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A SEMIGROUP TREATMENT OF SOME THEOREMS
ON NON-NEGATIVE MATRICES

STEFAN SCHWARZ, Bratislava

(Received January 1, 1964)

Dedicated to Profesor A. D. WALLACE
on the occasion of his sixtieth birthday.

The purpose of this paper is to give a systematic treatment of the funda-
mental properties of non-negative matrices from the standpoint of the
elementary theory of semigroups.

Let A be an n x n matrix with non-negative entries. In large parts of investigations
concerning non-negative matrices their properties depend only on the distributions
of zeros and “non-zeros™ in the matrix (regardless of the actual numerical values of
positive entries). One of the main problems is to study the behaviour of the iterations
A, A% A3,

In this paper we give some applications of the rather elementary parts of the theory
of semigroups to this problem. The substance is the following idea. We introduce
the semigroup S of “n x n — matrix units” (as defined below). To every matrix 4
we associate a subset of S denoted by C, and called the support of 4. By means of
Lemma 1 (see below) the multiplicative semigroup of all non-negative matrices is
homomorphically mapped onto the semigroup & of all subsets of S (the multiplication
in & being the multiplication of complexes). & contains only a finite number of
different elements and the main problem reduces to the study of the cyclic sub-
semigroup {C,, C3, C3,...} of &. This subsemigroup reflects all properties of A4
which depend only on the distribution of zeros and “non-zeros”.

The treatment essentially differs from the classical methods described in [2]. It is
in a rather loose connection with the papers [4],[5], [6] and the probabilistic methods
used in the theory of finite Markov chains (see e.g. [3], [7]).

Though, possibly, our treatement is not the shortest one it seems to bee very natural
and it enables a clear insight into the nature of non-negative matrices.

From the standpoint of the algebraic theory of semigroups the method and some
results may be considered as a first step toward the description of subsemigroups of
completely O-simple semigroups. In contradistinction to the case of a completely
simple semigroup without zero (which has been treated in [8]) the last problem seems
— in general — to be rather difficult.
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I. PRELIMINARIES

Let N = {1,2,..., n}. Consider the set S of symbols {e;; | i, j e N} together with
a zero element 0 adjoined. Define in S a multiplication by

<0 if j£m,
€iiem = .
st ey if j=m,

and e;;.0 =0.¢;,=0.0 = 0 (for any i, j € N). The set S with this multiplication is
the simplest case of a non-commutative completely 0-simple semigroup (i.e. a finite
semigroup S which does not contain any two-sided ideal of S different from 0 and S).
It is often called “the semigroup of n x n-matrix units”.

Definition. Let 4 = (a,-j) be a non-negative n x n matrix. By C, we shall denote
the subset of S containing all such elements e;; € S for which a;; > 0 together with
the zero element 0.

The set C, will be called the support of 4.
Lemma 1. If A, B are non-negative, we have C .5 = C, U Cgand C,5 = C,Cy.

Proof. The first statement is evident. We prove the second. Let A = (ay), B =
= (bjl)’ AB = (Cerr)'
a) If e, € Cyp, then ¢, = Y a;;b; > 0. There is therefore at least one j such that
7

a;iby >0, ie. e;eCy, ej € Cp, hence ee = ey € C,Cp This implies Cyp <
< C,Cy.

b) Let conversely e;; € Cy, ¢, € Cy, ie. e;e,,€ CyCp. If j + k, then e;e, =

=0eCyy If j=k ie ey e, eC4yCy then c,; = Za,.,b,, = a;;b; > 0, hence

e; € C p. Therefore C4Cy = C,p. This proves Lemma 1.

Corollary. For any non-negative matrix A we have C,. = C' for every integer
h = 1. In particular, if A is idempotent, then C, is a subsemigroup of S with
C2=C,.

Lemma 2. For any non-negative n x n matrix A we have
(1) cifteCyuCiu...uCh.

Proof. The elements of C;** are products of n + 1 elements € S of the form
€iiy - € j, -+~ €x, Such a product is 0 except the case when the subscripts follow in
the following order

(2) (ila 12) (il’ i3) s (im'l im+1) (im+l’ im+2) (in, in+l) (in+l’ in+2) .

e
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Since the numbers i, i,, ..., i, , cannot be all different, there exists a couple, say
m < I, such that i,, = i,. The sequence (2) is of the form

. (im-b Im) (lm9 im+1) b (il-—lim) (ima il+1) v

and the corresponding product is the same if we delete (i, iyysq) -- (i1-1» im)- The
product contains then at most n factors, i.e. it is yet contained in C, U C3 U ... U C4.
This proves our Lemma.
The relation (1) implies (in an obvious way) C;** = C, U C; U ... U Cj for any
integer = 1. Therefore [C,u ... U CY][C,u...uCh] = [C4u ... U CY].
This implies:

Corollary. For any non-negative n x n matrix A the set C, U C3u ... U Cj is
a subsemigroup of S.

Notation. The multiplicative semigroup of all non-empty subsets of S will be
denoted by ©.
Consider now a non-negative n X n matrix A, the sequence of powers

©) A A% A3,
and the sequence of corresponding supports
(4) : C,, C2,C3, ...

While all elements in (3) may be different each from the other, the sequence (4)
contains in any case only a finite number of different elements € &.

Let k be the least integer such that C¥ = CY for some integer I, > k. Let [ be the
least integer [, satisfying this relation. Then the sequence (4) is of the form

(5) C,.C2 ..., ‘]CA, Lot e et Lot

and it contains exactly [ — 1 different elements € &. It is well known from the elements
of the theory of finite semigroups that 8, = {C%, C4*', ..., C}; '} is a subgroup of &
of order d =1 — k.

We have clearly C% = C%*# for every integer o > k and every integer = 0.

The unit element of the group & , is C§ with a suitably chosen g satisfying k < ¢ <
< I — 1. Tt is easy to show directly that ¢ = 7d, where the integer 7 is uniquely
determined by the requirement k < td <l - 1=k +d — 1.

Moreover &, is a cyclic group, i.e. there is an integer t with k £ ¢t £ I — 1 such
that

G, ={C,, C¥, ... C4y.

The number 7 is, in general, not uniquely determined but the set in the bracket is for
any admissible ¢ identical up to the order with the set {C§, Ci*', ..., Ci{'} and
cy = C.
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Notation. Throughout all of the paper the integers k = k(4), d = d(4), ¢ = o(4)
will always have the meaning just introduced. We shall suppose that the number ¢ is
fixed chosen. The subsemigroup of & generated by C, will be denoted by S 4.

Since C¢ = C2¢, the set C¢ is a subsemigroup of S. We show that this is the unique
subsemigroup of S among the elements € & ,. Suppose for an indirect proof that Cy,
1 £ 7 < d is a semigroup (subsemigroup of S), i.e. C;* = C¥. This implies C}f >

5 C2 5 C3 .. o CF = CY,ie. C§ = CY. Therefore C4 . CY = C5™. Since C§
is the unit element of &, this says C% < C3*. Hence C = C3™ in contradiction to

the fact that CY is not the unit element of & ,.

Remark. If k > 1, it may happen that one of the sets C,, C3, ..., C5™! is a semi-
group. Let for instance n = 2 and C, = {0, e,,}, then C5 = {0} and C, is a semi-
group, while 8, = {0}.

We summarise all these results as follows:

Lemma 3. Let C4 be the support of a non-negative n x n matrix A. The sequence
(4) contains a finite number of different elements € &. These elements form (with
respect to the multiplication of subsets) a subsemigroup €, of &. If the maximal
group &, contained in S, has d = 1 elements, then

&, = {Cpy 2., CTL, C, L OO

Hereby k = 1 and C5** = C. The group ®, = {Ck, ..., Ci**7'} is cyclic and it
contains a unique power C4, k <9 < k + d — 1, which itself considered as
a subset of S is a semigroup. The set C% acts as the unit element of the group & ,.

II. IRREDUCIBLE MATRICES

A non — negative n x n matrix A = (a;;) is called reducible if N = {1,2,..., n}
can be decomposed in two non — void disjoint subsets I, J such that a;; = 0 for
iel, jeJ. Otherwise it is called irreducible. If moreover a;; = 0 for je J, iel,
A is called completely reducible.

An equivalent definition is: A4 is said to be reducible if there is a permutation
matrix P such that P~'AP is of the form

P~ 1AP = A0
B A,

where 4, and A4, are square matrices and 0 is a rectangular zero matrix. If moreover B
is a zero matrix, then A is called completely reducible.
It is obvious what is the meaning of the words “a matrix A4 is completely reducibie
in u matrices” and ‘“a matrix A4 is completely reducible into v irredubicle matrices”.
It is well known that for a given A the number v = v(4) of irreducible “matrix
components™ is uniquely determined. (See [2], p. 341.)
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For convenience we shall adopt occasionally an analogous terminology for the
subsets of S. A subset C of S is called reducible if N = {1,2,..., n} can be decomposed
in two non-empty disjoint sets I, J such that {eij liel,je J} = S — C. If moreover
{ejiljed,iel} = S — C, then Cis called completely reducible.

If A is completely reducible into u matrices, then N can be decomposed into u
non-empty disjoint sets N = J; U J, U ... U J, such that for any « # f§ we have
{ejlied,, jeJg =8 — Cy Denoting S, = {e;|ieJ, jeJ,} we also have
Cic{0}uS,UuS,u...US,

Conversely, if N can be decomposed into u non-empty disjoint sets N = J, U J, U
u...uJ,and C, = {0} uS;usS,u...uS,, then 4 is completely reducible in
(at least) u matrices. Clearly: If C, = {0} U S; U S, U ... U S,, then 4 is completely
reducible into u positive (and hence irreducible) matrices.

For further purposes we remark: If P is a permutation matrix, then Cp. S =
= §S.Cp = S. Also an irreducible matrix cannot contain a zero row or column.
Hence for such a matrix we have C,.S = S.C, = S. Mor¢ generally C%.S =
= S.Ch = S for any integer h = 1.

Theorem 1. A non-negative n x n matrix A is irreducible if and only if
(6) C,uCiu..uCi=8S.

Proof. a) Suppose that A is reducible and a;; = 0 for iel, jeJ (InJ =0,
I U J = N), so that e;; ¢ C,. Denote A> = (b,,). For i€, je J we then have b;; =
=Y iy + Y, aimay; = 0. Hence e;; ¢ C5. Analogously e;; ¢ C); for any integer

mel meJ

h = 1. Therefore C, U C3 U ... U C% cannot be equal to S.
b) Suppose conversely that A is irreducible. We have to show that (6) holds.

Let Fy = {ey;,, €14, ---€q;,} be the  first row” of C,. Hereby r > 1. Suppose r < n.
We shall show that F,C, (i.e. ,.the first row” of C}) contains at least one non-zero
element not contained in F,. Suppose for an indirect proof that F,C, = F; u {0}.
This means: for every e,, € C4 we have

{e1i1 €1iys s €15} €00 © {e1ips €1y s €1i} U {0} .

Hence, if ¢ € {iy, iz, ..., i,}, then o is necessarily € {ij, i, ..., i,} and therefore C,
does not contain the elements e,,, where g€ {iy,...,i,} and ceN — {iy, ..., i,}.
But this is equivalent to the statement that A is reducible, contrary to the assumption.

We have proved that F, u F,C, contains at least r + 1 non-zero elements.
(Hereby r + 1 < n). The same argument implies that (F; u F,C,) v (F; U
v F,C,)Cy = F, UF,C,uU F,C; contains at least min (n, r + 2) non-zero
elements. Repeating this argument n — 1 times we obtain that F; U F,C, U ... U
U F,Cy7 1 (ie. “the first row” of C, U C} U ... U C}) contains at least min (n, r +
+ n — 1) non-zero elements. Since r = 1 the last number is equal to n and since
this argument can be applied to any ,,row” of C, (and 0 is ex definitione contained
in C4 and S) our Theorem is proved.
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Our next goal is to prove Theorem 2 which gives (for our purposes) a more conve-
nient criterium for the irreducibility of A.

Consider an irreducible non-negative matrix A and the semigroup &,. Since &,
contains all powers of C,, we have with respect to Theorem 1

C,uCivu...uClu...uCcktit =g,

Note that {e;y, e,,, ..., €,,} = C% For, if e;eC% 1 <u<k+d— 1, then
e;; € C4" for every integer A > 1 and since some power of C% is the idempotent € & ,
(i.e. C§), we have e;; € C4.

The set Cj U CE*1 U ... U CAH7 1 is a two-sided ideal of S. For

S[Chu...uC ] =[C,uClu...uCk 1 [Chu...uCk 1] =
=[Ciu.. .o [C,uCiu.. vk T e [Chu...uCH.

Now S is a 0-simple semigroup, hence it contains only the trivial two-sided ideals
(i.e. 0 and S itself). Since C4 + {0}, we necessarily have

ctuckttu.. okt =5,

Since the summands on the left hand side are exactly the elements e 8 ,, this reiation
can be rewritten in the form

(7) CiuCiu..uci{=Ss.

Notation. For brevity we shall write throughout the rest of the paper Cy = D,.
(Note again that taking an other admissible ¢ we only influence the order of the
sets D4, D3, ..., D).

Our result can be formulated as follows:

Theorem 2. A non-negative matrix A is irreducible if and only if
(8) D,uDiu..uDi=S5.
We mention also that Theorem 1 and the relation (7) imply the following

Corollary. If A is irreducible, then A* is also irreducible.

The next theorem locates the non-zero idempotents € S.

Theorem 3. For a non-negative irreducible n X n matrix A write in the sense of
the foregoing theorem

S=DbyuDiu..uDY.

Denote E = {e,, €5, ..., e,,}. Then
a) E = DY.
b)EAD, =0 fort=1,2,....d — 1.
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Proof. 1) For any idempotent e;; € S there is certainly a 7(1 < t; < d) such that
e;;€ D™ This implies e;; = e¥; € D§* = DY. Hence E = D.

2) We next show that DY is the unique summand in (8) containing the whole
set E. If d = 1, there is nothing to prove. Suppose therefore d > 1. Let 7(1 < © < d)
be an integer such that E = D} holds. If e;;e D}, then e,; = e;;e;; =« DYE <
< DD = D2, hence D} = D3 This implies

Dy Dy e Dic..cD{ Y cpy=D}cpi*V =py.
Hence D} = D4, g.e.d.

3) Thirdly we prove: Let s; be the least integer such that e;; € D%. Then s;/d and
e;; € D} if and only if s;/7.

To prove this suppose first s; t d. Then we may write d = as; + 8, where a is an
integer and 0 < f < s;. Clearly e;; € D§* V% Hence e;; € D%*#*5i~F = pipsi=F =
= D% Since 0 < 5; — B < s,, this is a contradiction to the definition of s,.

Suppose further that e;;€ D} (1 <1 < d) and s, . We then may write 7 =
= as; + f with 0 < B < s;. Further, since s;/d, we have e, € D% *". Hence e;; €
e DDy = D4"? = DY, which is again a contradiction to the definition of s;.

4) Suppose now that s, s; are the least integers for which e;; € DY, e;; € D}
respectively holds. We shall show that s5; = s;.

Consider the relations e;; = e;e;;e;; and e;; = e;;e;;e;,. With respect to (8) there

JCiitie
are integers «, f(1 < a < d, 1 £ B < d) such that e;; € D} and e;; € D*. Hence

e;, € DY"**F and e, e DY,
Therefore s;/a + f + s;and s;/a + B + s;. Now ¢;; = e;,¢;; € D% ¥ implies s;/a + B,
therefore s;/s;. Analogously s;/s;. This proves s; = s;.
The relation s; = s; implies E = D* = D*. But by 2) the unique summand in (8)
having this property is D% Hence D% = D% = D% and s; = d for every i =
= 1,2,...,n. This proves Theorem 3.

Corollary. For an irreducible matrix A the number d is the least integer s for
which E = D® helds.

The next theorem is of a decisive importance for all the paper.
Theorem 4. The sets D, D2, ..., D% are pairwise quasidisjoint (i-e. the intersection
of any two of them is the zero element 0). '

Proof. Suppose for an indirect proof that there is a couple (i,j), 15i<jgd,
such that D) n D/ # {0}. Consider the set

T=U[D5nDi], a=1,2,..,d—1;=12,..4d.

a<f
By supposition T % {0}. For any « (1 £ k < d) we have
D5[D% n D] = [D% n D4] DY < D% n DA™
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Hereby D%'* + D4**, since (B + ) — (x + k) = f — « is not divisible by d.
Therefore D*T = TD* = Tand ST = TS < T. This says that T is a two-sided ideal
of S. Since S is a O-simple semigroup and T =+ {0}, we necessarily have T = S, i.e.

U[pynDi]=DyuDiu...uDy.
a<p

The set on the left hand side of this relation is contained in D, U D U ... U D4 1.
Hence
DieDyuDiu...uDit.

But this is impossible since (by Theorem 3) D% contains E, while D, u ... v D§™!
does not contain any non-zero idempotent € S at all. This proves Theorem 4.

Theorem 5. For an irreducible non-negative n X n matrix A the number d
satisfies the relation 1 < d < n.

Proof. By Theorem 1 C, U C3 U ... U C4 = S. If k > 1, multiply this relation
by C47'. Since CX7'S = S, we get

k+n—
cCtuctttu.. vkt =8

All summands on the left hand side are contained in & ,. Comparing with the relation
(see Theorem 2)
ctucCcftu...uckt =8,
in which no summand can be deleted (since all are quasidisjoint), we obtain that
d < n, qe.d.
A further characterization of the number d will be given in Theorem 7 below. But
before we now give some informations concerning the “small powers” of C,.

Theorem 6. For a non-negative irreducible matrix A we have:

a) The sets C,, C2, ..., C4 are quasidisjoint. More generally: Any consecutive d
members Cy, Cy ', ..., C5 "7 (for a v = 1) are quasidisjoint.

b) For any v = 1 we have
9) CiuCiruc™ru. =i

Proof. a) Since E = C§ and Cj = C4E, we have Cj = CiC¥ = C¥** whence
+1 dt+v+1 +d—1 dt+v+d—1 . dt+v dt+v+d—
C:; c CA T f‘ c CA . Since {CA l?...,CA vtd 1} areexact]y

all elements € &, and these are quasidisjoint, our statement is evident.

. dt+ 1 : : d+ 1 dt+d+1
b) The relation C, = Cy implies C% " < Cy = C{*', analogously
Ci**t < c%*!, etc., whence

d+ 1 2d+1 td+ 1
CauCy uC T u...cCym .
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Since the converse inclusion is obvious, we have
c,ucCittucyHtty,. = cHrt,
whence (9) immediately follows.

Theorem 7. For a non-negative irreducible matrix A the number d is the greatest
common divisor of all natural numbers o such that E n C§ % 0.

Proof. If a non-zero idempotent e;€S is contained in CY, then by (9)
e, € C¥*vi Since C{¥**'e®,, we have C{*" = D% = C%" with some integer
u; = 1. This implies (by Theorem 3b) d/u; and since tu; = td + v; (mod d), we have
d|v,. Hence a non-zero idepotent € S can be contained only in some powers of the
form C;” with 1 £u <t —1 and it is certainly contained in all the following
powers C%, C§G*14 CG*»? | The greatest common divisor of the numbers {ud}
and td, (t + 1)d, (t + 2)d, ... is clearly d.

Consider the relation (8) and define D = D%. We close this section with the
following.

Lemma 5. If A is irreducible and e;;e D} (1 < v < d), then e;;€ DY ".

Proof. With respect to (8) there is ans(0 < s < d — 1) such that e;; € Dj.
We have
e; = e;e; €Dy DY = Dy

Since e;; € D%, we have T 4+ s = d, q.e.d.

Corollary. If A is irreducible and e;; € D%, we also have e;; € D4.
] J A

7

IIl. THE POWERS OF AN IRREDUCIBLE MATRIX

We shall now study the powers of an irreducible non-negative matrix A.
Let u = 1 be any integer. Consider the sequence

A", AP, A% L
" The set of the corresponding supports
(10) cY, Ca C3,...,cY D
is clearly a subsemigroup of the semigroup
S, ={CuC}...,C Cl, ..., C" 1}
Hence thé maximal‘ group contained in (10) is a subgroup of

(11) 8, ={Ch ... C*"" "} ={D, ..., DY}.
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If au 2 k, then Gau = {c, Cerw cla+du --}. Two sets C4, C* are identical

if and only if fu = yu(mod q), ie. mod d/(d D =
= ,u)]. t d, u),
e hen ) B=v[ /(d, u)]. Denote u, = (d, u)

©A" — {C;", Cl(ia+ l)u, e C§z+dx—-1)u} .
This is a subgroup of 8, of order d,, so that we may write
(12) S = {D%, D", ..., DY} .

A formally other expression for the group ®,. is obtained as follows. Consider
the subgroup of &, generated by DY, i.e. the subgroup

(13) {D%, D%, ..., D%} .

Here D% = Df',ie. C* = CY* if and only if atu = Btu(mod d), i.e. « = f(mod d,).
Hence (13) contains exactly d, different elements

(14) {p4, DY, ..., DG} .

This is a subgroup of order d; of &, hence it is identical with (12).

Summarily we have proved:

Lemma 6. If the maximal group &, is given by (11) and u; = (d, u), then & .
is of order d, = dJu, and & ,. is given by (12) or (14).

Lemma 7. If A is irreducible and some power A"(v > 1) is reducible, then A® is
completely reducible into irreducible matrices.

Proof. a) We first prove: If A"(v > 1) is reducible and N can be decomposed in
two non-void disjoint subsets N = I u J such that e;; ¢ Cy for iel, je J, we then
also have e;; ¢ C4 for je J, i el. (Hence A is completely reducible)

To prove this note first that e;; ¢ C (for i €I, j € J) implies e;; ¢ C54* D = cit+e,
Since (by Theorem 6) C% < C‘"*", it is sufficient to prove that ej; ¢ C{*". Now
C4*? = DY with some 7, 1 £ v < d. Hence it is sufficient to prove that if e; ¢
¢ Di(iel, je J), we also have e,; ¢ Di(j e J, i I). Suppose for an indirect proof
that e;;€ Dj. By Lemma 5 we then have e;;e D4 * = D4 *D{ ™! = pie-»
(hereby D§ = D%). On the other hand e;; ¢ Di(i €I, je J) implies e;; ¢ DT~V,
This contradiction proves our statement. '

b) Suppose now that A is irreducible and A"(v > 1) is reducible. By a) A’ is
completely reducible and there is a permutation matrix P such that

PA’P! = 41 0 )
0 4,
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If A,, A, are irreducible, Lemma 7 holds. Suppose therefore that e.g. 4, is reducible.
Then there is a permutation matrix Q such that

Ay 0 0
QA°Q ' = B, 470
0 0 A,

(Since 4 is irreducible none of the diagonal block matrices can be a zero matrix).

. . . . A0
Now the last matrix can be considered as a reducible matrix of the form < ! M),
B

where B = (l;‘), M = (OAI Z ) Since QAQ ™' is irreducible and (QAQ™')" is
2

’

reducible, and of the form (;1 0 ), it follows by the statement proved sub a) that B

M
is necessarily a rectangular zero matrix. Hence B, is a zero matrix and we have
QA4°Q™" = diag (4}, 41, 4,).
This proceeding can be repeated until all diagonal square matrices are irreducible.
This proves Lemma 7.

Theorem 8. Let A bé a non-negative irreducible matrix. Denote u, = (d, u).
Then A" is completely reducible into u, irreducible matrices.
Proof. a) We first show that A™ is complety reducible into u, irreducible matrices
Denote v
Z,= D% uD¥u.. uDi™.

The set Z,, which is equal to D% U D3 U ... U D" is the support of the matrix
B = Aul + AZut + oo+ Adl”t'

Consider the decomposition of S into quasidisjoint summands of the following
form

S=2Z,0DZ,uD3iZ,u...uDY'Z,.

Define also Z, = D%Z, = D%Z,.

Forx =1,2,..,uy let J, = {i{, i, ..., i} be the set of all indices such that
{e“lm, eliz(,c), . el,-qx(.c,} € D;Z“ .

We have J,uJ,u...uJ, =N and J,nJ, =0 for x + 1. Moreover J, #+ 0
for every k = 1,2, ..., u,. For, if there were J, = 0 for some (1 < ko < u,) the
“first row” of D'PZ, would consist of zeros, and consequently the same would be true
for D°*"Z, for every integer h = 1. But this is impossible, since then D%°Z, U
U DRMZ U...u D™ 1Z cannot be equal to S, a contradiction with the
irreducibility of A.
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We next prove that
%) for every k we have S, = {e;/|ieJ,.. leJ,} = Z,
B) whileif ie J,, leJ,, k + A, we have e;; ¢ Z,.

d

1—1
: +
«) Since ey; € D¥Z, = U D¥***, we have by Lemma 5

2=0

ai-1 a1 .

—oui—k I - —x
ene U Df“lul ek — phim *U DAxux o — phmcxg
=0 ’ 0=0
hence

_ diug—x K _ pduz2 _
e; = eje, € DY Z,DyZ, = DY"Z, =Z,.
B) Since e; € D%Z,, we have e;; € DY "*Z, and
_ diuy —x A _ diug—x+2
e; = e; e, € DYy Z,D4Z, = D Z,

and this last set is different from Z, since dyju; — x + A =d — k + A £ 0(mod u,).

Now since N = J; u J; u... U J,, we have

ug>

(15) Z,={0}uS;uS,u...US

up <

where S, N S; = 0 for a & f.

The relation (15) shows that B is completely reducible into u, positive (and hence
irreducible) matrices. This implies that A" is completely reducible into u, irreducible
matrices. For, if A" were (completely) reducible into u, > u, matrices, B would
be completely reducible into u, matrices, a contradiction with (15).

b) Consider now the matrix A“. A" is either irreducible or by Lemma 7 completely
reducible into irreducible matrices, i.e. there is a permutation matrix P such that

(16) P~'4"P = diag(B,, B,, ..., B,)

with B; irreducible and ¢ = 1. By a) A™ is completely reducible into u, = (u, d)
irreducible matrices. Since (16) implies

P~'A™P = diag (B}, BY, ..., B!),

a

we clearly have ¢ < u,.
On the other hand recall that C§ = C4**. Since C4""e®,, we have Ci*ét —

= C}" for some w (1 < w < d). Hence u + dr = wt (mod d). Now (d,u + dt) =
= (d, wt), and since (d, 1) = 1, we have (d, w) = (d, u). By a) the matrix 4"' ig
completely reducible into (w, d) = (u, d) = u, irreducible matrices. Since the support
of A" is a subset of the support of 4", we conclude that A* is completely reducible
in at least u, irreducible matrices. Therefore ¢ > u;. The equality ¢ = u; completes

the proof of our theorem.

An immediate consequence of Theorem 8 is



Theorem 9. If A is a non-negative irreducible matrix, then A* is irreducible if and
only if (u,d) = 1.
In the course of the proof of Theorem 8 we also proved the following

Corollary. With the same notations as above the matrix A" + A 4 ... 4 A%«
is completely reducible into u, positive matrices.

Remark. It should be noted that the matrix A" itself is (completely) reducible

into not necessarily positive matrices. This is shown on the following simple example.
Let

010 0)
0010
4= 0001]°
1000
Then
0010 0001 1000
0001 1000 0100
2 _ 3 _ 4 _
A =11000]” “=lo100] 4 =loo010
0100 0010 0001

Here we have t = 1, d = 4. Choose u = 2. Then d; = (2,4) = 2 and

1010

0101
2 a4 _
A—%—A-—1 10

0101

—_ O = O

is completely reducible into two positive matrices while 42 is reducible only in two
non-negative matrices.

Taking u = d we also have the following

Corollary. Under the same suppositions as above the matrix A" is completely
reducible into d positive matrices.

1V. DECOMPOSITION INTO PRIMITIVE MATRICES

Definition. A non-negative matrix A4 is said to be primitive if there is an integer w
such that C}; = S.

A positive matrix is primitive. A reducible matrix cannot be primitive.

Theorem 2 implies immediately:

Theorem 10. A non-negative irreducible matrix is primitive if and only if d =
= d(4) = 1.
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The sequence (5) has then the form
CA’ Cj’ s Cf{_la Ci = C§+1 = ...

Theorem 11. If A is primitive, then every power A" is primitive. Conversely, if A*
for somew = 1 is primitive, then A is primitive.

Proof. a) Cj = S implies Ci’ = C4. = S. b) By supposition there is an integer ¢
such that (C,.)¢ = S. This implies (C,)** = S, which says that 4 is primitive.

Let A be irreducible and card &, = d. Suppose that A2 43,..., A" are all

irreducible. By Theorem 9 we necessarily have (1,d) = (2,d) = ... = (n,d) = 1.
Since (by Theorem 5) d < n, this implies d = 1. Hence

Theorem 12. If A, A%, ..., A" are all irreducible, then A is primitive.

Theorem 13. Let A be non-negative irreducible matrix with card 8, = d.
Then A is completely reducible into d primitive matrices and d is the least integer u
Jfor which A" is reducible into primitive matrices.

Proof. a) By Theorem 8 the matrix A is completely reducible into d irreducible
matrices, i.e. there is a permutation matrix P such that

PA’P~! = diag (A4, ..., Ag)
with irreducible A4, ..., 4;. This relation implies
PA"P™! = diag (4], ..., 4)).

Now by the Corollary at the end of section III A" is completely reducible into d
positive matrices. Hence A1, ..., A are positive and therefore 4, ..., A, are primitive.
(We use hereby that fact that the decomposition and diagonalization of 4" into
positive matrices is up to the order of summands uniquely determined).

b) Let now u < d. Denote u; = (u, d) < d. A" can be decomposed into u
irreducible matrices, i.e. there is a permutation matrix Q such that

(17) 0 '4*Q = diag(B,, ..., B,,) .

If all By, ..., B,, were primitive there would exist a number w, such that for all
w > w, the matrices BY, ..., B;, would be positive. Choose h so that hdt > w,.
Then (17) implies :

Q—lAuhdtQ — dlag (B’{dt, s Bhdt .

uy

The matrix to the left is of the form diag (4, ..., 4,) with positive A4y, ..., 4;, while
to the right we have only u, positive matrices. This contradiction proves that
By, ..., B,, cannot be all primitive, which completes the proof of our theorem.
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V. THE EXPONENT OF A PRIMITIVE MATRIX

For a primitive matrix A there is an integer w such that C}j = S. In this section we
find estimations for the number w.

The results formulated in Theorems 14 and 16 are known. (See [1], [5].)

We begin with the following

Lemma 8. If A is irreducible and A has at least one non-zero in the main diagonal,
then A is primitive.

Proof. Since C, contains a non-zero idempotent € S, so does CY for every v > 1.
The group 8, = {D,, ..., D%} contains necessarily a unique element since otherwise
we would have a contradiction with Theorem 3. Since d = 1, A4 is primitive.

Lemma 9. Suppose that A is a non-negative irreducible n x n matrix (n > 1)
containing r > 0 non-zero elements in the main diagonal, i.e. {eﬂlﬂ‘, e, eﬂrﬂr} =
< C4. Denote B = {By, ..., B,}. Then

a) To every je N there is a fe B and an s = s(j) such that e;, € C;. Hereby:
If j € B, we may choose s = 1. If B+ N and je N — B, we may choose s = s(j) <
<n-—-r

b) For any le N and any € B we have ez € Ci~ .

Proof. a) If j € B, then e;; e C, and our statement is true with s = 1. We may
restrict ourselves to the case B = Nand je N — B.

Suppose for an indirect proof that C4, v > n — r, is the least power of C, for
which e;; € CJ holds (for some f € B). Then there exist v different integers j, ay,a5, ...,

.y 0,y all € N — B such that e;; = e, . €4,4, --- €, _,p- Since v Z n — r + 1 the
set N would contain at least (n — r + 1) + r = n + 1 elements, which is a contra-
diction.

b) Let [, § be fixed. The irreducibility implies the existence of a 2 = A(/, f) £ n
such that ey € C;. We have therefore g = ep,, . €, - €, oy, - €, With all
factors in C4. Choose 4 as small as possible. If | = f, the idempotent ey, is clearly
contained in C%~ . Suppose therefore f+1I. Then f, a;, a,, ..., a,_,, | are all different,
hence 4 + 1 £ n, so that 1 = }_(l, ﬁ) <n-—1. 1If 2 =n — 1, our statement is
proved. If 2 < n — 1, we many insert at the beginning ej; ' ~* so that e, = e;;“"v
ey € Cy 177 C4 = Ci7'. This proves our Lemma.

Theorem 14. If A is a non-negative irreducible n x n matrix (n > 1) with r > 0

non-zero entries along the main diagonal, then C3" "' = §S.

Proof. Let j and [ be fixed chosen. If B = N, i.e. r = n, we have by Lemma 9b
ey € Cy ! for any B, 1€ N, so that C3~' = S. Suppose therefore B + N. With the
same notations as in Lemma 9, there is a fe B and a s = s(j) such that e;; € C}.
Further by Lemma 9b {e,,, e;,. ..., ¢4} = C3~'. Hence

. s+n—1
ej1€ e, ejnn e} = ejplep, epan s e} = Cy .
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If s = s(j) = n — r, we have €€ CY" "L If s = s(j) < n — r, multiply both sides
by C%~ "% Since A"~"~S contains in each column a non-zero element, we have

n—r—s s+tn—1+(n—r—s) __ 2n—r—1
eiie{ejs, e, ..., €5} Ch < C§ =C} .
This proves our Theorem.

Remark. It is known that this result is the best possible. (See [1].)

If all entries in the main diagonal of A are zeros, it is natural to find an exponent g
such that the support of A? contains non-zero idempotents € S and use Theorem 14.
To this purpose we prove the following

Lemma 10. Let A be a primitive n X n matrix wiih n > 1. Then there is a positive
integer g < n — 1 such that C% contains at least g non-zero idempotents € S.

Proof. a) If A is primitive, there is at least one row in A that contains at least two
non-zero elements. For, if each row of A contains a unique element different from
zero, then there is either a zero column or there exists a permutation matrix B such
that C, = Cp. In both cases A cannot be primitive.

Without loss of generality suppose that the first row of A contains at least two
elements different from zero. By the proof of Theorem 1 (part b) the “first row”
of CJ contains at least one element not contained in “the first row” of C,. Analo-
gously C3 contains in the “first row” at least one element not contained in the ““first
row” of C, U C3, and so on. This implies that the “first row” of C, U ... U C%"!
contains all elements ¢, €5, ..., e;,. Hence e;; € C§ withg < n — 1.

b) Let g be the least integer such that C¥% contains a non-zero idempotent € S.
If g = 1, our statement is trivially true. If e, 5, € C%, g > 1, we have

€pp: = €p.B2Cpps - el‘g—iﬂgeﬂgﬂx

with all factors in C,. Hereby, clearly, all integers §,, 8, ..., f, are different one from
an other. But then the following g — 1 elements (arising by cyclic permutations)

€B28> = €Bap3€BsBa - - CpasiCRiB:

€BoBs = CBop1CBB2 - CBu-1By >
are also contained in C%. This proves our Lemma.

Theorems 14 and 10 imply

Theorem 15. Let A be a primitive n x n matrix. Let g be the least integer for
which C% contains a non-zero idempotent € S. Then C§*"¢~1 = §.

The exponent g(2n — g — 1) takes its greatest value for ¢ = n — 1 and this value
is n* — n, so that we always have Cf’" = S. But this cxponent is not the lowest
possible. By modifying the argument used above we shall obtain in Theorem 16 the
best possible exponent. We first give a reformulation of Lemma 9 necessary for this
purpose.
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Lemma 11. Let g be the least integer such that C% contains at least g non-zero
idempotents € S. Denote these idempotents by ez, . ..., ep 4, Denote further B =
gFg

= {By, ..., B,}. Then:

a) For every je N there isa feB and an s = s(j) such that e;; € C. Hereby:
If j € B, wemay choose s = g; if B+ N and je N — B, we may choose s = s(j) <
<n-—g.

b) For any le N and any B € B we have ey € C5"~ 1,

Proof. a) If j € B, choose = j. Then e;; € C4, so that our statement holds. Sup-
pose therefore B & N and je N — B. The proof follows then in the same way as in
Lemma 9 (part a) writing g instead of r.

b) The proof follows by Lemma 9 by considering the matrix A* (mstead of A) and
writing g instead of r.

Theorem 16. If A is a primitive n x n matrix, we always have CX'_I)ZH =S.

Proof. a) If j € B, we have by Lemma 11b
€ € {ejjy €25 -nns ej"} - Ci('l~1) )

Since the matrix A" ¢ is primitive it contains in each column at least one element
different from zero so that

eji€{ej, ..., e} . Cy? (forany IeN).
Therefore e;; € C ™Y,

b) If B + Nandje N — B, then by Lemma 11 a there is a § € B such that e, € C4
where s < n — g. Hence

- g s+g(n—1)
eiefe;n, e e} = ejplepr, -, epn} = Cf .

If s = n — g, we have e;; e C; 7" D If s < n — g, note again that 4"~¢~* has
in each column at least one element different from zero, so that e;; e {ejl, cees ejn} .
. C7%7* Therefore

- —g— —g+g(n—1
ejleci+g(n ”.C; g-s _ C: gtg(n ).

We have proved: for any j, [ € N the relation e¢;j; € Cr79t9 =1 holds.
But now (by Lemma 10)
n—g+gn—1)=n+gn—-2)<n+m—-1)n-2)=m-172+1

This proves Theorem 16.
Remark. It is known that the result of Theorem 16 is the best possible (sece.g. [5])
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Pe3rome

TIOJIVITPYIIIIOBAS TPAKTOBKA TEOPUU
HEOTPUIATEJIbHBIX MATPUIL

IITE®AH IBAPL] (Stefan Schwarz) Bpatucnasa

HOycts N = {1,2,...,n} u S — MHOXecTBO cHMBOJIOB {e; | i, ke N} BMmecte
¢ mpucoeuHeHHBIM HysieM 0. BBemeM B S yMHOXEHUE €CTBETCBEHHBIM 00Opa3om.
Torma S siBsieTCsl BIOJIHE MPOCTOM NOJIYTPYNIION C HYJIEM.

Ha3oBeM HOCHTEIIEM HEOTPUIIATENBHOM 1 X n MaTpulpbl A = (d;) OAMHOXECTBO
C, c STex ey €S, s KOTOPBIX a;, > 0 BMecTe ¢ HyJseM 0.

ITycre © 0603HaYaeT MyJIBTUILTMKATHBHYIO HOJIYTPYIITY BCEX MOJMHOXECTB U3 S.
Wccnenyst KOHeUHyIo WHKIM4ecKyro nonyrpymmy {C,, C3, C3, ...} anementoB € &,
aBTOp NOJYYWJI HE TOJBKO MHOTHE TEOPEMbI, KacCaloLIHecsi HEeOTpULATeIbHBIX
MaTpHIl, HO HallleJl ¥ HOBBIE XapaKTEePUCTHKU TaKUX IIOHSTHI KaK, HAalpyMep, MHIEKC
MMIIPUMUTHBHOCTU JAHHOM MaTpPHUIBL.
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