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Чехословацкий математический журнал, т. 15 (90) 1965, Прага 

А NON-ABSOLUTELY CONVERGENT INTEGRAL IN Е^ 
AND THE THEOREM OF GAUSS 

KAREL KARTAK and JAN MARIK, Praha 

(Received January 16, 1964) 

Let / be a function, defined on a subset of £̂ ,„. By the method developed in 
[2], an integral ß(f. A) which needn't be absolutely convergent is defined on 
a class of sets A a E^. If Л is a bounded set with finite perimeter such that 
the Lebesgue integral L = ^^/(х) dx converges, then ß(f. A) = L. Further, 
a transformation theorem for the integral ß and a theorem on the representa­
tion of a surface integral by means of the integral ß are proved. 

1. Throughout the paper, m denotes an integer > 1 , and E^ stands for the m-
dimensional Eudidean space. For natural к and Ä a Ej, let \Ä\ denote the outer 
Lebesgue measure of the set Ä. (Of course, for a e E^ the symbol |a| has its usual 
meaning; there is no danger of misunderstanding.) Words e.g. "measurable", 
"almost everywhere" are related to the Lebesgue measure on E^. The symbols Л, Ä°, Ä 
denote the closure, the interior and the boundary of a set Л c: E^, respectively. 

Let S3 denote the system of all vectors v = [y^, ..., v^'], where Vi are polynomials 
in m variables. For each bounded measurable subset Ä of £^ and each Î; 6 53, we 
put P{A, v) = j ^ dÏY v{x) dx; further, we define \\A\\ = sup Р ( Л , f), with i; G S3 

m 

fulfilling YJ {^i{^)y = 1 for each XE A. The letter 21 stands for the set of all A с £,„ 
i = f 

such that IIЛII < со. For each continuous vector v on the boundary of Ae%, we 
define P{A, v) according to [1], 13 and 15. 

Let 5 denote the system of all measurable subsets of the space E^. For R, S e^^ 
define RS = R n S, R + S = {Ru S) — [R n S) respectively; then 3 becomes 
a Boolean ring (see [2], 2), with zero element equal to the empty set and E^ as unit 
element. For Sft, Z a J , let ШХ denote the system of all RT = R n T, with Re% 
T G X. If Ш consists of only one element R, we write ШХ = RX. 

According to [1], 35, we have 

(1) max {\\A u Б | | , \\A n В\\, \\A ~ 5||) й \\A\\ + \\В\\ 

for arbitrary Л, В e 21. It follows that 21 is a subring of 3 (of course, there is no unit 
element in Щ. 
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Further, let ^ denote the set of all sequences {A„}^^ ^ such that A„ G îf, sup ||Л„|| < 
n 

< 00, \A„\ -^ 0. Evidently, {A^} G^,Ae3l implies \A^ n Л | -> 0, \A„ - Л | -> 0, and 
by (I) we have sup \\A„ n A\\ < oo, sup ||Л„ — Л|| < со; hence also {A^ n A} e^, 

{A„-A}ef. 
Let us define a convergence -> on the ring 3 î i the following way: the symbol 

Z„ -> Z means that Z„ c: Z (/i = 1, 2, ...) and {Z — Z„} t V̂ From [2], 4 we infer that 
the assumptions of [2], 3 will be fulfilled, when we put Z = '^, A = 'H. The closure 
of a set Э1 c: 3 is defined as in [2], 1, and denoted by иШ. The notion of a continuous 
additive mapping of a set 5Ш c= ^ into E^ is defined in an evident way (see [2], 
1 and 5, with @ = E^, of course). 

The domain of definition of a map cp is denoted by Dom (p. Let ^ be the system 
of all realvalued functions / ( ± oo not excluded) such that D o m / cz E^. To each 
/ G . ^ we attach the set 9}?(/) of all Z e 3 such that finite Lebesgue integral /l(/, Z) = 
= j z/(-^) d^ exists; instead of Я(/, .) we shall write X[f). The system ?!)?(/) is clearly 
an ideal in the ring 3. 

2. Le? Э1 с: ^. Let % denote the system of all Те 3 vv/f/î the following property: 
given any e > 0, there exists R G Э1 5t/c/7 //70Г R a T, [Г— R| < г, J — RE%. 
Then urn cz X. 

Proof. It is easy to see that Ш cz X, uX = X. 

3. Let 3î с 3, ТеиШ. Then there exist К„ЕШ such that R„ c: T(n = 1, 2, . . . ) , 
T~R,E%,\T-[JRn\=0. 

(This follows immediately from 2.) 

4. Let MGU(SDÎ ( / ) ) . Then f[x)e E^ for almost all XGM and f is measurable 
on M. 

(This follows immediately from 3.) 

5. For eachfG^, Я(/) is a continuous additive mapping of the set^ffl(f) into E^. 

Proof. The additivity of A(/) is clear. Let now M eЩf), {A„}E^, A, cz M. 
As |Л„| -^ 0, it follows from absolute continuity of the Lebesgue integral that 
Я(/, A^) -^ 0. The mapping Я is therefore continuous (see [2], 6), 

6. Definition. To each mapping Я(/), there corresponds according to [2], 19 (we 
put A = % Z = % ® = El, fi = X{f) there) a mapping /?; we put ß = /?(/), and for 
each A E Dom ß we shall write ^5(Л) = ß{f, A) (so that ß{f) = /?(/, •))• ^ f course, 
Dom ß{f) с и(5Ш(/)). From [2], 22 it follows that Dom ß{f) is an ideal in %\ and 
that the mapping ß{f) is continuous and additive. Using notations of [2], 24, we 
have, of course, ß{f) = ß{X{f)). Instead of "A e Dom ßiff' we shall sometimes 
write "ß{f, A) exists", etc. In this case A E u{n{f% and from 4 we infer that /(x) G E^ 
for almost all XE A. 
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Remark . Supposing Ä e Dom ß{f) n Щ/) we have ß{f. A) = À{f, A) by [2], 
20; hence, the mapping ß(f) is a kind of improper integral of the function/. 

7. Theorem. Let f,g,hG^; suppose that the sum s = ß{f, À) + ß(g,A) has 
a meaning and h{x) = f{x) + g{x) for almost all XE A. Then s = ß(h, A). 

Proof. Clearly l(/z, M) = Я(/, М) + À{g, M) for each M a A such that the right-
hand side is meaningful. Now, we apply [2], 25. 

8. Theorem. Letf, g e^, ce E^; suppose that ß(f. A) exists ami that g(x) = cf{x) 

for almost all xe A. Then ß{g, A) = с ß(f, A). 

(This follows immediately from [2], 26.) 

9. Let С be a one-to-one regular mapping of an open set G a E^ into £„,. Let К 
he compact, К с G. Then there exist c^,C2eE^ such that for each measurable 
set S Œ Kthe relations |C(S)| й Ci(S), ||C(S)|| й C2\\S\\ hold. 

Proof. For a matrix T with elements t^, we put v(T) = (Xl^fO^^ vectors are 
i,k _ 

considered as matrices with one column. Let M be the functional matrix of the 
mapping C^ N = M~^ . |detM|. There exist c^, ^2 ^ ^ i such that, for each xeK, 
|det M ( X ) | < Cj and V[N(X)) < C2- Let 5 be a measurable subset of K. From a well-
known theorem, we obtain |C(S)[ = fs |det M(x)| dx ^ Ci|<S[. The inequality 
||C(S)|| ^ 2̂II-̂ 11 is clear for | |5|| = oo; suppose therefore 5 G 21 and let w be a conti­
nuous vector on the set ((G) such that v(w(>')) g 1 for each y e ((S). Putting v{x) = 
= N(x) w(C(x)), we have v(v(x)) g с2 for each xe S, and, according to [1], 50, 
P(C(S), w) = P{S, v) ^ C2\\Sl whence ||C(5)|| ^ с^Ц^Ц. 

10. Let С be a one-to-one regular mapping of an open set G cz E„, into E,„. Let S 
be bounded, S cz G, S„-^ S, Ae^l, Ä cz G. Then C{S„) -^ CiS), С(Л) e 21. 

(This follows immediately from 9.) 

11. Theorem. Let С be a one-to-one regular mapping of an open set G с Е„^ 
into E^, and let fe^. Let D be the functional determinant of the mapping C-
Put g{x) = /(((x)) |D(x)|/or each x such that the right-hand side is defined. Suppose 
that À с: G. Then ß{g. A) = ß[f, C{^)) whenever at least one side of this equation 
has a meaning. 

Proof. L Let ß{g,A) exist. First, we prove that C(^) G u(3l}?(/)). There exists 
a compact set К с 2t such that A cz К cz G. Let Щ denote the system of all S с £,„ 
such that C(5 П K) e u(m{f)). For S„e^, S„ -> S, we have S„ n К-^ S n К so 
that, according to 10, ((s^ n K) -> C{S n K). Hence Se%; thus, we see that ug = %. 
Supposing 5 G SK(ö') we have S n Ke Щд), too, and from the transformation 
theorem for Lebesgue integrals we get ?.{g, S 'n К) = Я(/, C(5 n K)) so that 
i:{S nK)eЩf), ЗеЩ; this proves that Щд) e g . Hence it follows that Ae 
еи{Щд)) cz^^or C{A)eu{Щf)), 
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As Dom ß{g) is an ideal in % ß{d, S) exists for each S such that SE% S с: A . 
If TeC{A)% we have T с C(^) ^^^^ according to 10, Г^Т)^^- We see that 
on C(^) ^ we may define a mapping (р(Т) = ß{g, Г\Т)); cp is continuous. If ТЕ 
G {C{A) 21) n 5Ш(/), then ф(Г) = Ko^ Г\Т)) = A(/, T); from the definition of the 
mapping ß{f) we see that ß{f, С{Л)) = (р{С{Л)) = ß{g, А), 

П. Let ß(f, C(^)) exist. Let D^ be the functional determinant of the mapping (~i . 
Put h(y) = g(C~\y)) \D^[y)\ for each у such that the right-hand side is meaningful. 
Then, for each у G CiG) n D o m / , we have h{y) = f{y\ \В{Г\у))\ \В,{у)\ = f{y). 
According to 4, almost all у G t,{A) lie in D o m / , and Theorem 8 (with с = 1) then 
gives ß{fЛ{A)) = ß{K^{A)). If we put in I КдЛ{А))Л~^ instead of gJ^A^ 
respectively, we get ß{h, Ç,{A)) = ß{g. A), which completes the proof. 

12. Let AG% and let v he a continuous vector on A, For each С G A % put (p(C) = 
= P{C, v\ Then the mapping cp is continuous^ 

Proof. Let { C „ } G ^ , [JC„ CZ A, and v = [v^, . . . , z ; J . Choose г > 0. There 
exist polynomials w^, ..., w^ such that |w^(x) — Vi(x)\ < г (f = 1, . . . , m) for each 
xG A.. Put w = [wi , . . . , w j , (Ti = sup ||C„|| (n = 1, 2, . . . ) , 0-2 = sup |div w(x)| 
(x G Л). According to [1], 16, с we have \(p{C„)\ ^ |P(C„, г; - w)\ + |A(div w, C„)| ^ 
^ a^sm^ + (T2|C„[ so that ф(С„) -> 0. According to [1], 14, remark 2, (p is additive. 
Hence (see [2], 6) our assertion easily follows. 

13. Notation. 1) For each open set G с E^, let 9l(G) denote the system of all 
AG^ such that Л с G. 

2) We say that a function/is the integral divergence of a vector г; on a set M с: E^^, 
if the vector v is continuous on M and if P{K, v) = Я(/, К) for each closed cube 
К a M. 

14. Theorem. Le^ G he an open set in E^ and let A G U(91(G)). Let v be a continuous 
vector on A и G and let the function f be the integral divergence of v on G. Then 
P{A,v) = ß{f,A). 

Proof. For each С G A% put (p{C) = P{C, v). It follows from 12 that cp is conti­
nuous and, by [1], 24, we have cp{C) = Я(/, С) for each С G А'й n 3fl(G). Now it 
follows from [2], 21 that ß{f. A) = (p{A) = P{A, v). 

R e m a r k 1. There are several sufficient conditions for a function/to be the integral 
divergence of a vector v == \yi, ..., г;J on an open set G с E^. If, for example, 
dvijèxi,..., dvjdx„, are continuous on G or if v^, ..., i;̂  have a total differential in 
each point XG G and if for each closed cube К a G the integral À (div v, K) exists, 
we may p u t / = div v. (See also [3], Theorem 4, condition 1.) 

R e m a r k 2. In theorem 23 a sufficient condition for the validity of the relation 
A G u(ß{G)) will be given. 
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15. Let G, G^ be open sets in E^ (a runs through an arbitrary index-set). For 
each a let Ж{0^ с: u(gt(G)). Then also Щ{)0,) с u(Sft(G)). 

Proof . Let A G 3l(U^a)-It is easy to see that there exists г > 0 such that the 
following holds: if X is a set with diameter <8 such that X n Л Ф 0, then X lies 

n 

in G^ for some a. Hence there exist closed cubes X^, ..., X„ such that Ä a \J Kj and, 

for each j , Xj lies in G^ for some a. By assumption, A n KJE u(9l(G)) for j = 1, ..., n. 
As the system 9v(G) contains the union of each pair of its elements, we see from [2], 
12 (where we put P = Q = ?R(G)) that the system u(Sfl(G)) has this property too. 

n 

Hence it follows immediately that A = \J (Л n Kj) e u(SR(G)). 
j = i 

16. Notation. Let 91 denote the system of all iV с £^ with the following property : 
, if G, Gl are open sets in E,„ such that G^^ - G a N, then 3ft(Gi) с u(afl(G)). 

17. Let G be an open set in E^; let A e 41 and Я - G G 51. Then A e u(9l(G)). 

Proof. Put F - Л - G, и = E,^- F. If ГеЭ1((7), then Z 7 7 T с Äc^Tcz 
cz{Gu F)n {E^ - F) с G, whence A Щи) a 3fl(G). It follows from E^ - UеШ 
that ЩЕ^) С и{Щи)), and by [2], 10 we obtain AGA и{Ш{и)) с u{A Щи)) a 
c:u{m{G)). 

00 

18. Let Nj be closed sets, Nj e 91 (j = 1, 2, . . . ) . Then \J Nj e Dl. 
00 

Proof. Let G, G^ be open, G^ — G c= (J Л̂ .̂. Let U be the maximal open set such 

that Ш(и) с u(3fl(G)) (by 15, such U exists). Suppose that G^ cz U is false; we shall 
arrive at a contradiction. Put F = Gi — U. Hence, F is a non-empty Ĝ  — set in E^. 

00 

As (7 =3 G, we have F a G^ — G cz \J Nj. The Baire's theorem implies that there 

exist an index p and an open set V a Gj such that 0 Ф V n F a F n Npi hence 

(2) 0 Ф F - [/ с AT^egi. 
Accordingly, ЩУ) с u(gt((7)) с Ü(3\(G)), and therefore V a U, â contradiction 

00 

with (2). This proves that G^ a Uso that ЩG^) cz Ш{и) с u(3l(G)); hence U Nj e 91. 
j = i 

19. Let N Е^Я, M cz £^. Suppose there exists a sequence {U„}e^ such that 
00 

M cz f)Ul Then M u iV G 91. 
n = l 

Proof. Let G, Gl be open sets, G^ - G cz N ^ M; further, let Л Ggi(Gi). Put 
A„ = A - L/„. Then Л„ cz Л - l/° cz Gi - M, hence Л „ - G c : G l ^ - G - M c z 
cz N. According to 17 we have A„ e u(ß{Gyj for all n. As Л — A„ = U„ n Л, we have 
Л„ -> Л so that A G u(3fl(G)). This proves this lemma. 
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20. Notation. For each set M cz £,„, the symbol Н(М) will denote its outer (m — 1)-
dimensional Hausdorff measure. 

21. Let к be the volume of the (m — lydimensional sphere with diameter 1. 
Let M be a bounded set in £,„, Я(М) < oo. Then there exist open sets A„ e 21 such 
that M cz Л„, \\A„\\ S 2тк~1Н{М) + n~^ {n = 1, 2, . . . ) , Щ -^ 0. 

Proof. For each m-dimensional cube K, let h{K) denote the length of its edge. 
It is easy to see ([1], remark to Theorem 20) that ||X°|| = \\К\\ = 2m(/i(i^)y""^ 
From the definition of Н(М) it follows that there exist cubes K„,^ (/i, k = 1, 2, ...) 
with the following properties: K„j, n M ф 0, h(K,,j,) < n"^ for all k, n, U-̂ n/c ^ ^^ 
^YiK^ni)T~' < НЩ + <2mn)-^ for all n. Hence 

(3) Л\\Кпк\\ < 2шк:"^ Н{М) + П-' {n = 1, 2, ...) . 

Put A„ = UKk- According to [ l ] , 37, 
к 

(4) ' 11л| ̂ i;i^^„.i (« = 1,2,...). 
it 

Further \A„\ й ЛКК„,)Г g n''};^{h{K„,))"^'^ < n-'C^'' ^^(М) + {2mn)'') -. 
к к 

-> 0. Now, our assertion follows easily from (3) and (4). 
22. Let H[S) < 00, e > 0. Then there exists a closed set F such that H(F) ^ Я(5), 

H{S - F) < e. 
Proof. Let к denote the volume of the (m ~ l)-dimensional sphere with diameter 1 

and let d(R) be the diameter of К cz E,„. There exist closed sets С„̂  such that []С„^ ZD 
к 

ZD S, KYid{C^k)T-' < H(S) + n-^ for all n and d{C,,) < n~' for all /c, n. It 
CO GO 

is possible to choose r^, Г2, ... such that ^ ^ (̂ (С„;̂ )У" ^ < oo. For p = 1,2,. . . 
/ 1 = 1 / < = j - n + 1 

CO r „ 00 00 00 CO 

define Bp = П и Q^; further, put В = {J B^.Q = f) (J (J С,,̂ . It is easy to see 

that Я(В^,) й H{S) for each j9, and H{Q) = 0, 5 cz J5 u g . There exists a /7 such 
that Я(Б - Bp) < s; write F = В p. Then Я(5 ~ F) й H{S - В) + Н{В - F) < s. 

23. Theorem. Let Л G 21 anJ let G be an open set in £,„. Suppose there exist M„ 
00 with H{M„) < 00 (/Î - 1, 2, ...) and Ä - G = (J M„. T/ze« A E U(3Î(G)). 

и = 1 

Proof. As it follows from 22, there exist closed sets F„ such that H(F„) < 00 
00 CO 00 

(n = 1, 2, ...) and j ; Я ( М , - F„) < 00. Put S = Ä - G ( = U М„), Г = {J^n-
/ 1 = 1 « = 1 /J = 1 

со 

Evidently, S - Т а \J (М„ - F„) so that Я(5 - Т) < oo. According to 21 and 19 
/ j = 1 
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(where we put iV = 0, M = F„) F„ G 91, and from 18 we get Те Ш, Sections 21 and 19 
(we put N = Z M = S ~ T there) give S u 7 = T u (S - T) G9I , and all the 
more S e 51. Now apply 17. 

24. Let Abe a bounded set, ВеШ, A Œ B°. Then \\A - В\\ ^ ||ß||. 

Proof. Put Ai = A - B, A2 = A и В. As A^ = A ~ B, A2 = A и B, both 
A^, A2 are measurable; as A^ cz Я — Б°, Л"" u Б° cz A2, we have Ä^ a A ~ B° с 
c= У1^ с v4° u Б° cz ^2 , and from [1],9, d) we infer that \Л - В\ й \A^\\ + ЦЛЗЦ = 
= \\A2 - A^\ = ||ß||. 

25. Let A be a bounded set. Let A^ a A, A^G%, \A - /l„j -> 0. Then | |Л| ^ 
^ lim inf ||^„||. 

Л - » CO 
m 

Proof. Let b\, ...,v„, be polynomials such that Y.{vi{x)Y = 1 for each x e A; 
i= 1 

put V = [г | , . . . , i ; J . From the assumption \A — У1„| -» 0 it follows easily that 
P(A,„ v) -> F{A, v); as Р(Л„, i ; ) ^ | | ^ J , we have \\A\\ = sup P{A, v) ^ hm inf ||Л„||. 

26. Theorem. Let A be a bounded set such that its boundary A fulfils the relation 
H{Ä) < 00. Then AG %. 

Proof. According to 21 there exists a sequence {J5„} G^ such that Ä с B^; put 
A,j = A — B„. From 24 we have sup ||Л„| < 00; as Л — A„ с Б„, we conclude 

n 

that \A — A„\ -^ 0. Now we apply 25. 

27. Example . Let /^ be a continuous function on (0, 00) such that the integral 
J o / i ( 0 ^ ^ converges non-absolutely. Put A = {[x^, . . . , х ^ ] б £ ^ ; 0 < x,- < 1 
(/ = 1, . . . , m)}, G = {[xi, ..., x„,] G £,„; x^ > 0}. Further, for x = [x^, ..., x J G G 
put / (x) =/ i . (xi) and for X G G put v{x) = [fo'/i(r) d ,̂ 0, . . . , 0 ] . It is clear that 
Я(/, л) does not exist; however, from Theorems 14 and 23 we infer that ß{f, A) 
exists. 

Remark . Some results of this paper are contained in [4]. 

References 

[1] / . Мшчк: The surface integral, Czech. Math. J., 6 (81), 1956, 522—558. 
[2] / . Holec, J. Mafik: Continuous additive mappings, Czech. Math. J., 15 (90), 1965, 237—243. 
[3] / . Marik: Заметка к теории поверхностного интеграла. Чех. Мат. Ж., 6 (81), 1956, 

387—400. 
[4] ./. Marik: Uneigentliche mehrfache Integrale, Wiss. Z. Humboldt-Univ. Berlin, Math.-nat. 

R. X(1961), 413—414. 

259 



Резюме 

НЕАБСОЛЮТНО СХОДЯЩИЙСЯ ИНТЕГРАЛ 
В Е^И ТЕОРЕМА ГАУССА 

КАРЕЛ КАРТАК (Karel Kartâk) и ЯН МАРЖИК (Jan Marik), Прага 

Пусть для каждого А cz Е,^ \л\ обозначает внешнюю меру Лебега множе­
ства А. Пусть 21 — система всех ограниченных измеримых множеств А а Ещ^ 
периметр ||Л|| которых конечен. Пусть теперь /-—функция, определенная 
в некоторой части пространства Е^. Методом, изпользованным в работе [2], 
можно для некоторого класса множеств 95(/) определить интеграл ß{f, . ), 
который не должен сходится абсолютно. Если Л е 2t и интеграл Лебега L = 
= f^/(^) à^ сходится, то ß{f, Ä) == L. Система 95(/) является идеалом в 21. 
Если А е 25(/), А, а А, Щ -> О, sup ||Л|| < о) (п = 1, 2,...), то ß{f. А,) -> 0. 
Отображение ß(f. А) является аддитивным относительно А и линейным отно­
сительно /. Для взаимно однозначных регулярных отображений интеграл ß 
преобразуется соответственно известной формуле. Пусть, далее, для M а Е^^ 
Н{М) — мера Хаусдорфа размерности т — 1. Пусть А —- ограниченная часть Е^, 
Л — её граница, и G — открытое множество в Е^. Пусть, далее, H{Ä) < оо и пусть 
суцдествуют такие множества М„, что Н{М-^ < оо (п = 1, 2, ...), и Л — G = 

00 

= и М„. Предположим, наконец, что v —непрерывный вектор, определенный 

на G U л, имеющий на G непрерывные частные производные первого порядка. 
Тогда сущестувет ß (div ь\ А) и равняется поверхностному интегралу вектора v 
через границу множества А. 
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