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YexocaoBaukuii MaTeMaTa4eckuii xkypuai, 1. 15 (90) 1965, ilpara

ON A GENERALIZATION OF THE LEBESGUE INTEGRAL IN E,

JAN MARIK and JIRi MATYSKA, Praha

(Received January 16, 1964)

A generalization y of the integral defined in [4] and a simultaneous
generalization o of y and of the Lebesgue integral are investigated. The
well-known transformation formula with respect to a biunique regular
mapping is proved for the integral ¢ and, with the help of yp, the Gauss’
theorem on the representation of a surface integral by means of a volume
integral is generalized.

1. Throughout this paper let m be an integer greater than 1. The meaning of the
symbols ]A|, |4, 4, 4°, 4, %, P{4,v), 3.9, Z,~>Z (Z,,Z€3), uR, RI, AR
(R, T = 3, 4€3), the operations in the ring 3 as well as the continuity and the
additivity of a mapping of a set ® < 3 into E, are defined in [4], section 1. Further

let P, be the system of all sequences {4,};% such that 4, € A (n = 1,2,...), |4, -
— 0. (We shall see that P, = P.)
2. Let u be a measure on a g-algebra &. Let f, ..., f, be non-negative measurable

functions on a set S €$; suppose that q; > 1 (i =1,..., n) and z 1/g; = 1. Then
i=1

{

n n 1/q:
(1) 1/, du = 11 (j I du) ,

n n 1/n
2 Tl dn = 1 q f. du) .
s i=1 i=1 s-

Proof. The relation (1) follows by induction from the Holder inequality. If we
setin (1) f}'" in place of f; and n in place of g;, we get (2).

3. Let u be a measure on a o-algebra &. Let f,, ..;,f,, (n > 1) be non-negative
measurable functions on a set S€S and let k be a finite non-negative number.
Then

(3) J‘min <K, fIfg“"“”) du £ <l€ﬁ Jf,- d,u>1/n.
s i=1 i1 )y
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Proof. The relation (3) is obvious if k = 0; we may therefore assume that « > 0.

Denote by L the left-hand side of (3). Then L = x [smin (1, []g}/“ V) du with
i=1

g; = k""" £, Since min (1, a’"" ) < min (1, a'") § a'/" for every a = 0, we

have by (2) L < x ‘SI_[ gi"du < K‘Iz-[l ([sg:dp)'’m = (x H [sfidu)t/m.

4. Let k, n be integers, 1 < k < n, n > 1. For x = [x, ..., x,] € E, put p(x) =
= [X1, oo Xpogs Xt 15 -0 X, ] For M < E,, y=[Vi,..0, yue1] € Ency, z€E,
let M" be the set of all 1€ E; such that [y, ..., Yx_ 15t Vs - » Vu—1] € M and let M
be the set of all x = [x,,...,x,_,] € E,_, such that [X;, ..., X4_1, 2, Xp» -.., X,y | €
€ M.

5. Let M be an open set in E, (n > 1). Then
M= < T pi(M)] - %)

Proof. The case n = 2 is obvious. Suppose therefore that n > 2 and that the
assertion holds for n — 1. We may assume that |p,(M)| < co. Clearly |M| =
- are open in E,_; and M. = p,(M). By induction hypo-

) = (P (M))n 1
fori=1,..,n— . Thus we get ]Mz! < min (x, ]—I(f(z))”(" 2)) with k = [p,(M)],

flz) = I(p (M)),, 1| Now the relations IElf(z) dz =|pM)| (i=1...,n~1)
and (3) (with n — 1 in place of n) imply our assertion.

= [&,

thesis, ]M’

6. Let M be a subset of E,,. Then
©) M=t < TT[pdM)] -

Proof. Write M; = p(M). If |Mi| = 0 for some i, then ]M] = 0 and (4) is valid.
Hence the inequality (4) holds if |[M;| = co for some i. Assume therefore that

[M | < oo and choose a number ¢ > 0. For every i there exists an open set U; <
:(; E, _ such that M; = U, and |U l IM,| + ¢. Denote by U7 the set of all x € E,,
with p(x) € U;; further put V = ﬂ UF, Vi = p(V). The set V is clearly open and
McV, V,CU (i=1, m) By5we have |M|"’1<|V|"‘1<HIV|

= IJIIU | < H (M| + P) whence (4) follows immediately.

*) See also [S].
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7. The meaning of the symbol || 4[|, for a bounded measurable set 4 < E,, and for
k =1, ..., mis defined by [1], 3. According to [1], 4 we have

8 el ) = 5l
Further put A, = {4; | 4[|, < oo}. Given a bounded Borel function f on the boundary

of a set A € U, we define P,(A4, f) as in [1], 14, remark 1. For C, D = E, we write
C~Dif |(C uD)—-(Cn D)| = 0. From [1], 33 and 20 we get immediately:

Given a set A€, there exists a subset K(k, A) of E,_ with the following
properties: ‘

1) lEm—l - K(k, A)l = 0;

2) for each x € K(k, A) there exist a non-negative integer r = ¢¥(x) and real
numbers a;, b; such that a;, < b, < ... < a, < b, and that A* ~_Lr) (a;, by);

3) 2, o) 05 = i -

4) if f is a bounded Borel function on the boundary of A and if we put

¢k(f’ Aa x) = AZI(f(xl’ cens Xp—15 bi7 Xks oe s xm—l) - f(xla cees Xp—1s a;, Xks oe ey xm—l))

for each x =[x, ..., x,,_] € K(k, A), then P{(A, f) = [, _, @[, 4, x) dx.

Now we can write Q(k, 4) = {x € K(k, A); ¢%(x) > 0}, Z(k, A) = {z€ 4; pz) e
€ O(k, A)}.

8. If Ae U, then
© 2ok, 4)| < 4]
(7) |4 — Z(k, 4)| = 0.

Proof. The relation (6) is an immediate consequence of 7, 3). The get
(4 — Z(k, A)); is empty for x € Q(k, A) and has measure zero for x € K(k, 4) —
— Q(k, A); hence (7) follows at once.

9. If Ac ¥, then
(8) Mﬁ”éﬂp%ﬂw

m

Proof. Write B =} Z(k, A). From (7) we obtain [Ai = [BI; clearly pk(B) -
k=1
< Q(k, A). Now we apply (4).
10. If A is a bounded measurable subset of E,,, then

) 2l < 1] -



Proof. If | A], = 0 for some k, then, by (6), |Q(k, 4)| = 0. In this case we have
obviously |Z(k, A)I = 0 and, by (7) IAI =0,s0 that (9) holds. Hence it follows that
(9) holds i (8) and (6).

11. We have P, = V.
(This follows from (5) and (9).)

12. Let My, M, be subsets of E; let M; have r; components (r; < o, i = 1,2).
Then the set M, — M, has at most ¥y + r, components.

Proof. It is easy to see that the assertion holds for r, = 1. Now we proceed by
induction.

13. If {4,} € Vo, A€ U, then {4, " A} €Dy, {4, — A} €Ds.

Proof. We use the notation of 7. Let k, n be natural numbers, k < m. Write
B=4, C=A4,— A, K=K(k, A)n K(k, B) n K(k, C) and choose an xe€K.
There exist numbers a; < by < ... <a, <b,(r = ¢%Xx)) such that the set

J 4 = U(a; b;) fulfils the condition J, ~ A%; let J5, J. have analogous meaning and
i=1

put J = Jy — J,. Clearly J ~ BY — 4* = C* and so J ~ J.. According to 12 the
set J has at most ¢(x) + ¢}(x) components and the number .of the components
of J is at most equal to that of J. Thus it is proved that @g(x) < ¢%(x) + @i(x).
For x € K — Q(k, B) evidently g(x) = 0.If we put Q, = Q(k, A,), we have therefore
4, — ], = 3]Cly = Jo, 05() dx = Jo, 05(x)dx + 0,059 dx = [g, ohx) dx +
+ 1| A,[|s- The relation |Q,| < 4|4, (see (6)) implies |Q,| — 0. Now it is easy to see
that |4, — A, » 0. Hence it follows by (5) that |4, — 4| — 0 and by [1], 35 we
have |4, n 4| < ||4,] + [|4, — 4] - 0.

14. We define a convergence % on the set 3 in the following way: P, 5p
means that P, = P (n = 1,2,...), {P — P,} €D,. According to 13 and [2], 4, the
convergence S, satisfies the conditions 1), 2) of [2], 3 (with A = %, Z = 3). The
closure of a set R = 3 with respect to this convergence is defined by [2], 1 and we
denote it by uyR. The continuity of a mapping of a set R < 3 into E, with respect

to the convergence 2, is defined in an obvious manner (see [2], 1). By 11, the relation
P, 5P implies P, — P; therefore uyR < uM for each R < 3. If a mapping of a set
R < Finto E, is continuous with respect to —, then it is continous with respect to e
as well.

Let ¥, be the set of all mappings ¥ with the following property: The domain of
definition, Dom y, of the mapping ¥ is a subring of 3, & Dom y = Dom ¥, ¥ is an ’
additive mapping into E; and is continuous with respect to the convergence. A4 .
Further let ¥ be the set of all mappings Y € ¥, continuous with respect to the
convergence —.
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With each i € ¥ let us associate a mapping f(¥) in the same way as in [2], 19 B was
associated with u. (We put, of course, Z = 3, 4 = U, & = E, and take the closure
and the continuity with respect to —.) By [2], 22 we have (/) € ¥. (See also [2], 24. )

Replacing in the foregoing consideration the convergence — by the convergence S
we obtain a transformation f, associating a mapping B,() with each y € ¥,,.

Now put () = Bo(B(¥)) for each y € ¥. (We have y(¥) € ¥,.) If A € Dom y(y),
we write (y(¢)) (4) = y(¥, 4); the symbols B(W, A), Bo(V/, A) have an obvious meaning.
Instead of “A € Dom y(y)” we shall usually write “y(y, A) exists” etc.

15. For each s € ¥ the following statements hold:

1) Dom B(¢), Dom y(¥) are ideals in U;

2) Dom B(y) = Dom y(y) = ug(Dom f(¥)) = u(Dom );

3) By, A) = Y(A) for each Ae U~ Domy and y(y, A) = B(y, A) for each
A e Dom B(¢). »

Proof. The statement 1) holds according to [2], 22. From [2], 19 we obtain
Dom B(y) = u(Dom ), Dom () = us(Dom B(y)), whence, by [2], 20, we get 2)
and 3).

16. a) Suppose that Y, Y1, Y, € ¥. Let s = y(Y;, A) + (Y5, A) and let (V) =
=y, (V) + y,(V) hold for each Ve AU n Dom y; n Dom y,. Then y(y, A) = s.

b) Suppose that y,y € ¥, c€ E;. Let y(y, A) exist and let y(V) = c (V) hold
for each Ve AU n Dom Y. Then y(y, A) = ¢ y(y, A).

¢) Ifye¥,ceEy, ¢+ 0, then Dom y(y) = Dom y(cy)).

Proof. By theorem 25 of [2] we have B(y, B) = B({y, B) + B(¥2, B) for
Be AY n Dom B(y;) n Dom B(,) and from the same theorem we get y(¥, 4) =
= Bo(B(Y), 4) = Bo(B(¥1), A) + Bo(B(¥5), A) = 5. Using theorems 26 and 29 of [2],

we can prove b) and c), respectively, in a similar way.

17. The meaning of the symbols &, A(f), M(f) is defined in [4], 1. Further let A
be the set of all mappings A(f) (f€ #). By [4], 1 and 5 we have A < ¥. Instead of
Y(A(f)) we write y(f). For A€ Domy(f) we put (y(f)) (4) = »(f, A); instead of
“A e Dom y(f)” we say “y(f, A) exists” etc. If we write B(f) = B(A(f)) (as in [4], 6),
then obviously y(f) = Bo(B(f))-

If o is a mapping of a set R = 3 and if Z € 3, we define mappings o, o by setting
a,(C) = &(C n Z) for every C with C n Z€ R and o}(C) = «(C — Z) for every C
with C — Z € R. (This is consistent with [3], 1.) If fe #, Ze 3 and if M = Dom f,
we put f4(x) = f(x) for xe Z n M, fAx) =0 for xeE, — Z (so that Dom f; =
= M v (E, — Z)). Ifeither (A(f)), (C) or Az, C) exists, then obviously (A(f)); (C) =
= Af, Z 0 C) = Afz, C); hence

(10) (A)z = Af2) -
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We see that p, e A for each ue A and for each Z e 3. Since u, = u, with V =
= E,—Z, we have u, € A too. Choose a ceE; andput Z=3, 4 =99, & = E,,
O = ¥,, oft) = ct (t€ E,) in [3], 1 and 2. Then the set A and the transformation
1 — y(u) (1 € A) fulfil the condition R1) of [3], 2. The obvious relation A(—f) =
= —A(f), 16, c¢) and 15, 1) imply R2); 15, 3) implies R3); 16, a) implies R4) and 16, b)
implies R5) ([3], 2). Hence by [3], 8 we can associate a mapping o(y, .) with each
pe A If u = A(f), we write o(p, .) = o(f, .).

18. Suppose f€ F. Then o(f, S) exists if and only if there is an A € U such that
the sum

(11) | s =Wfs A) + Af.S — 4)
is meaningful; in this case o(f, S) = s.

(This follows from (10) and [3], 8.)

19. Let o(f, S) exist. Then f is measurable on S, f(x)€ E, for almost all x€ S
and there are A,c U such that |A,,| >0,8 —A,eMf)(n=1,2,...).

Proof. Choose an A € U such that the sum (11) has a meaning. By 15, 2) we
have 4 € u(M(fs)); by [4], 2 there exist 4, € U such that 4, = 4, IA,,[ —-0,4— A,€
€ M(fs). Since S — A, = (S — A) U (S N (4 — 4,)), we have S — A, € M(f). Hence
it follows that f is measurable on S and that f(x) € E, almost everywhere on S.

Remark. The following assertions 20— 27 follow easily from [3], sections 10, 11,
17,21, 15, 13,9, 22 and 16.

20. Suppose that f,g,he Z. If s = o(f, S) + o(g, S) and if h(x) = f(x) + g(x)
for almost all x € S, then o(h, S) = s.

21. Suppose that f, g € 7, c € E,. If o(f, S) exists and if g(x) = ¢ f(x) for almost
all x€ S, then o(g, S) = c o(f, S).

22.If Sy =85 S;0 S, =0, then off, S, — Sy) = of, S2) — o(f, Sy1)s
o(f, S3 U S,) = o(f. Ss) + o(f, S,), whenever the corresponding right-hand side
has a meaning.

23. If Ae U and if o(f, S) exists, then o(f, S N A) exists.
24. If Ae U, A < S and if o(f, S) exists, then y(f, A) exists.

25. If S, Te 3, fe Z, then offs, T) = o(f, S 0 T), whenever at least one side of
this equality has a meaning.

26. For each fe %, the mapping o(f,.) is an extension of both mappings
A(f), y(f) and is continuous with respect to the convergence 3.
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27.If feF, A€, then o(f, A) = W(f, A) whenever at least one side of this
equality»has a meaning. -

28. Let { be a biunique regular mapping of an open set G < E,, into E,,. If S
is a bounded set such that S = G and if S, 5 S, then {(S,) 5 {(s).
(This follows from [4], 9.)

29. Theorem. Let { be a biunique regular mapping of an open set G < E,, into E,;
let D be the functional determinant of { and let f€ . Put g(x) = f({(x)) [D(x)'for
all xe G with {(x)€ Dom f. Suppose that S = G, T< G. Then the following
assertions hold:

a) y(g, T) = (. {(T)), whenever at least one side of this equality has a meaning:

b) if (g, S — T) and o(g, S) exist, then o(g, S) = o(f, {(S)).

Proof. Since 7(9) = Bo(B(9)), the assertion a) can be proved in a similar way as
theorem 11 in [4] (with the help of this theorem and of lemma 28). Now let A(g,S — T)
and o(g, S) exist. Put R = {(S) and g*(x) = fz({(x)) |D(x)| for all x € G with {(x) €
€ Dom fy. Clearly gg(x) = g*(x) for all xe G N Dom gg. According to 18 there is
an A € U such that S — A € M(g). The set ¥V = A n Tis bounded and ¥ = G; hence

there is a compact set K € % with ¥ = K < G. On account of 23, o(g, S n K) exists
and by 25 we have o(g, S n K) = o(gs, K). From 19 and 21 (with ¢ = 1) we obtain

o(gs, K) = o(g*, K); by 27, o(g*, K) = »(g* K); by a), y(g* K) = 1(fr {(K));
by 27 and 25, y(fr. {(K)) = o(f, R n {(K)). Hence
(12) o(9, S 0 K) = o(f, R n {(K)).
As S — K< (S—A)u(S—T), we have S — K € M(g); by 26 and by the trans-
formation theorem for the Lebesgue integral we get -
(13) o(9.S — K) = (g, S — K) = Af, R — {(K)) = o(f, R — {(K)).
The relations (12) and (13) imply b).
30. In the rest of this paper, the symbol H denotes the outer (m — 1)-dimensional

Hausdorff measure in E,,. The term “vector” is used for a mapping into E,,. The
m m
meaning of the expression “‘continuous vector” etc. is obvious.

31. Suppose A € U. Let v, w be bounded Borel vectors on A such that v(z) = w(z)
for H — almost all z € A. Then P(A, v) = P(A, w).

Proof. Put v = [vy, ..., 0], W = [Wy, ..., w,,]. It is easy to see that, with the
notation of 7, ®,(4, v, A) = (A4, w, x) for almost all x € E,,_; hence P,(4, vk) =
= PyA, w) for k = 1,...,m. By [1], 15 we have P(4, v) = P(4, w).

32. Suppose A€ U, D = E,, H(D) = 0 and let v be a bounded continuous vector
on A — D. It is easy to see that there exists a bounded Borel vector w on A4 such that
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w(z) = v(z) for H — almost all z € 4. According to 31 the number P(A4, w) does not
depend on the choice of w so that we can define P(4, v) = P(4, w). If v = [v,, ..., v,]

and if (Y (v(x))*)* < ¢ for xe 4 — D, we can choose w in such a way that
=1

(Y (w{x))*)* < cforeach x € 4; then, by [1], 16, c),

i=1

(19 ] = [P = el

33. Theorem. Let a D < E,,, an A€ U and an open set G < E,, be given such that
H(D)=0and 4 — G = UM, with HM,) < o (n = 1,2, ...). Let v be a bounded
n=1 .

continuous vector on (A — D) U G; let f be a function on G such that A(f, K) exists
and is equal to P(K,v) for each cube K = G Then y(f, A) exists and is equal
to P(A, v).

Proof. According to [4], 21, there exist open sets U, such that DcU, e,
|U.] »0. Put A4, =4 — U, Then |4 — A4, = [\AnU” and by 13 we have

A, % A. The relation A, A — U, implies 4, c A — U, = A — D. Let us denote
byé}tthesystemofallBeQIwithEc A—-D.IfBeR, then B—G<c 4 -G =

= U M, and v is continuous on B U G. According to theorems 23 and 14 of [4],

ﬂ( f, B) exists and is equal to P(B, v). Since 4,€ R, we have 4 € u,R. Put ¢(C) =
= P(C,v) for each Ce AYU. The relation (14) implies easily that ¢ is continuous

with respect to the convergence %, Since ¢ and p coincide on R N AY, it follows
from [2], 21 that y(f, 4) = Bo(B(f), A) = ¢(4) = P(4,v). -

34. Example 1. Put f(x, y) = x *sinx~' for x >0, y€E,;. Further define
a,=(@2n+1)n)~", b,=Q2nn)"Y, T,= {[x vy 0<y<x<b,}, A4,=

={[xy] au<x<b, 0<y<a,l, S-—UA,, Obviously [, f1 (xy)dxdy—
= a,(cos 2nn — cos (2n + 1) n) = 2a,, [|A [] = 2b,,, S, c T, c T, IS, <
=1b% S = 2 4] = 22 b, = (1/n)zk U o (log 2)/n, (s, f(x,y)dxdy =

= 22 a; > 22 bi+1 — (log 2)/n. Tt follows that {S,} €Y and that B(f, T;) does

not ex1st But 1f we set in 33 G = {[x, y]; x > 0}, v(x, y) = [cos x™*, 0], we see
that y(f, T}) exists.

Example 2. Write C = (0,1) x (0, 1) and f(x, y) = x 'sinx " for [x, y]e C.
For ¢ > 0 put further M, = {[x, y] € C; f(x, y) > 1/e}, P, = (0, ) x (0, 1). Let us
denote by B the system of all measurable sets V < E, with lim |Vn MeI/e =0.If

£>0+

BeM(f), then [B A M,|/e < A(f, B n M,) and so B € B; thus we see that M(f) = V.
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Now suppose V,€B, V, > V and put S, =V -7V, By (8) and (6) we have
IS, a M| < S, n P| <002, P). |0(1, S,)| < &. 4|S,];since ||S,| —» 0, V,e®B
and IVn MEI < {V,, nM,| + |S,, 1) M:I: we have Ve . This implies uo(M(f)) =
< uo®B = B. As, evidently, C does not belong to B, o(A(f), C) does not exist; but,
acco)rding to [4], 27, B(A(f), C) exists (and so y(f, C) = Bo(B(A(f)), C) exists as
well).
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Pe3wome

OB OIHOM OBOBUEHUU MHTEI'PAJIA JIEBETA B E,

SIH MAPXUK (Jan Maiik) 1 UPXXW MATBICKA (Jifi Matyska), Ipara

ITycts f — (QyHKUMS, ONpelesieHHas B HEKOTOPOM uacTu npoctpasctsa E,.
B cratbe BBoAuTCS MHTerpad y(f, .), KOTOPBIH SIBIAETCS PACIIMAPEHHEM HHTETpa-
na B(f, .) u3 crateu [4]. Hanee BBomuTCst MHTErpatt o( f, .), KOTOPBIi ABIISETCA OJIHO-
BpeMeHHBIM paciiipenriemM uuTerpana y(f, .) u unterpana JleGera ot dysxiuu f.
Oto6paxenue o(f, S) aIUTHBHO 10 OTHOLIEHUM K S M JIMHEHHO 110 OTHOLIEHUM K f.
Iycts | A| o3HauaeT nepumeTp OrpaHUuEHHOTO H3MEPUMOTO MHOXKeCTBA A < E,.
Ecrn o f, S) cywectsyer n ecmu 4, < S (n = 1,2,..), |A,|| = 0, 0 o(f, 4,) > 0.
Ecnn o f, S) cywectsyer u eciu ||A|| < 00, 10 o(f, S n A) cymectsyer Tose. Ipn
B3AUMHO OJHO3HAYHOM pETYJIAPHOM OTOODAXEHMU G M3MEHSETCS TO W3BECTHOMN
bopmye.

Iycts, nanee, H — (m — 1)-mepuas xaycaorgosa mepa B E,. Ilycts A — orpa-
HUYeHHOe MHOXeCTBO B E,, unycts H(A) < oo, rae A — rpanuna A; mycts v — orpa-
HUYEHHBIH BEKTOD, HENPEPBIBHBII H — TMOYTH BCIOAY Ha A, Ui KOTOPOTO CYILECTBY-
10T HEMPEPBIBHbIE YaCTHbIE TIPOU3BO/HBIE MEPBOTO MOPSAKA BHYIPU MHOKECTBA A.
Torma cymecrsyer y (div v, A) U paBHSETCA NOBEPXHOCTHOMY UHTErpally BeKTOpa v
Yepe3 TPaHMIly MHOXeCTBa A.
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