj, . . . , x„_i] G£„_I^ such that [xi, . . . , x^-i , z, x,̂ , . . . , x„_i] G 

G M . 

5. Let M be an open set in E^ [n > 1). Then 

|м|"-1^П|р,(м)|.*) 

Proof. The case n = 2 is obvious. Suppose therefore that n > 2 and that the 
assertion holds for n — 1. We may assume that |l?„(M)j < 00. Clearly | м | = 
= JE^ \MI\ dz; the sets M,̂  are open in £„_i and M^ a pJ[M). By induction hypo-

thesis, \M'Jf~^ й П \Pi{^l)\ foi" each ^' It is easy to see that р^(М^) = (p^(M)),^_i 
1 = 1 n - 1 

for / = 1, ..., w - 1. Thus we get |М^| ^ min (/с, П iU^))'^^"'^^) with ?c = \p„{M% 

f{z) = |(p,(M)):^i|. Now the relations UJÜ^Z = |р,(М)| (/ = 1, ..., ^ - 1) 
and (3) (with n -- 1 in place of n) imply our assertion. 

6. L^r M be a subset of E^. Then 
m 

(4) \M\'"-'èYlHM)\. 
t = l 

Proof. Write M^ = Pi{M). If |М^| = 0 for some /, then [м | = 0 and (4) is vaHd. 
Hence the inequality (4) holds if |М^| = со for some i. Assume therefore that 

m 

Y, \MI\ < cx) and choose a number г > 0. For every i there exists an open set Ui a 
i=l 

c= £^_i such that Mi с U-, and \и^\ < |М,| + е. Denote by I/* the set of all xeE^ 
m 

with JP,(X)G Uii further put V = f) Uf, V^ = Pi(F). The set F is clearly open and 
i = 1 m 

M с: F, F; с: С/,, (i = 1, ..., m). By 5 we have \м\'"-^ < \v\"'-^ ^ П Щ è 
m m / = 1 

^ J~[ [C/j[ g |~[ (JM,| + e), whence (4) follows immediately. 
i= I i= I 

*) See also [5]. 
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7. The meaning of the symbol \\A\\,, for a bounded measurable set A с E^ and for 
к = 1, ..., m is defined by [1], 3. According to [1], 4 we have 

m 

(5) , тахЦлЦ, ^ ll^l ^ 2 ; | | Л | | , . 
к fc=l 

Further put 21̂^ = {Л; \\A\\f^ < oo}. Given a bounded Borel function/on the boundary 
of a set Л e 21 ,̂ we define Pf,[A,f) as in [ l ] , 14, remark 1. For C, D a E^ we write 
С - D if \{C u D) - (C n D)! = 0. From [1], 33 and 20 we get immediately: 

Given a set Л G 21 ,̂ there exists a subset K{k, A) of £„,-i ^i^h the following 
properties: 

l)\E^.,-K{k,Ä)\==0; 

2) for each x e K{k, A) there exist a non-negative integer r = (^^(x) and real 
r 

numbers a^, bi such that a^ < b^ < ... < a^ < b^ and that A]^ ^ \J {a^, bj); 

4) if f is a bounded Borel function on the boundary of A and if we put 

r 

^k{L Л. x) = Y ifi^u • • -, ^k-u bi, Xk, ..., x,„_i) - / ( x i , ..., Xj^.i, a,-, Xfc, ..., -^,„-1)) 
for each x = [x^, ..., x,„_ J G K{k, A\ then Р^(Л,/) = f̂ ^̂ ,̂  Ф^(/, A, x) dx. 

Now we can write Q(/c, A) = {x e K{k, A); (PA{X) > 0}, Z(k, A) = {ze A\ Pj^z) e 
G Q{K A)}. 

S. If Ae %, then 

(6) 2\Q{K A)\ й \\Al, 

(7) \A - Z{k, ^)1 = 0 . 

Proof. The relation (6) is an immediate consequence of 7, 3). The set 
(Л — Z(k, A))^ is empty for x G Q[k, A) and has measure zero for x e K(k, A) — 
— g(/c, A); hence (7) follows at once. 

9.IfAE % then 
m 

(8) H"-'^n|ô(fe.4-
m 

Proof. Write В = f)Z{k,A). From (7) we obtain \ A \ = \в\; clearly рк{В) с 

с: 0(A:, A). Now we apply (4). 

10. If A is a bounded measurable subset of E^, then 
m 

(9) 2-|л|"-1^П1И1*-
k=i 
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Proof. If ll̂ llfc = 0 for some k, then, by (6), |g(/c, Ä)\ = 0. In this case we have 
obviously |z(/c, A)\ = 0 and, by (7), \Ä\ = 0, so that (9) holds. Hence it follows that 
(9) holds if IIЛIÎ t = 00 for some k.lf Ae 2{, we obtain (9) by (8) and (6). 

11. We have ^o ^ ^• 

(This follows from (5) and (9).) 

12. Let Ml , M2 be subsets of E^; let Mi have r̂  components (r^ < 00, г = 1, 2). 
Then the set M^ — M2 has at most r^ + Г2 components. 

Proof. It is easy to see that the assertion holds for Г2 = 1. Now we proceed by 
induction. 

13. / / {A„} e%,AE % then {A, n A} e ^0 , {Л„ - A} e %. 

Proof. We use the notation of 7. Let k, n be natural numbers, к ^ m. Write 
Б = Л„, С = A^- A, К = К{к, A) n К{к, В) n К{к, С) and choose an хеК. 
There exist numbers a^ < Ь^ < .. . < 0̂  < ЬДг = (p%x)) such that the set 

r 

JA = Ö i^i^ bi) fulfils the condition J^ ^ A \ \ let J^, J^ have analogous meaning and 

put J = JQ - J^. Clearly J ^ B^ ~ A^ = Cl and so J -- J^. According to 12 the 
set J has at most (PA{X) + ^^(x) components and the number of the components 
of J с is at most equal to that of J. Thus it is proved that (p^{x) ^ (p\{x) + Фв(х). 
For XEK - Q(k, B) evidently (pc{x) = 0. If we put ö„ = Q(k, A„), we have therefore 
i\\A, - A\^ = i||C||fc = JQ„ Ф^(Х) dx й SQ^ (p\{x) dx + J Q ^ ^ B W dx g f̂^ (p%x) dx + 
+ im„||fc- The relation |ô„| ^ ilHnife (see (6)) implies |g„| -> 0. Now it is easy to see 
that ||^„ - v4||;, -> 0. Hence it follows by (5) that ||Л„ - Л|| -> 0 and by [1], 35 we 
h a v e j l ^ n ^ l l й Ш\ + | И „ - Л | | - - > 0 . 

14. We define a convergence -^ on the set 3 in the following way: P„ -^ P 
means that P„ с P (и = 1, 2, . . . ) , {P - P j e^o- According to 13 and [2], 4, the 
convergence -> satisfies the conditions 1), 2) of [2], 3 (with Л = 2(, Z = 3)- The 
closure of a set Э1 c: 3 with respect to this convergence is defined by [2], 1 and we 
denote it by UQSÎ- The continuity of a mapping of a set Э1 с ^ into E^ with respect 
to the convergence -» is defined in an obvious manner (see [2], 1). By 11, the relation 
P„-^ P implies P„ -^ P ; therefore UQ^ CZ и?Я for each Э1 с ^. If a mapping of a set 
Ш c: Я, into El is continuous with respect to ->, then it is continous with respect to -> 
as well. 

Let WQ be the set of all mappings ф with the following property: The domain of 
definition, Dom ф, of the mapping ф is a, subring of 3, î( Dom ф с: Dom ф, ф is an 
additive mapping into E^ and is continuous with respect to the convergence -> . 
Further let W be the set of all mappings ф G WQ continuous with respect to the 
convergence ->. 
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With each î  G ^ let us associate a mapping ß({l/) in the same way as in [2], 19 ß was 
associated with JLL. (We put, of course, Z = ^, A = ^, & = E^ and take the closure 
and the continuity with respect to ->.) By [2], 22 we have ß{il/) e W. (See also [2], 24.) 

Replacing in the foregoing consideration the convergence -> by the convergence -^ 
we obtain a transformation ßo associating a mapping ßo{il/) with each ф e WQ. 

Now put у{ф) = ßo{ß{^)) for each феЧ". (We have y{il/) e «Fo«) If A e Dom у{ф), 
we write {у{ф)} (A) = у(ф, A); the symbols ß{ф, A), ßo{ф, A) have an obvious meaning. 
Instead of "A G Dom у{фУ' we shall usually write ''у{ф. A) exists" etc. 

15. For each ф e W the following statements hold: 

1) Dom ß{ф), Dom у{ф) are ideals in 21; 
2) Dom ß{ф) с Dom у{ф) cz и^{Вот ß{ф)) cz cj(Dom ф); 
3) ß(il/. А) = ф{А) for each AG% n Dom ф and у{ф, A) = ß{ф, A) for each 

A G Dom ß{ф). 

Proof. The statement 1) holds according to [2], 22. From [2], 19 we obtain 
Dom ß{ф) cz u(Dom ф), Dom у{ф) cz Uo(Dom ß(ф)), whence, by [2], 20, we get 2) 
and 3). 

16. a) Suppose that ф, фх, Фг e ^' Let s = 7(1^1, A) + 7(1/̂ 2? ^ ) ^^^ ^^^ ^{^) ~ 
= lAi(^) + ^liy) hold for each Ve A% n D o m > i ^ Dom 1/̂2- Then у{ф, A) = s. 

b) Suppose that х,Ф^^^ ^ ̂  ^ i - Let у{ф. A) exist and let x{V) = ^ Ф{^) hold 
for each Ve A^ n Dom ф. Then y[x. A) = с у[ф, A). 

c) If Ф eW, ce El, с Ф 0, then Dom у{ф) = Dom у{сф). 

Proof. By theorem 25 of [2] we have ß{ф, B) = ß{Фt, B) + ß{ф2.B) for 
В G A% n Dom ß{фl) n Dom ß{ф2) and from the same theorem we get у{ф, Ä) = 
= ßoißi^VA) = ßo{ß{^i). A) + ßo{ß{ф2), A) = s. Using theorems 26 and 29 of [2], 
we can prove b) and c), respectively, in a similar way. 

17. The meaning of the symbols #", Я(/), Щf) is defined in [4], 1. Further let A 
be the set of all mappings Я(/) ( / G J^). By [4], 1 and 5 we have A a W. Instead of 
y{Kf)) w^ write y{f). For A G Dom y(f) we put {y{f)) (A) = y{f. A); instead of 
"A G Dom 7( / )" we say ' 'y(/, A) exists" etc. If we write ß{f) = ß{X{f)) (as in [4], 6), 
then obviously y{f) = ßo{ß{f))-

If a is a mapping of a set 91 cz 3 and if Z G 3, we define mappings a^, a^ by setting 
az(C) = a(C n Z) for every С with С n Z G Щ and az(C) = a(C - Z) for every С 
with С - Z G gi. (This is consistent with [З], 1.) I f / G #", Z G 3 and if M = D o m / , 
we put /z(x) = / (x) for X G Z n M, /^(x) = 0 for x G E^ - Z (so that Dom/^ = 
= M u (E^ - Z)). If either (Я(/))2 (C) or A(/z, C) exists, then obviously {X{f% (C) = 
= Я(/, Z n С) = A(/z, C); hence 

(10) (Я(/))г = ад. 
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We see that fiz^A for each fie A and for each Z G ^ . Since fiz = ßv with F = 
= E^~Z, we have fi^e A too. Choose a ceE^ and put Z = ^, Л = 2(, @ = E j , 
0 = WQ, cû{t) = et (teEl) in [3], 1 and 2. Then the set A and the transformation 
^ -^ 7(/i)(^uG л) fulfil the condition Rl) of [3], 2. The obvious relation Я(—/) = 
= - Я ( / ) , 16, с) and 15,1) imply R2); 15, 3) implies R3); 16, a) implies R4) and 16, b) 
implies R5) ([3], 2). Hence by [3], 8 we can associate a mapping a(jLi, .) with each 
fie AAf pi = Я(/), we write a{ß, .) = a(/ , .). 

18. Suppose fe^. Then a[f, S) exists if and only if there is an Ae% such that 
the sum 

(11) s = y{fs,A) + X{f,S- A) 

is meaningful; in this case oif, S) = s. 

(This follows from (lO) and [3], 8.) 

19. Let a(^f, S) exist. Then f is measurable on S, /(x) e E^ for almost all x e S 
and there are А„еШ such that \A„\ -> 0, S' - A„eЩf) (n = 1, 2, . . . ) . 

Proof. Choose an Л e 21 such that the sum (11) has a meaning. By 15, 2) we 
have A e u{Щfs)); by [4], 2 there exist A„e'H such that A„ с A, |Л„| -^ 0, A - A^e 
e Щfs), Since S - A, = {S - A) и {S n{A - A„% we have S ~ An^ Щf\ Hence 
it follows t h a t / i s measurable on S and that/(x) e E^ almost everywhere on S. 

R e m a r k . The following assertions 2 0 - 2 7 follow easily from [3], sections 10, 11, 
17, 21, 15, 13, 9, 22 and 16. 

20. Suppose that f,g,he^. If s = a{f, S) + a{g, S) and if h{x) = f{x) + g{x) 
for almost all xe S, then a{h, S) = 5. 

21. Suppose that f, g E ^ , с E E^. If a(f, S) exists and if g{x) = с f{x) for almost 
all xe S, then a(g, S) = с a(f, S). 

22. / / Si cz S „ S,nS^= 0, then a{f, S, - S,) = (т(/, S^) - a{f, S^), 
(T(/, S3 u S4) = a[f, S3) + (T(/, S4), whenever the corresponding right-hand side 
has a meaning. 

23. If AE% and if a[f, S) exists, then a{f, S n A) exists. 

24. If A E'U, A cz S and if a[f, S) exists, then y(f. A) exists. 

25. If S, TE ^, fE^, then a(fs, T) = a(f, S n Т), whenever at least one side of 
this equality has a meaning. 

26. For each fE^, the mapping a{f, .) is an extension of both mappings 
Kf)^ y{f) ^^^ ^^ continuous with respect to the convergence ->• 
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27. If fe^, Ae%, then a[f. A) = 7( /M) whenever at least one side of this 
equality has a meaning. 

28. Let С be a biunique regular mapping of an open set G cz E^ into E^. If S 
is a bounded set such that S c: G and if S„ -> S, then С(6\) -> С{^)-

(This follows from [4], 9.) 

29. Theorem. Let С be a biunique regular mapping of an open set G a E^ into £^; 
let D be the functional determinant of С and let fe^. Put g{x) =/(C(x)) \D{x)\for 
all XEG with С (^ ' ) еВот / . Suppose that 5 cz G, T <=: G. Then the following 
assertions hold: 

ä) y{9> T) = y(/, C{T)), whenever at least one side of this equality has a meaning; 

b) i / % , S - T) and a{g, S) exist, then a{g, S) = a{f, C(-S)). 

Proof. Since y{g) = ßo{ß{g)), the assertion a) can be proved in a similar way as 
theorem 11 in [4] (with the help of this theorem and of lemma 28). Now let À{g,S - Т) 
and a(g, S) exist. Put jR = C{S) and g^x) = A(C(:^)) \D{X)\ for all x G G with C{x) e 
G Dom/jj . Clearly gs(x) = g%x) for all JC G G n Dom gg. According to 18 there is 
an Л G 3Ï such that S ~ Ae Щд). The set F = Л n Tis bounded and V a G; hence 
there is a compact SQt КеШ with V a К a G. On account of 23, a(g, S n K) exists 
and by 25 we have (г(д, S n К) = а{д^, К). From 19 and 21 (with с = 1) we obtain 
a{gs,K)=^a{g^K); by 27, а{д^,К) = у{д^К); by a), y{g^ К) = y{fj„i:{K)); 
by 27 and 25, y(fj,, С{К)) = (т(/, R n C{K)), Hence 

(12) a{g,SnK) = a(f,Rni:{K)). 

As S - К a {S - A) Kj{S - T), we have S - КеЩд); by 26 and by the trans­
formation theorem for the Lebesgue integral we get 

(13) ф , S~K) = 2{g, S~K) = Я(/, R - C(X)) = 4 / ' ^ " C(i^)) • 

The relations (12) and (13) imply b). 

30. In the rest of this paper, the symbol H denotes the outer (m — l)-dimensional 
Hausdorff measure in E^. The term ''vector" is used for a mapping into E^, The 
meaning of the expression "continuous vector" etc. is obvious. 

31. Suppose A G Ш. Let v, w be bounded Borel vectors on A such that Ï;(Z) = w(z) 
for H ~ almost all z e A. Then P[A, v) = P[A, w). 

Proof. Put V == [i^i,..., i^J, w = [wj , . . . , w j . It is easy to see that, with the 
notation of 7, 0j,(A, Vj,, x) = Фи{Л, Wj^, x) for almost all x G £ ^ - I ; hence Pk{A, Vj^ — 
= Pj,{A, Wj,) for к = 1, ..., m. By [ l ] , 15 we have Р(Л, v) = P{A, w). 

32. Suppose AE^, D с E^, H{D) = 0 and let t; be a bounded continuous vector 
on A — D. It is easy to see that there exists a bounded Borel vector w on Л such that 
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w(z) = v{z) for H — almost all ze A. According to 31 the number P{Ä, w) does not 

depend on the choice of w so that we can define P(Ä, V) = P{Ä, W). If v = [y^,..., t;J 
m 

and if ( 5] (y {х)УУ ^ с for X G Л — D, we can choose w in such a way that 
m 

( E {^'i{^)Yf ^ ^ f̂^ ^ach X G i ; then, by [1], 16, c), 

(14) |P(^t;) | = | P ( A w ) | ^ c M . 
33. Theorem. Let a D с E^, an АеШ and an open set G a E^be given such that 

00 

H{D) = Oand Ä - G = \JM„ with H{M„) < 00 (w = 1, 2, ...). Let V be a bounded 

continuous vector on (Л — D) u G; let f be a function on G such that Я(/, К) exists 
and is equal to P(K, v) for each cube К cz G. Then y[f, A) exists and is equal 
to P{A, v). 

Proof. According to [4], 21, there exist open sets l/„ such that D с [ /^GÎ[ . 

Il [/„Il -^ 0. Put A^ = À - U„. Then \\A - A„\\ = \\A n U„\\ and by 13 we have 
A„ -^ A. The relation Л„ c: Л — [/„ implies J"„ с Л — (7„ с Л - D. Let us denote 
by Ш the system of all Б G 21 with В a A - D.lî Be% then B-Gc:A--G = 

00 _ 

= и M„ and v is continuous on S u G. According to theorems 23 and 14 of [4], 

j5(/, B) exists and is equal to P{B, v). Since Л„ G Э1, we have A G Ucß,. Put ф(С) = 
= P(C, v) for each С e A%. The relation (14) implies easily that cp is continuous 
with respect to the convergence ->. Since cp and ß coincide on 9î n A%, it follows 
from [2], 21 that y{f, A) = ßo{ß{f). A) = (p{A) = P{A, v). 

34. Example 1. Put f{x, y) = x~^sinx~^ for x > 0, yeE^, Further define 
a„ = {{In + 1) n)-\ b, = {2nn)-\ T„ = {[x, y]; 0 < y < x < b j , A„ = 

2n 

= {[x, y]; a„< X < b„, 0 < y < a„}, S„ = \J A^. Obviously Ĵ ^̂  /(x, y) dx dy = 
k = n 

= a„(cos 2пл - cos {2n + 1) тг) = 2a„, \ A \ = 2b„, S„ a T„ с T^, \s\ < |Т„| = 

- ib«, IHnJI = f ||Л|| = 2 i % , = (1/7Г) f /c- ̂  -> (log 2)/7г, J,^/(x, y) dx dj; = k=n k=n k=n 
In 

= 2X «fc > 2 ^ bfc+i -> (log 2)1%. It follows that {Sj G ^ and that ß{f, T^) does 

not exist. But if we set in 33 G = {[^, J^]; x > 0}, v[x, y) = [cos x"" ,̂ 0], we see 
that y{f, r^) exists. 

Example 2. Write С = (0, l) x (0, 1) and /(x, y) = x~^ sin x~^ for [x, y] e С 
For г > 0 put further M, = {[x, y] G С; Дх, у) > 1/е}, Р, = (О, е) х (О, 1). Let us 
denote by 93 the system of all measurable sets F с E2 with lim \Vn M^\l& = 0. If 

BEЩf), then \B n M,]/e ^ Я(/, ß n M,) and so Б G Ж; thus we see thatWl{f) cz 53. 
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о Now suppose V„ G 33, V„-^V and put S„ = V - V„. By (8) and (6) we have 

and i F n M j < IV^nM^ 
Ô(2,P,)| . |ß(l, S„)| ^ e . i||S„||; since Ц̂ Ц̂ - . 0, F„ e 35 
+ |S„ n M,|, we have FG 33. This impHes и^Щ/)) с 

с üo33 = 33. As, evidently, С does not belong to 33, ßo{^{f). С) does not exist; but, 
according to [4], 27, ß{A{f), С) exists (and so y{f, C) = ßo{ß{Kf% ^) exists as 
well). 
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Резюме 

ОБ ОДНОМ ОБОБЩЕНИИ ИНТЕГРАЛА ЛЕБЕГА В Д„ 

я н МАРЖИК (Jan Marik) и ИРЖИ МАТЫСКА (Jiff Matyska), Прага 

Пусть / — функция, определенная в некоторой части пространства Е^, 
В статье вводится интеграл y{f, . ), который является расшиярением интегра­
ла ß{f, .) из статьи [4]. Далее вводится интеграл (т(/, .), который является одно­
временным расширением интеграла y{f, .) и интеграла Лебега от функции /. 
Отображение a[f. S) аддитивно по отношении к S я линейно по отношении к/. 
Пусть mil означает периметр ограниченного измеримого множества А а Е^, 
Если a(f, s) существует и если А„ а S (п =^ 1, 2, ...), ||Л„|| -> О, то a{f, А„) -^ 0. 
Если ö'(/, S) суш,ествует и если ||Л|| < оо, то a{f, S п А) суш,ествует тоже. При 
взаимно однозначном регулярном отображении а изменяется по известной 
формуле. 

Пусть, далее, Я — (m — 1)-мерная хаусдогфова мера в Е^. Пусть А — огра­
ниченное множество в Е,„ и пусть Н(А) < оо, где Ä — граница А; пусть v — огра­
ниченный вектор, непрерывный H — почти всюду на Л, для которого существу­
ют непрерывные частные производные первого порядка внугри множества А. 
Тогда существует у (div v. А) и равняется поверхностному интегралу вектора v 
через границу множества А. 
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