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A NON-ABSOLUTELY CONVERGENT INTEGRAL IN E,
AND THE THEOREM OF GAUSS

KAREL KARTAK and JAN MaARik, Praha

(Received January 16, 1964)

Let f be a function, defined on a subsét of E,,. By the method developed in
[21, an integral 3(f, A) which needn’t be absolutely convergent is defined on
aclass of sets A < E,. If 4is a bounded set with finite perimeter such that
the Lebesgue integral L = j'Af(x) dx converges, then (f, A) = L. Further,
a transformation theorem for the integral # and a theorem on the representa-
tion of a surface integral by means of the integral f§ are proved.

1. Throughout the paper, m denotes an integer >1, and E,, stands for the m-
dimensional Euclidean space. For natural k and A < E; let |A| denote the outer
Lebesgue measure of the set 4. (Of course, for a € E; the symbol lal has its usuval
meaning; there is no danger of misunderstanding.) Words e.g. “measurable”,
“almost everywhere” are related to the Lebesgue measure on E,,. The symbols 4, A°, A
denote the closure, the interior and the boundary of a set A < E,,, respectively.

Let B denote the system of all vectors v = [vy, ..., v,], where v; are polynomials
in m variables. For each bounded measurable subset 4 of E,, and each ve B, we
put P(4,v) = |, divu(x)dx; further, we define |A| = sup P(4,v), with ve®B

fulfilling ) (v,(x))> < 1 for each x € A. The letter U stands for the set of all A < E,,
i=1

such that [A4| < oo. For each continuous vector v on the boundary of 4 € %, we
define P(4, v) according to [1], 13 and 15.

Let 3 denote the system of all measurable subsets of the space E,,. For R, Se€ 3,
define RS=RnS, R+ S=(RuS)—(RnS) respectively; then 3 becomes
a Boolean ring (see [2], 2), with zero element equal to the empty set and E,, as unit
element. For R, T < 3, let RT denote the system of all RT = R n T, with ReNR,
Te T. If R consists of only one element R, we write L = RI.

According to [1], 35, we have '

. |

for arbitrary 4, B € 2. It follows that U is a subring of 3 (of course, there is no unit
element in %).

1 max([!A U B

An B, |4 - B]) < [4] + [B]
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Further, let P denote the set of all sequences {4,}", such that 4, U, sup |4,] <

n=1

< o, |4,] - 0. Evidently, {4,} €, 4 € ¥ implies |4, N 4| -0, |4, — A|"——> 0, and
by (1) we have sup |4, 4| < oo, sup |4, — A|| < wo; hence also {4, N A} e,

{4, — A} e).

Let us define a convergence — on the ring 3 in the following way: the symbol
Z,— ZmeansthatZ,c Z(n = 1,2,...)and {Z — Z,} €Y. From [2], 4 we infer that
the assumptions of [2], 3 will be fulfilled, when we put Z = 3, A = . The closure
of a set R = 3 is defined as in [2], 1, and denoted by u. The notion of a continuous
additive mapping of a set M < 3 into E, is defined in an evident way (see [2],
1 and 5, with @ = E,, of course).

The domain of definition of a map ¢ is denoted by Dom ¢. Let % be the system
of all realvalued functions f (+ oo not excluded) such that Dom f < E,,. To each
f€F we attach the set M(f) of all Z € 3 such that finite Lebesgue integral A(f, Z) =
= [, f(x) dx exists; instead of A(f, .) we shall write A(f). The system M(f) is clearly
an ideal in the ring 3.

2. Let R < 3. Let T denote the system of all Te 3 with the following property:
given any ¢ > 0, there exists ReNR such that R = T, IT— R| <e T—Rell
Then uR < I.

Proof. It is easy to see that R = T, uT = T.

3. Let ® = 3, TeuR. Then there exist R, € R such that R, = T (n = 1,2, ...),
T—- R, |T—UR,|=0.

(This follows immediately from 2.)

4. Let M cu(M(f)). Then f(x)€ E, for almost all xe M and f is measurable

on M.
(This follows immediately from 3.)

5. For each fe 7, Af) is a continuous additive mapping of the set M(f) into E,.

Proof. The additivity of A(f) is clear. Let now M eM(f), {4,} €Y, 4, = M.
As A,,I — 0, it follows from absolute continuity of the Lebesgue integral that
XAf, A,) = 0. The mapping / is therefore continuous (see [2], 6).

6. Definition. To each mapping A(f), there corresponds according to [2], 19 (we
put 4 = U, Z = 3,8 = E, p = J(f) there) a mapping fi; we put § = f(f), and for
each 4 € Dom B we shall write f(4) = B(f, A) (so that f(f) = p(f, .))- Of course,
Dom B(f) < u(M(f)). From [2], 22 it follows that Dom f(f) is an ideal in ¥ and
that the mapping B(f) is continuous and additive. Using notations of [2], 24, we
have, of course, (f) = B(A(f)). Instead of “A e Dom B(f)” we shall sometimes
write “B(f, A) exists”, etc. In this case 4 € u(M()), and from 4 we infer that f(x) e E,
for almost all x € A.
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Remark. Supposing 4 € Dom B(f) nM(f) we have B(f, A) = A(f, A) by [2],
20; hence, the mapping ﬁ(f) is a kind of improper integral of the function f.

7. Theorem. Let f, g, h€ F; suppose that the sum s = p(f, A) + (g, A) has
a meaning and h(x) = f(x) + g(x) for almost all x € A. Then s = f(h, A).

Proof. Clearly A(h, M) = A(f, M) + Ag, M) for each M < A such that the right-
hand side is meaningful. Now, we apply [2], 25.

8. Theorem. Let f, g € F, c € Ey; suppose that P(f, A) exists and that g(x) = ¢ f(x)
for almost all x € A. Then (g, A) = ¢ B(f, A).

(This follows immediately from [2], 26.)

9. Let { be a one-to-one regular mapping of an open set G < E,, into E,,. Let K
be compact, K < G. Then there exist c¢,, ¢, € E{ such that for each measurable
set S < K the relations |C(S)I < ¢,(S), [|E(S)] £ ¢a||S| hold.

Proof. For a matrix T with elements t, we put W(T) = (3 t5)*; vectors are
ik

considered as matrices with one column. Let M be the functional matrix of the
mapping {, N=M""'. Idet MI. There exist ¢y, ¢, € E; such that, for each x €K,
|det M(x)l < ¢; and ¥(N(x)) < c,. Let S be a measurable subset of K. From a well-
known theorem, we obtain |{(S)| = [ |det M(x)| dx < ¢,|S|. The inequality
[8(S)]| £ ¢,| S| is clear for ||S| = oo; suppose therefore S € U and let w be a conti-
nuous vector on the set {(G) such that v(w(y)) < 1 for each y € {(S). Putting v(x) =
= N(x) w({(x)), we have W(v(x)) < ¢, for each x€ S, and, according to [1], 50,
PE(S) w) = (5.0) = co]S]. whence [i(S)] < eols].

10. Let { be a one-to-one regular mapping of an open set G < E,, into E,,. Let S
be bounded, S = G, S, - S, Ac U, A = G. Then {(S,) - {(S), {(A) e U.
(This follows immediately from 9.)

11. Theorem. Let { be a one-to-one regular mapping of an open set G < E,,
into E,, and let fe F. Let D be the functional determinant of the mapping (.
Put g(x) = f({(x)) ID(x)Ifor each x such that the right-hand side is defined. Suppose
that A = G. Then (g, A) = B(f, {(A)) whenever at least one side of this equation
has a meaning.

Proof. I. Let (g, A) exist. First, we prove that {(A) e u(M(f)). There exists
a compact set K = U such that 4 = K = G. Let § denote the system of all S < E,,
such that {(S n K)eu(M(f)). For S,€F, S,— S, we have S,n K-> SnK so
that, according to 10, {(S, N K) = {(S n K). Hence S €§; thus, we see that uF = .
Supposing SeM(g) we have S KeM(g), too, and from the transformation
theorem for Lebesgue integrals we get A(g, S n K) = A(f, {(S n K)) so that
US nK)eM(f), SeF; this proves that M(g) = §. Hence it follows that Ae
eu(M(g)) = §, or {(A) € u(M(f)).
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As Dom f(g) is an ideal in %, B(g, S) exists for each S such that Se ¥, S < 4.
If Te{(A)Y, we have T ¢{(A) and, according to 10, {™'(T)e U. We see that
on {(A) ¥ we may define a mapping o(T) = B(g, {"*(T)); ¢ is continuous. If Te
€ (L(A) A) A M(f), then o(T) = X9, {(T)) = A(f, T); from the definition of the
mapping () we see that (£, (4)) = o(U(A)) = A(g. ).

1. Let B(f, {(A)) exist. Let D, be the functional determinant of the mapping {~*,
Put h(y) = g(C"'(y)) |D1(y)| for each y such that the right-hand side is meaningful.
Then, for each y € {(G) n Dom f, we have h(y) = f(»). |D(C*‘(y))| ID1(J’)| = f(»).
According to 4, almost all y € C(A) lie in Dom f, and Theorem 8 (with ¢ = 1) then
gives B(f, {(A)) = B(h, {(A)). If we put in I h,g,{(4)),(" instead of g.f, 4,
respectively, we get B(h, {(A4)) = B(g, 4), which completes the proof.

12. Let A€ U and let v be a continuous vector on A. For each C € AU put ¢(C) =
= P(C, v). Then the mapping ¢ is continuous.

Proof. Let {C,} €Y, UC, = 4, and v = [v;....,0,]. Choose ¢ > 0. There
exist polynomials wy, ..., w, such that |w/(x) — v{(x)| <& (i = 1,..., m) for each
x€A. Put w=[wy,...,w,], o, = sup ”C,,” (n=1,2,..), o, =sup ,div w(x)l
(x € A). According to [1],16, ¢ we have |o(C,)| < |P(C,, v — w)| + |A(divw, C,)| <
< o,em* + 6,|C,| so that ¢(C,) — 0. According to [1], 14, remark 2, ¢ is additive.
Hence (see [2], 6) our assertion easily follows.

13. Notation. 1) For each open set G < E,, let R(G) denote the system of all
A e U such that 4 = G.

2) We say that a function f is the integral divergence of a vector vonaset M < E,,
if the vector v is continuous on M and if P(K,v) = A(f, K) for each closed cube
K < M.

14. Theorem. Let G be an open set in E,, and let A € u(R(G)). Let v be a continuous
vector on A U G and let the function f be the integral divergence of v on G. Then

P(4,v) = B(f, A).

Proof. For each C € AY put ¢(C) = P(C, v). 1t follows from 12 that ¢ is conti-
nuous and, by [1], 24, we have ¢(C) = A(f, C) for each C € A¥ N R(G). Now it
follows from [2], 21 that B(f, A) = @(A) = P(A4, v).

Remark 1. There are several sufficient conditions for a function f to be the integral
divergence of a vector v = [Ul, ..., U,] on an open set G < E,. If, for example,
0v,/0x4, ..., Ov,/0x,, are continuous on G or if v,, ..., v, have a total differential in
each point x € G and if for each closed cube K = G the integral A (div v, K) exists,
we may put f = div v. (See also [3], Theorem 4, condition 1.)

Remark 2. In theorem 23 a sufficient condition for the validity of the relation
A € u(R(G)) will be given. '
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15. Let G, G, be open sets in E,, (a runs through an arbitrary index-set). For
each o let R(G,) = u(R(G)). Then also R(UG,) = u(R(G)).

Proof. Let AeR(UG,). 1t is easy to see that there exists & > 0 such that the
following holds: if K is a set with diameter <& such that K n 4 =+ @, then K lies

in G, for some o. Hence there exist closed cubes K, ..., K, such that 4 = {J K and,
j=1

J=
for each j, K lies in G, for some o. By assumption, 4 n K; € u(R(G)) forj = 1,..., n.
As the system R(G) contains the union of each pair of its elements, we see from [2],
12 (where we put P = Q = R(G)) that the system u(R(G)) has this property too.

Hence it follows immediately that A = U (4 n K) € u(R(G)).
i=1

16. Notation. Let N denote the system of all N< E,, with the following property:
(if G, G, are open sets in E,, such that G, — G = N, then R(G,) < u(R(G)).

17. Let G be an open set in E,; let Ac % and A — G € N. Then A € u(R(G)).

Proof. Put F= A4~ G, U=E, — F. If TeR(U), then AnTc AnTc
= (GuF)n(E, — F) = G, whence A R(U) = R(G). 1t follows from E,, — UeN
that R(E,,) = u(R(V)), and by [2], 10 we obtain Ae Au(R(V)) = u(4 R(V)) =
< u(R(G)).
18. Let N; be closed sets, N;e N (j = 1,2,...). Then Y N;eN.
ji=1
Proof. Let G, G| be open, G, — G < U N;. Let U be the maximal open set such
i=1
that R(U) = u(R(G)) (by 15, such U exists). Suppose that G; = U is false; we shall
arrive at a contradiction. Put F = G, — U. Hence, F is a non-empty G; — set in E,,.

9]

As U o G, we have F = G; — G = U N;. The Baire’s theorem implies that there
j=1

=
exist an index p and an open set V = G, such that® = V'n F =< F n N,; hence

) 0+ V-—UcN,eN.
Accordingly, R(V) = u(R(U)) = u(R(G)), and therefore V = U, a contradiction
with (2). This proves that G; < U so that ®(G,) = R(U) = u(R(G)); hence Y N; e N.
i=1

19. Let NeN, M < E,. Suppose there exists a sequence {U,} €Y such that
M =N U,. Then M u N €N
n=1

Proof. Let G, G, be open sets, G; — G = N u M; further, let 4 R(G,). Put
A,=A—U, Then 4, =« A—U, =G, — M, hence 4, -GG, —G—-M c
< N. According to 17 we have 4, € u(ER(G)) foralln. As4A — A, = U, n A, we have
A, — A so that A € u(R(G)). This proves this lemma.
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20. Notation. For each set M < E,,, the symbol H(M) will denote its outer (m — 1)-
dimensional Hausdorff measure.

21. Let x be the volume of the (m — 1)-dimensional sphere with diameter 1.
Let M be a bounded set in E,, H(M) < co. Then there exist open sets A, € U such
that M < A,, A,,” <2mk HM) +n"'(n=1,2,...), |4, > 0.

Proof. For each m-dimensional cube K, let h(K) denote the length of its edge. ‘
It is easy to see ([1], remark to Theorem 20) that |K°| = |K| = 2m(h(K))"~".
From the definition of H(M) it follows that there exist cubes K, (n, k=1,2,...)
with the following properties: K,, n M =% 0, h(K,,k) < n~! forall k, n, UK P D M,
K X(h(K,,k))'" ' < H(M) + «(2mn)~" for all n. Hence

(3) %”K"k” <2mk"'HM) +n"' (n=1,2,..).

Put 4, = UK},. According to [1], 37,
k
() ‘ 4] < Skl (=12,

= (K" S 7t K < e HOM) + 2n) )

— 0. Now, our assertion follows easily from (3) and (4).

Further |A

n

22. Let H(S < 0,& > 0. Then there exists a closed set F such that H(F) < H(S),
H(S - F) <
Proof. Let k denote the volume of the (m — 1)-dimensional sphere with diameter 1
and let d(R) be the diameter of R < E,,. There exist closed sets C,, such that UC,, =
k

oS, kY (d(Cy))" " < H(S) + n~' for all n and d(C,) < n~" for all k, n. It
%

is possible to choose 7, r,, ... such that Z Y (d(Cy))" "t < . Forp=1,2,...
n=1k=r,+1

define B, = n U C,: further, put B = U B, ﬂ U U C,. It is easy to see

n=pk=1 p=1n=pk=r,+1
that H(B,) < H(S) for each p, and H(Q) =0, S « Bu Q. There exists a p such
that H(B — B,) < ¢&: write F = B,. Then H(S — F) < H(S — B) + H(B — F) <.
23. Theorem. Let A€ U and let G be an open set in E,,. Suppose there exist M,
with HM,) < oo (n = 1,2,..) and A — G = UM,,. Then A € u(R(G)).
Proof. As it follows from 22, there exist c]osed sets F, such that H(F) < ©

(n=1,2,...) and }:H(M F)<o. Put S=4-G (= UM) T= UF,,

nl

Evidently, S — T < U(_M,, — F,) so that H(S — T) < 0. According to 21 and 19
n=1
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(where we put N = 9, M = F,) F, € 0N, and from 18 we get T N. Sections 21 and 19
(we put N=T, M =5 — T there) give SUT=Tu(S— T)eN, and all the
more S € N. Now apply 17.

24. Let A be a bounded set, Be U, A = B°. Then ”A - B“ < ”B”

Proof. Put A, =A—B, A,=AUB. As A, = A4 — B, A, = AU B, both
A,, A, are measurable; as 4, « A — B°, A° UB° < A,, we have 4, ¢ A — B° <
c A° < A° U B° < A3, and from [1],9, d) we infer that | A— B” < ”Al” + |4,
= 4> = 4] = |B].

Il

25. Let A be a bounded set. Let A, = A, A, €Y, IA — A,,I — 0. Then ||A[!
< lim inf |4,

IIA

Proof. Let vy, ..., v, be polynomials such that Y (v/(x))* = 1 for each x€ 4;
i1

put v = [v,...,9,]. From the assumption IA - A,,’ — 0 it follows easily that

P(A,, v) > P(4, v); as P(A,,v) < ||A,]|. we have |A4] = sup P(A, v) < lim inf ||4,]|.

nos o

26. Theorem. Let A be a bounded set such that its boundary A fulfils the relation
H(A) < 0. Then A€ .

Proof. According to 21 there exists a sequence {B,} € P such that 4 = Bj; put
A, = A — B,. From 24 we have sup |[4,] < oo; as 4 — 4, = B,, we conclude

that |A - A,,{ — 0. Now we apply 25.

27. Example. Let f; be a continuous function on (0, o) such that the integral
fo fi(t)dt converges non-absolutely. Put A = {[x;,...,x,]€E,; 0<x;<1
(i=1,...m)}, 6 = {[xy, ..., x,] € E,; x; >0}. Further, for x = [x,,...,x,]€G
put f(x) = fy(x,) and for x€ G put v(x) = [[3' f1(¢)dt, 0, ...,0]. It is clear that
X(f, A) does not exist; however, from Theorems 14 and 23 we infer that f(f, A)
exists.

Remark. Some results of this paper are contained in [4].
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Pe3omMme

HEABCOJIIOTHO CXOOSAMUNCSA UHTETPAJT
B E, 1 TEOPEMA T'AVCCA

KAPEJI KAPTAK (Karel Kartak) u IH MAPXUK (Jan Matik), Ilpara

Ilycts s xaxnporo A < E,, ,AI o0o3HavyaeT BHeUIHIOIO Mepy JleGera muoxe-
crBa A. ITycts A — cucrema Bcex OrpaHUYCHHBIX M3MEPHMBIX MHOXeCTB A < E,,
nepumerp |A| xotopsix xomeuen. Ilycth Temepp f — QyHKIWS, ONpeneIeHHAs
B HEKOTOPOIf yacTu mnpocrpaHcTsa E,. MeTonoM, M3M0JIb30BaHHBIM B pabote [2],
MOXHO IS HEKOTOPOTro KJIacca MHOXECTB ?B( f) ompenenuth uHTerpan f(f, s
KOTOpPBIA He HoJikeH cxomuTcs abconmoTHo. Ecim A € Y u unterpan JleGera L =
= [4f(x) dx cxomutcst, To B(f, A) = L. Cucrema B(f) susiercs umeanom B U.
Ecmu A€ B(f), A, = A, |4, =0, sup |[4,] <o (n=1,2,...), 10 B(f, 4,) > 0.
OroGpaxenue f(f. A) SIBJISIETCSI AJITUTUBHBIM OTHOCUTEIBLHO A U JIMHEWHBIM OTHO-
curesibHO f. JIjisi B3aWMHO OIJHO3HAYHBIX PErYJSIPHBIX OTOOpakeHMH HHTErpai fi
npeobpa3yeTcsi COOTBETCTBEHHO M3BecTHOI (opmyde. Ilycrs, manee, mist M < E,,
H(M) — mepa Xaycnopda paszmepHoct m — 1. Ilyctb A — orpanuyeHHas 9acthb E,,,
A —eé rpanuna, u G — oTkpbITOE MHOXeCTBO B E,,. ITycTs, nanee, H (A) < 00 U MYCTh
CYLLECTBYIOT Takue MHuokectBa M,, wto H(M,) < © (n=1,2,..), u 4 —G =

o
= U M,. TIpeanoioxuM, HaKoHell, YTO v — HEeNPEPBIBHBIA BEKTOP, ONPEIEICHHBII
n=1
Ha G U A, umeronmit Ha G HempepbIBHbIE YACTHBIE IIPOU3BOIHBIE TIEPBOTO MOPS/IKA.
Torma cyuectyset f3 (div v, A) U paBHsETCS OBEPXHOCTHOMY HHTEIPaily BEKTOpA v

4yepe3 rpanHully MHOXECTBa A.
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