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CONTINUOUS ADDITIVE MAPPINGS

JArROSLAV HoOLEC and JAN MARiK, Praha
(Received January 16, 1964)

Let Z be a Boolean ring and & an Abelian group. Suppose that a con-
vergence on Z and a convergence on & with certain properties are given and
let 1 be a continuous additive mapping of a suitable set M < Z into &. We
construct a set B, contained in the closure of M, and a continuous additive
mapping B of B into & that coincides with # on B N M. The results enable
us in a further paper to extend the mapping u.

1. Let M, N be non-empty sets. A mapping of N into M will sometimes be denoted
by the symbol {x,},.y or simply {x,}, where x, is the image of » in the mapping under
study. Let 8 be the set of all mappings of N into M and let a subset & of the Cartesian
product B x M be given. Instead of [{x,}, x] € & we usually write x, — x; the
set & is called a convergence (with support N). In the sequel, we often define directly
the meaning of the symbol x, — x; the corresponding set & is then, of course, the set
of all pairs [{x,}. x] such that x, — x.

A set F = M is called closed (with respect to the given convergence), if the
implication (x, € F, x, — x) = (x € F) is valid. It is easy to see that the intersection
of an arbitrary class of closed sets is closed and that the set M is closed. For each
P = M there exists, therefore, the smallest closed set, containing P; this set will be
denoted by uP. Evidently, a set Q is closed if and only if Q = uQ.

Let R be a further non-empty set and let §* be a convergence on R with support N.
For [{r,},en, 7] € 8* we shall write r, — r again; there is no danger of misunderstan-
ding. If ¢ is a mapping of a set P = M into R such that the relations x,€ P (neN),
x € P, x, — x imply ¢(x,) = ¢(x), we say that ¢ is continuous (with respect to the
given convergences).

2. An algebraical ring Y is called a Boolean ring, if yy = y for each y e Y. (We
don’t suppose that Y has a unit.) The zero of ¥ will be denoted by 0.

Let Y be a Boolean ring. If x,y€ Y, we have x +y =(x + y)(x + y) =
x4+ xy + yx +y so that xy + yx = 0; if we put y =x, we get x + x = 0.
At the same time we see that xy = yx; the ring Y is therefore commutative.

For x,ye Ywe put xvy=x+y+ xy. If P, Q < Y, we denote by P + Q
the set of all x 4+ y, where x € P, y € Q; in a similar way we define PQ, P v Q. If P
consists of only one element x, we write P + Q = x + Q etc.
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The union, the intersection and the difference of sets S, V will be denoted by S U V,
S nVand S — Vrespectively. If P, Q, R < Y, we write PQ n R = (PQ) n R.

Remark. Let X be a ring of sets (i.e. a non-empty class of sets that contains with
every pair of its elements their union and difference). If we put x + y = (x — y) U
Uy —x)xy =xny(=x—(x - y)forx, ye X, wesee easily that X is a Boolean
ring. Clearly x Uy = x v y,x — y = x + xy and we have x < y if and only if
Xy = X.

3. In the whole paper, Z is a Boolean ring, A4 is its subring and a convergence on Z
with support N is defined such that the following conditions are fulfilled:

1) If x, — x, then xx, = x,, x + x,€ A (n€N).

2) If x, » x,a€ A, z€ Z, xz = 0, then ax, — ax, x, + ax, > X + ax, x, + z —
- X + z. i '

The next assertion shows how such a convergence can be defined.

4. Let Y be a Boolean ring and let N be a non-empty set. Let B < Y and let V) be
a set whose elements are mappings of N into B. Suppose that {bb,} €Y, {b, + bb,} €
€Y for each {b,} € and each b e B. Define a convergence on Y in the following
way: The relation x, — x means that

M xx, = %, (NEN), fx + 5} e,
Then by, — by, y, + by, > y + by, y, + z > y + z, whenever
® ya—y, beB, zeY, yz=0.

Proof. Let (2) hold. Plainly (y + by)(y, + by,) = y. + by,; since y + by +
+ Yy + by, =y +y,+ by + y,), we have {y + by + y, + by,} €Y so that
Yo + by, = y + by. The relations by, — by, y, +z —y + z can be proved
similarly.

5. Throughout the paper, & is an Abelian group (its zero will be denoted by 0
again) and a convergence on & with support N is defined such that the following
implications hold:

3) (d"—)d, ﬂnéﬂ):(an - Bn_’a - ﬂ)a

4 (o~ % 3 = 0 (neN) = o = 0.

Ifan—’d’ ﬁn"’ﬁ» then an"'ﬁn:fxn—((ﬁn_ﬁn)_/}n)_’a—(o_—ﬁ)za+ﬂ'
If @, ¥ are continuous mappings of a set Q < Z into &, then the mappings ¢ + ¥,
@ — Y are continuous as well.

A mapping ¢ of a set Q = Z into & fulfilling the relation

(3) (x€Q, yeQ x +y€Q, xy =0)=(o(x + ) = o(x) + o(y))

is called additive.

238



6. Let all assumptions of 4. (and 5.) be valid and let the convergence on ® fulfil
the condition

(¢, =a(neN)) = (a, > a).

Suppose, further, that Q < Y, Q + Q < Q and let ¢ be an additive mapping
of Q into & such that the relations y € Q, {h,} €%, h,€ Q, yh, = h, (n€ N) imply
¢(h,) = 0. Then ¢ is continuous.

Proof. Assume that y,€Q, yeQ, y, — y and put h, = y, + y. Then {h,} €Y,
h,€Q, yh, = h,, so that by hypothesis ¢(h,) — 0. Since y,h, =y, + y, =0,
Vu + h, =y, we have ¢(y) = ¢(y,) + ¢(h,), whence ¢(y,) = @(y).

Remark. In the papers [1] and [2], Z is the class of all measurable sets and A4 is
the class of all bounded sets with finite perimeter in the r-dimensional Euclidean
space; & is the additive group of all real numbers. (Of course, ab is the intersection
anbanda + b the symmetrical difference (a — b) U (b — a) of sets a, b € Z.) The
convergence on & is defined in the usual way; the convergence on Z is defined in
two different manners.

7. If x,> x€Z,ac A, then x, v a > X V a.

Proof. Put y, = x,, + ax,, y = x + ax. Then y, » y, ay = 0, so that x, v a =
=y, ta—->y+a=xVa.

8. The sets A, Z — A are closed.

(The proof may be left to the reader.)

9. For each P = Z we have A nuP = u(A n P).

Proof. Put F = (Z — A) Uu(A n P) and suppose that x, e F, x, » x. If xe
€ Z — A, then, clearly, xe F; if x€ A4, then x, = x + (x + x,,) € A, whence x, €
c€u(4 N P),xeu(A n P),xeF. Wesee thatuF = F. Since P = F, we haveuP < F;
therefore A NuP < AN F < u(A n P). Evidently u(4 n P) = uA nuP so that,
by 8,u(A N P) = A nuP.

10. If P = A, Q = Z, then PuQ < u(PQ), P v uQ < u(P v Q).

Proof. Choose an x € P and construct the set F of all y with xy € u(PQ). Evidently
Q c F.If y,eF, y, - y, we have xy, € u(PQ), xy, - xy € u(PQ), whence y € F. It
follows thatuQ < uF = F, PuQ < u(PQ). The assertion 7 yields similarly the second
inclusion.

11. If a€ A, aP < P < Z, then aA nuP < u(aA n P).

Proof. Put @ = A A P and choose an x € ad N uP. We have x€ A nuP = u(Q
(see 9), whence x = ax e auQ < u(aQ) (see 10); clearly aQ = a4 N P.

12. If P, Q < 4, then uP uQ < u(PQ), uP v uQ < u(P v Q).
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Proof. Put @, = uQ. From 10 we infer that PQ, < u(PQ), whence u(PQ,) =
< u(PQ); according to 8 we get Q; < A and so, by 10, @, uP < u(Q,P). It follows
that uP uQ < u(PQ). The second inclusion can be proved similarly.

13. Suppose that P,Q < Z, P+ Pc P, PQ < Q = P and that y, + y,€Q
whenever y1, y2€ Q, y1y, = 0. Then Q + Q < Q.

Proof. Let x;, x, € Q; put y; = x; + x;X,. Then x;x,€ PQ c P, y,€P, y, =
=xy,€PC = Q,yy, =0andso x; + x, =y, + y,€0.

14. If D is an ideal in A, then uD is an ideal in A as well.

Proof. By 8 we have uD = 4 and from 10 we get AuD < u(4AD) < uD. If
Y1, y2 €UD, y1y; =0, then, by 12, y; + y, = y; v y,€u(D v D) < uD and on
account of 13 (where we put P = 4, Q = uD) we obtain uD + uD < uD.

15. Let Q,R = Z, Q < uR. Let the relations x€ Q, yeuR, x + y€ 4, Xy =y
imply that y € Q and let @ be such a continuous mapping of Q into & that qo(x) =0
for each x€ Q N R. Then ¢(x) = 0 for each x € Q.

Proof. Put T = {teQ; ¢(t) =0}, F = Tu (uR — Q). Suppose that x,€F,
x, = x. If xe Z — Q, then evidently x euR — Q < F. Let now x € Q. Since x, €uR,
X + x,€ A4, xx, = x,, we have, by assumption, x, € Q, whence x,e T, ¢(x,) = 0,
o(x,) = ¢(x) and so ¢(x) = 0, xe T < F. Thus we get uF = F. FromQnR < T
we deduce that R = F; as Q < uR, we obtain Q < F and, consequently, Q < T.

16. Suppose that R,C =« Z, AR « R, AC <= C,be AnuR, bAnR < C. Let ¢
be a continuous mapping of bA into & and let \y be a continuous mapping of C
into ®. If ¢(x) = Y(x) for each x € bA N R, then ¢(x) = Y(x) for each x e bA n C.

Proof. Put Q = bAnC. We have Q c bA « AuR and, according to 10,
AuR < u(AR); hence Q < u(AR) = uR. Further, Q4 = b4~ CA < Q < 4; the
relations x€ Q, x + ye A, xy = y imply therefore that y = x + (x + y)€ 4,
y =xye QA < Q. Now we apply 15.

17. In 18—23, M is such a subring of Z that AM < M and p is a continuous
additive mapping of M into &.

Remark. In 19, we shall construct a set B such that A n M < B < A and a map-
ping B of B into & which coincides with x on A n M. Let now f be a function defined
on some subset of the r-dimensional Euclidean space E,; let M be the class of all
sets m < E, such that the Lebesgue integral u(m) of f over m converges and let
A,Z,® have the same meaning as in the remark in 6. Then for be B — M the
number B(b) is a certain improper integral of f over b (see [1]).

18. Thesets A n M, A nuM are ideals in A.

Proof. The set D = A n M is clearly a ring; since AD <« AANAM c A nM,
D is an ideal in A. By 9, A nuM = uD and, on account of 14, uD is an ideal in 4
as well.
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19. Let B be the set of all b€ A n uM with the following property: There exists
a continuous mapping ¢ of b4 into & that coincides with 4 on b4 n M. According
to 16, where we write R = M, C = bA, ¢ is determined by this condition in a unique
way. We may therefore define a mapping f of B into & by means of the relation
B(b) = ¢(b), where ¢ has the mentioned property.

20. We have An M < B < A and B(b) = u(b) for each be A A M.

Proof. If be A n M, then bA = MA = M and we may choose ¢(x) = u(x) (x €
€ bA). ‘

Remark 1. We have A n M = B n M and the equality f(b) = p(b) holds when-
ever both sides have a meaning.

Remark 2. If M < A, then f§ is an extension of u.

21. Suppose that AR =« R =« M, be A nuR. Let ¢ be a continuous mapping
of bA into ® that coincides with yuon bA ~ R. Then b € B and B(b) = ¢(b).

Proof. According to 16, where we write C = M, ¢ coincides with y on b4 N M.

22. The set B is an ideal in A; the mapping P is continuous and additive.

Proof. Choose a € 4, b € B and take the mapping ¢ of 19. Clearly ab € A, abA =
< bA and, by 10, abe AuM < u(AM) = uM. Hence it follows easily that ab € B
and

(4) ' B(ab) = ¢(ab).
First of all we obtain

(5) . AB < B.

If, further, b, — b, then b, € A, b, = b,b and, by (4), (b,) = @(b,) = ¢(b) = B(b).
This proves the continuity of £.

Take now b,, b, € B with b;b, = 0. By 18, 4 n uM is an ideal in 4 and so b, +
+ b,eAnuM. For each xe(b; + b,) A put Y(x) = B(b;x) + B(byx). The
mapping ¥ is evidently continuous. If x € ((b; + b;) A) N M, then bx€ A n M; it
follows from 20 and from the additivity of y that y(x) = u(b,x) + u(b,x) =
= u((b; + by) x) = pu(x). Thus we get by + b, € B, B(by + by) = Y(by + b,) =
= B(by) + B(b,). According to (5) and 13 (where ‘we write P = 4, Q = B), B is an
ideal in A.

23. A (Z(B + M)) = B.

Proof. Suppose that ae 4, z€ Z, be B, me M and that a = z(b + m). If we
put by, = ab, m; = am, we have a = a(b + m) = b, + m, bye B < A, m;e M;
since m; = a + b, € A, we have, by 20, m;eAnM c B, a=b;, + m€B. It
follows that B = A n (Z(B + M)) = B.
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24. Let ¥ be the set of all mappings Y with the following properties:

a) ¥ maps a subring M(y) of Z into & and AM(y) = M(¥);
b) ¥ is continuous and additive.

Now we attach to each € ¥ a set B(}¥) and a mapping B(¥) in the same way
as we attached the set B and the mapping S to u in 19. Using this notation we have,
of course, f = B(u), M = M(u), B = B(n) = M(P(u)); according to 22, f(y) e ¥
for each Y € ¥. For x € B(y) we write (B(¥)) (x) = B(¥, x).

If we say that a certain relation is valid, we understand, of course, that all expressions
in this relation are meaningful. If we write, e.g., f(¥, x) = 0, we assert at the same
time that Y € ¥, x € B(})).

If w is a mapping of & into @ and if x € &, we write wa instead of w(a). If, moreover,
{ is a mapping of an arbitrary set Yinto &, then w{ denotes the corresponding com-
posed mapping (i.e. (w{) (x) = w{(x) for each x € Y).

25. Suppose that Y, Yy, Yy, € ¥, be B(1) N B(Y,) and that Y(x) = y4(x) + y5(x)
for each x € bA ~ M(¥,) 0 M(y,). Then B(y, b) = B(¥y, b) + B(¥y, b).

Proof. Put R = b4 n M(Y,) n M(y,), P; = bA n M(¥;) (i = 1,2). Evidently
AP; = P; = A, whence P,P, =« P, n P, = R. It follows from 12 that

(6) uP, N uP, < uP, uP, < u(P,P,) = uR.

According to 11, we have b€ b4 n u(M(¥;)) = uP; (i =1, 2) so that, by (6), b € uR.
For each x € bA put ¢(x) = B(}. x) + B(V5, x). The mapping ¢ is continuous and
for each x € R, by assumption, ¢(x) = ¥(x) + ¥5(x) = ¥(x). From 21 we infer
that b e B(y) and (¥, b) = @(b) = (V1. b) + B(Y2. b).

26. Let w be a continuous homomorphism of & into &. Suppose that y, Yy € ¥,
be B(Y) and that y(x) = wy(x) for each x € bA ~ M(y). Then f(x, b) = wp(, b).

Proof. Put R = bA n M(y) and define ¢(x) = wp(¥, x) for each x € bA. Then ¢
is continuous and, by assumption, ¢(x) = wy(x) = x(x) for each x € R. On account
of 11, b€ bA n u(M(y)) < uR and, according to 21, where we write 4 = y, we have

B, b) = ¢(b) = wp(¥. b).

27. Let w be a continuous automorphism of & such that the inverse mapping w
is continuous as well. Suppose that y, Y € ¥ and that y(x) = wy(x) for eachx€ A
N M(y). Then B(y) = B(x) 0 u(M()).

Proof. According to 26 we have B(y) = B(x); clearly B(y) < u(M(y)). Choose
now a b e B(x) n u(M(y)) and for each x € bA define ¢(x) = @™ 'B(x, x). Then ¢ is
continuous and ¢(x) = o™ 'y (x) = (x) for each xe bA N M(l//) so that be B(.//)

28. If y € ¥, then B(B(V)) = B(¥).
Proof. If we put 7 = A(Y), we have B(y) = u(M(y))- M(x) = B(¥) = u(M(¥))

-1
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and so B(x) = u(M(¥)). Now we apply 26 and 27 (where we put wa = « for each
ae ®).

29. Let o be a continuous automorphism of & such that the inverse mapping o™"
is continuous as well. Then p(wy) = wp(¥) for each y e ¥.
Proof. Apply 26 and 27.
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Pe3zome

HEINPEPbLIBHBIE AJAVUTUBHBIE OTOBPAXEHWA

SIPOCJIAB XOJIELL (Jaroslav Holec) 1 SIH MAPXUK (Jan Matik), Ipara

Iycts Z — xoabuo Byns, A — nogkossuo Z u & — abenesa rpynna. [Ipegnoto-
KuM, 4o Ha & u Ha Z onpesesieHa CXOMUMOCTD CO CIIEYFOLIMMH CBOMCTBAMM:

1) Ecmu x, - x€ Z, To xx,, = Xx,, X + x, € A I BCAKOIO 1.

2) Eom x, > x€Z, a€ A, ze€Z, xz =0, T0 ax, - ax, X, + ax, > X + ax,
X, +z—->x+ z

3) Ecmmoa, »ae®, B, > pe®, t00, — f, > a — p.

4) Ecnu o, = O [u1st BCSIKOTO 1 M &, — o, TO o0 = 0.

Iast P, Q = Z nonoxum PQ = {xy; x€ P, y e Q}. Tlyctb ¥ — MHOXeCTBO BCEX
0TOOpaXeHMil |/, YIOBICTBOPSIOLIMX CIACAYIOILMM YCIOBHSIM:

a) O6sacTh OMpeneIeHus M(lll) OTOOpaXeHUsT Y SBJISIETCS TOJIKOJILLOM B Z

n AM(Y) = M(Y), y(M(y)) = .

B) OTtobpaxeHue |y HePepPBIBHO U aiAUTHBHO.

Kaxmomy V € ¥ nocraBuMm B cooTBeTcTBHe oToOpaxenue B(Y) € ¥, cosnamato-
wee ¢ ¥ va A 0 M(y); M(B()) comepxurcs B 3ambikanun F(J/) MHox)ecTBa A N
A M(Y) u ecnu be F(y) — M(B(¥)), To B Hemb3s MPONOKMTE HENPEPHIBHBIM
obpasom na bA. Honoxum B(Y, x) = (B(W)) (x) (x € M(B(¥)))- Ecu ¢, ¥y, Y€ ¥
woecmu Yy(x) 4+ Yo(x) = Y(x) mms x € M(y) n M(¥,), 0 B(¥1, x) + B(¥, x) =

= By, x) mus x € M(B(Y4)) » M(B(¥2)). DT pesyabTaTEL MCMOTB3YKOTCS B JAjIb-
Heiiniei paboTe IS MPOJOIDKEHM oToOpaxeHuit Y € .
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