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Чехословацкий математический журнал т. 15 (90) 1965, Прага 

А SEMIGROUP TREATMENT OF SOME THEOREMS 
ON NON-NEGATIVE MATRICES 

STEFAN SCHWARZ, Bratislava 

(Received January 1, 1964) 

Dedicated to Profesor A. D. WALLACE 
on the occasion of his sixtieth birthday. 

The purpose of this paper is to give a systematic treatment of the funda­
mental properties of non-negative matrices from the standpoint of the 
elementary theory of semigroups. 

Let A be an n x n matrix with non-negative entries. In large parts of investigations 
concerning non-negative matrices their properties depend only on the distributions 
of zeros and ''non-zeros" in the matrix (regardless of the actual numerical values of 
positive entries). One of the main problems is to study the behaviour of the iterations 
A,A^,A\ .... 

In this paper we give some applications of the rather elementary parts of the theory 
of semigroups to this problem. The substance is the following idea. We introduce 
the semigroup S of "n x « — matrix units" (as defined below). To every matrix A 
we associate a subset of S denoted by C^ and called the support of A. By means of 
Lemma 1 (see below) the multiplicative semigroup of all non-negative matrices is 
homomorphically mapped onto the semigroup ® of all subsets of S (the multiplication 
in © being the multiplication of complexes). © contains only a finite number of 
different elements and the main problem reduces to the study of the cyclic sub-
semigroup {C^, Cj , Cj , ...} of ®. This subsemigroup reflects all properties of A 
which depend only on the distribution of zeros and "non-zeros". 

The treatment essentially differs from the classical methods described in [2]. It is 
in a rather loose connection with the papers [4], [5], [6] and theprobabihstic methods 
used in the theory of finite Markov chains (see e.g. [3], [7]). 

Though, possibly, our treatement is not the shortest one it seemiS to bee very natural 
and it enables a clear insight into the nature of non-negative matrices. 

From the standpoint of the algebraic theory of semigroups the method and some 
results may be considered as a first step toward the description of subsemigroups of 
completely 0-simple semigroups. In contradistinction to the case of a completely 
simple semigroup without zero (which has been treated in [8]) the last problem seems 
— in general -- to be rather difficult. 
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I. PRELIMINARIES 

Let N = {1, 2, ..., n}. Consider the set S of symbols [e^ | i,j e N} together with 
a zero element 0 adjoined. Define in 5 a multiplication by 

/ 0 if j Ф m , 
^e^i if J = m, 

and eij,0 = 0. e^j = 0 . 0 = 0 (for any f, j e N). The set S with this multiplication is 
the simplest case of a non-commutative completely 0-simpIe semigroup (i.e. a finite 
semigroup S which does not contain any two-sided ideal of S different from 0 and S). 
It is often called "the semigroup of л x /z-matrix units". 

Definition. Let A = (a^j) be a non-negative n x n matrix. By C^ we shall denote 
the subset of S containing all such elements eij e S for which a^j > 0 together with 
the zero element 0. 

The set C^ will be called the support of A. 

Lemma 1. If A, В are non-negative, we have С^^ + в ~ ^л^ ^в ^^^^ ^AB — ^A^B-

Proof. The first statement is evident. We prove the second. Let A = {а^^, В = 
= (Ь,,), AB = (с J . 

a) If e 11^ e C^g, then c^f^ = Yj^u^jk > Ö- There is therefore at least one7 suchthat 
j 

^ijbjk > 0, i.e. eij-eC^, ejj^eCB, hence е , / д = e^j^eC^Ce. This implies C^ß с 
CI Q Q . 

b) Let conversely e^ E C^, é'̂^̂  e C^, i.e. eijej^i e С^С^. If j ф к, then e^ej^i = 
= OeCj^ß. If ; = k, i.e. e.-̂ ê ^ 6 Q Q , then c,i = Y^a-^.b^i'^ a^bji > 0, hence 

T 

ец e C^ß. Therefore C^Cg с Cjß. This proves Lemma 1. 

Corollary. For any non-negative matrix A we have С^н — C\ for every integer 
h ^ 1. In particular, if A is idempotent, then C^ is a subsemigroup of S with 

Lemma 2. For any non-negative n x n matrix A we have 

(1) C r ^ < = Q u C J u . . . u C V 

Proof. The elements of C "̂̂ ^ are products of /г + 1 elements 6 S of the form 
»̂112 • ̂ jÜ7 "' ^ictkz- Such a product is 0 except the case when the subscripts follow in 

the following order 

(2 ) ( i i , Ï 2 ) ( î 2 , гз) - - - (^' 
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Since the numbers г\, i2 , . . . , г„+1 cannot be all different, there exists a couple, say 
m < /, such that i^ = /^ The sequence (2) is of the form 

and the corresponding product is the same if we delete (/',„, /,„+i) . . . (ii-i, im)- The 
product contains then at most n factors, i.e. it is yet contained in C^ u C^ u .,. u C^. 
This proves our Lemma. 

The relation (l) implies (in an obvious way) Ĉ "̂  ^ cz C^ u C^ u ... u C^ for any 
integer т ^ L Therefore [ Q u ... u C^] [C^ u ... u C^] с [ Q u ... u C^]. 

This implies: 

Corollary, For any non-negative n x n matrix A the set C^ u C^ u ... и C^ is 
a subsemigroup of S, 

Notation. The multiplicative semigroup of all non-empty subsets of S will be 
denoted by @. 

Consider now a non-negative n x n matrix A, the sequence of powers 

(3) A,A\A\... , 

and the sequence of corresponding supports 
(4) Q,CiCJ,. . . 

While all elements in (3) may be different each from the other, the sequence (4) 
contains in any case only a finite number of different elements e @. 

Let к be the least integer such that C^ = Ĉ * for some integer /̂  > k. Let / be the 
least integer l^ satisfying this relation. Then the sequence (4) is of the form 

(5) c,.,cj,...,cr4c^.cr^...,crMcicr^,....cr4-
and it contains exactly / — 1 different elements e ©. It is well known from the elements 
of the theory of finite semigroups that @^ =" {C^, C\^^, ..., C^~^} is a subgroup of © 
of order d = I — k. 

We have clearly C^ = C^^ '̂̂  for every integer oc ^ к and every integer ß ^ 0. 
The unit element of the group Q}^ is C^ with a suitably chosen Q satisfying к ^ g -^ 

^ / — L It is easy to show directly that Q = id, where the integer т is uniquely 
determined by the requirement к -^ xd -^ I ~~ \ = к + d — 1. 

Moreover ©^ is a cyclic group, i.e. there is an integer t with /c g / ^ / — 1 such 
that 

The number t is, in general, not uniquely determined but the set in the bracket is for 
any admissible t identical up to the order with the set {C\, C^"^\ ..., C^~^} and 
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Notation. Throughout all of the paper the integers к = k(Ä), d = d[Ä), Q = Q{Ä) 
will always have the meaning just introduced. We shall suppose that the number t is 
fixed chosen. The subsemigroup of @ generated by C^ will be denoted by @ -̂

Since CI = Cl^, the set C^ is a subsemigroup of S. We show that this is the unique 
subsemigroup of S among the elements e @ .̂ Suppose for an indirect proof that C^, 
1 ^ T < J is a semigroup (subsemigroup of 5), i.e. C^''* с C^. This implies C^J ZD 
=:> Cl'' =D Cj^' =^... 3 C'/ = Ci , i.e. CI c: C^^ Therefore C^ . C'J с С\'\ Since Cj 
is the unit element of ®^ this says Cl с C j ' ' . Hence C^' = Cj" ' in contradiction to 
the fact that C^l is not the unit element of @ .̂ 

Remark . If/c > 1, it may happen that one of the sets C^, C j , . . . , C^~^ is a semi­
group. Let for instance n = 2 and C^ = {0, ^12}, then Cj = {0} and C^ is a semi­
group, while @^ = {0}. 

We summarise all these results as follows: 

Lemma 3. Let C^ be the support of a non-negative n x n matrix A. The sequence 
(4) contains a finite number of different elements e @. These elements form (with 
respect to the multiplication of subsets) a subsemigroup @^ o/@. If the maximal 
group @^ contained in ®^ has d ^ 1 elements, then 

@̂  = {c^,ci,...,crSc^,....cr-^}. 
Hereby к ^ 1 and C^/' = c\. The group @^ = {C\, ..., C^-"^"'} is cyclic and it 
contains a unique power C^, k^g^k + d - l , which itself considered as 
a subset of S is a semigroup. The set C^^ acts as the unit element of the group @ .̂ 

IL IRREDUCIBLE MATRICES 

A non - negative n x n matrix A = (a^) is called reducible if N = {1, 2, ..., n} 
can be decomposed in two non — void disjoint subsets /, J such that a,y = 0 for 
i e / , je J. Otherwise it is called irreducible. If moreover aji = 0 for j e / , i E / , 
A is called completely reducible. 

An equivalent definition is: Л is said to be reducible if there is a permutation 
matrix P such that P~^AP is of the form 

\B A,, 

where ^1 and A2, are square matrices and 0 is a rectangular zero matrix. If moreover В 
is a zero matrix, then A is called completely reducible. 

It is obvious what is the meaning of the words "a matrix A is completely reducible 
in и matrices" and "a matrix A is completely reducible into v irredubicle matrices". 

It is well known that for a given A the number v = v(A) of irreducible ''matrix 
components" is uniquely determined. (See [2], p. 341.) 

215 



For convenience we shall adopt occasionally an analogous terminology for the 
subsets of S. A subset С of 5 is called reducible if Я == {1, 2, n] can be decomposed 
in two non-empty disjoint sets /, J such that {cij \ i e IJ e J} cz S - C. И moreover 
{eji 17 G J, / e /} с S — C, then С is called completely reducible. 

If A is completely reducible into и matrices, then Л̂  can be decomposed into и 
non-empty disjoint sets iV = J^ u J2 "-̂  • • • ^ Л such that for any a ф ^ we have 
{eij I / e J^, j G Jß} a S - C^. Denoting S^ = {e^j \ i e J^, j e /,,} we also have 
C^ cz {0} u Sj u iS2 u ... u S„. 

Conversely, if iV can be decomposed into и non-empty disjoint sets iV = J^ u J2 u 
u ... u /„ and C^ c: {0} u 5i u ^2 '^ • • • ^ ^u^ then Ä is completely reducible in 
(at least) и matrices. Clearly: If C^ = {0} и S^ ^ S2 и ... и 5"̂ ,̂ then Ä is completely 
reducible into и positive (and hence irreducible) matrices. 

For further purposes we remark: If P is a permutation matrix, then Cp . S = 
= S . Cp = S. Also an irreducible matrix cannot contain a zero row or column. 
Hence for such a matrix we have C^ . S = S . C^ = S. More generally C^ . S = 
= S . C^ = S for any integer h ^ 1. 

Theorem 1. Ä non-negative n x n matrix A is irreducible if and only if 

(6) c^uciu...uc:; = s. 
Proof, a) Suppose that A is reducible and а,у = 0 for iel, j e J (I n J =0 , 

I ^ J = N), so that eij ф C^. Denote A^ = (b^^). For iel, j e J we then have b^ = 
= Z ^im^mj + E ^im^mj = 0- Нспсс в.у ф c\. Aualogously в̂ у ф c\ for any integer 

mel meJ 

h ^ 1. Therefore C^ u Cj u ... u C^ cannot be equal to S. 
b) Suppose conversely that A is irreducible. We have to show that (6) holds. 
Let Fl = {^li,, e^i^, ...^i^J be the „first row" of C^. Hereby r ^ 1. Supposer < п. 

We shall show that F^C^ (i.e. „the first row" of Cj) contains at least one non-zero 
element not contained in F^. Suppose for an indirect proof that F^C^ с F^ u {0}. 
This means: for every e^^ e C^ we have 

Hence, if ^ e {I'l, i2,..., ^ } , then a is necessarily e {/i, ^2, •••> h} ^^^ therefore C^ 
does not contain the elements e^^, where Q e {i^, ...,i^} and aeN — {ij, . . . , / J . 
But this is equivalent to the statement that A is reducible, contrary to the assumption. 

We have proved that F^ u F^Cj^ contains at least r + 1 non-zero elements. 
(Hereby r + 1 ^ n). The same argument implies that (F^ u F^Cj^ u (F^ u 
u F^C^) C^ = Fj u F1C4 u FiCl^ contains at least min {n, r + 2) non-zero 
elements. Repeating this argument n — I times we obtain that F^ u F^C^ u ... u 
u F^Cy^ (i.e. "the first row" of C^ u C^ u .. . u C^) contains at least min (/i, r 4-
+ w — 1) non-zero elements. Since r ^ 1 the last number is equal to n and since 
this argument can be applied to any „row" of C^ (and 0 is ex definitione contained 
in C^ and S) our Theorem is proved. 
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Our next goal is to prove Theorem 2 which gives (for our purposes) a more conve­
nient critérium for the irreducibility of Л. 

Consider an irreducible non-negative matrix Ä and the semigroup ©^. Since ©^ 
contains all powers of C^, we have with respect to Theorem 1 

Note that {e^^, е^г. ..., e„„} с C% For, if ê ^ G C^, 1 ^ w ^ /c + d - 1, then 
e^i e C^ for every integer Я ^ 1 and since some power of C^ is the idempotent e @^ 
(i.e. CI), we have e^ G C^. 

The set C^ u C^+i u ... u C i + ' " 4 s a two-sided ideal of S. For 

S[Cl u ... u c r ^ - ^ ] = [C^ u Cl u ... u С Г ' - ^ ] [C^ u .. . u С Г ' - ^ = 
=̂  [C^ u ... и c r ^ - ^ ] [C^ u Cj u ... u C r ^ - ^ ] cz [C^ u ... u C r ^ - ^ ] . 

Now S is a O-simple semigroup, hence it contains only the trivial two-sided ideals 
(i.e. 0 and S itself). Since C^ ф {O}, we necessarily have 

Since the summands on the left hand side are exactly the elements G @̂ 4, this relation 
can be rewritten in the form 

(7) C'^uCl'u...uC'J = S. 

Notation. For brevity we shall write throughout the rest of the paper C^ = D^. 
(Note again that taking an other admissible t we only influence the order of the 
sets i )^ , i ) j , . . . ,Z) l ) . 

Our result can be formulated as follows: 

Theorem 2. A non-negative matrix A is irreducible if and only if 

(8) D ^ u D l u . . . u D l : ^ S . 

We mention also that Theorem 1 and the relation (7) imply the following 

Corollary. If A is irreducible, then A^ is also irreducible. 
The next theorem locates the non-zero idempotents G S. 

Theorem 3. For a non-negative irreducible n x n matrix A write in the sense of 
the foregoing theorem 

Denote E = {e,i, (?22,..., e„„}. Then 
a) £ с £)^. 

b) £ n D ^ = 0 / o r T = 1,2, . . . , d - 1. 
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Proof. 1) For any idernpotent e^e S there is certainly a т (̂1 ^ т,- ^ d) such that 
e^i e D'\ This implies ê ^ = 4 6 JD '̂'̂  = D^. Hence £ c= D^. 

2) We next show that D^ is the unique summand in (8) containing the whole 
set E. И d = 1, there is nothing to prove. Suppose therefore d > 1. Let т(1 ^ т ^ d) 
be an integer such that E a D\ holds. If е^еВ^, then e.j = e^ejj с D\E a 
с D\D\ = Dj^, hence D^ с D^\ This implies 

Z)̂  с D^^ с D^^ cz .. . с D^^-i)^ cz D^̂  = D^ c: D^^ '̂>^ = D^ . 

Hence D^ = D^, q.e.d. 
3) Thirdly we prove: Let 5̂  be the least integer such that e^ e ОД. Then sjd and 

ец e D^ if and only if SJT. 
To prove this suppose first 5̂  Jf' d. Then we may write d = as^ + ß, where a is an 

integer ша 0 < ß < s,.. Clearly e^ e D^«+i)^'. Hence e,-̂  G D««^ + ^ + ^ ' - ^ == D^D'r^ = 
= ОД"^. Since 0 < 5,- - JÖ < ŝ , this is a contradiction to the definition of s,-. 

Suppose further that e^ e D\ {1 -^ т ^ d) and 5, X '^' We then may write т = 
= as; + ß with 0 < ß < Si, Further, since sJd, we have ê ^ G D^"' '^' . Hence е̂ ^ e 
G од^^+^/)^-«^' = i)^+^ = D^, which is again a contradiction to the definition of 5̂ . 

4) Suppose now that 5̂ , Sj are the least integers for which e^ e ОД, ejj G ВЦ 
respectively holds. We shall show that 5,- = Sj. 

Consider the relations ejj = e^ene^j and e^ = e^jCj^e^. With respect to (8) there 
are integers a, ß{\ -^ a ^ d, I ^ ß -^ d) such that e^ G B\ and e^ e B^. Hence 

. , , G D r " ^ ^ and . , ,GDr^'^•^^ 

Therefore s^a + /? 4- s,- and 5j/a 4- î  + Sj. Now ejj = e^^e^j e ОД^^ implies SJJOL + jo, 
therefore 5̂ /5̂ . Analogously 5 /̂5 .̂ This proves ŝ  = Sj. 

The relation 5̂- = Sj imphes E a B^' = B^^. But by 2) the unique summand in (8) 
having this property is D^. Hence ОД = ВЦ = D^ and Sj- = J for every i = 
= 1, 2 , . . . , /Î. This proves Theorem 3. 

Corollary. For an irreducible matrix A the number d is the least integer s for 

which E cz B^ holds. 

The next theorem is of a decisive importance for all the paper. 

Theorem 4. The sets B^, B^, ..., В\ arepairwise quasidisjoint (Le. the intersection 
of any two of them is the zero element 0). -

Proof. Suppose for an indirect proof that there is a couple (i, j) , 1 S i < J ^ d^ 
such that ОД n D;i Ф {O}. Consider the set 

r = U № n D y , a = 1,2,. . . ,J- 1; ^ = 1,2,...,J. 
(X<ß 

By supposition Г Ф {0}. For any к: (1 ^ к: ^ d) we have 

ол[/>л П D ^ = [ОД n D y ОД cz Dr'^ П Dl^'^. 
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Hereby D^^" Ф D^/"", since {ß + к) ~ {OL -^ к) = ß - oc is not divisible by d. 
Therefore D'̂ T = TD"" с Tand 5 Г = TS с T. This says that T is a two-sided ideal 
of S. Since S is a 0-simple semigroup and Т ф {0], we necessarily have T = S, i.e. 

The set on the left hand side of this relation is contained in D^ u JD^ u ... u D^" ̂  
Hence 

But this is impossible since (by Theorem 3) D^ contains £, while D^ u .., u D^ ̂  
does not contain any non-zero idempotent e S at all. This proves Theorem 4. 

Theorem 5. For an irreducible non-negative n x n matrix A the number d 
satisfies the relation 1 ^ d ̂  n. 

Proof. By Theorem 1 C^ u Cj u ... u C^ = S. If /c > 1, multiply this relation 
by C^~'. Since C'^~'S = S, we get 

All summands on the left hand side are contained in @ .̂ Comparing with the relation 
(see Theorem 2) 

in which no summand can be deleted (since all are quasidisjoint), we obtain that 
d S n, q.e.d. 

A further characterization of the number d will be given in Theorem 7 below. But 
before we now give some informations concerning the "small powers" of C^. 

Theorem 6. For a non-negative irreducible matrix A we have: 

a) The sets C^, Cj , ..., C^ are quasidisjoint. More generally: Any consecutive d 
members C^, C^'^\ ..., C^^"^"^ (for a v ̂  1) are quasidisjoint. 

b) For any V ̂  1 we have 

(9) C^.KJC'/'UCI'^-'U ... = a^'. 

Proof, a) Since E с C'J and C^ = a^E, we have C^ с C'^Cj^ = C^J-^\ whence 
^ С C^ , ...,C^ <=• C^ . bmce {C^ , •••, w ^^" ^j are exactly 

all elements G ®^, and these are quasidisjoint, our statement is evident. 

b ) T h e relation С^аС^^' implies C^^' cz Cl'^^'+^ = Cl^+i, analogously 
Cl^'^^ ci C^2^\ etc., whence 

219 



Since the converse inclusion is obvious, we have 

whence (9) immediately follows. 

Theorem 7. For a non-negative irreducible matrix A the number d is the greatest 
common divisor of all natural numbers oc such that £ n C^ ф 0. 

P roof . If a non-zero idempotent e^sS is contained in C^', then by (9) 
^/^еС^^""^'. Since C^^-'^'e®^, we have C^^+"' - D^^J = C^' with some integer 
Ui^ 1. This implies (by Theorem 3b) djui and since tUi = td + Vi (mod d), we have 
d/Vi. Hence a non-zero idepotent e S can be contained only in some powers of the 
form C^ with I ^ и S t — i and it is certainly contained in all the following 
powers C^, C^^^^^^ 01^^^^, . . . The greatest common divisor of the numbers [ud) 
and td, (t + \)d, [t + 2)d,... is clearly d. 

Consider the relation (8) and define D^ = D\, We close this section with the 
following. 

>r^ Lemma 5. If A is irreducible and e^ G D^ (1 ^ т ^ d), then e^ G D^ 

Proof . With respect to (8) there is an s (O ^ s ^ J — 1) such that e^e D^. 
We have 

e,,^e,,ej,eD\D\^D\^\ 

Since e^i G JD^, we have т -h s = J, q.e.d. 

Corollary. If A is irreducible and Cij G D^ , we also have Cji G D^. 

III. THE POWERS OF AN IRREDUCIBLE MATRIX 

We shall now study the powers of an irreducible non-negative matrix A. 
Let M ^ 1 be any integer. Consider the sequence 

Л",Л^" ,У1^" , . . . 

The set of the corresponding supports 

(10) С%С1",С1",...,ОГ''" 

is clearly a subsemigroup of the semigroup 

^ _ /Г' r^ r^k-l ^k ^k + d-l\ 
^^A — ХУА-» ^A'> --'9 ^ A ^ ^ A ^ ' - y ^ A } • 

Hence the maximal group contained in (10) is a subgroup of 

(И) ®л = {с1,...,сГ''-П = {Ол К}. 
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If au ^ к, then @д„ = {CT, er'К СГ'\ • • •}. Two sets С^\ C^ are identical 
If and only If ßu = yu (mod d), i.e. ß ̂  у [mod dKd, u)]. Denote u, = {d, u), 
di = djui. Then 

®^" = {CJ, Ci"^''",..., Ci'"+''--1)"} . 

This is a subgroup of ®^ of order rfi, so that we may write 

(12) @д„ = {В- D i - , . . . , D l - } . 

A formally other expression for the group ® „̂ is obtained as follows. Consider 
the subgroup of @д generated by D\, i.e. the subgroup 

(13) {D\,D\\.,.,D'X]. 

Here D "̂ = D "̂, i.e. Ĉ «" = Ĉ "̂, if and only if аШ = ßtu{mo& d\ i.e. a = i9(mod rf^). 
Hence (13) contains exactly d^ different elements 

(14) {D:i,Z)^",...,Dl-}. 

This is a subgroup of order J^ of @ ,̂ hence it is identical with (12). 

Summarily we have proved: 

Lemma 6. / / the maximal group @̂  is given by (U) and u^ = (d, u), then @̂ u 
is of order d^ = d/u^ and &^u is given by (12) or (14). 

Lemma 7. If A is irreducible and some power Ä^(v > 1) is reducible, then A^ is 
completely reducible into irreducible matrices. 

Proof, a) We first prove: If A^(v > 1) is reducible and N can be decomposed in 
two non-void disjoint subsets N = I и J such that Cij ф C\ for iel, j e J, we then 
also have Cji ф C\ for j e J, i EL (Hence A^ is completely reducible.) 

To prove this note first that e^j ф C\ (for i EIJE J) imphes Cij ф С/'""^^ = C^2'^\ 
Since (by Theorem 6) C^^ c: C^2'^\ it is sufficient to prove that е^фС^^^^ Now 
^dt+t; ^ 2)^ ^-^j^ g^j^^ ^̂  1 ̂  T ̂  J. Hence it is sufficient to prove that if г,-̂ -̂  
Ф D\{i EI, j E J), we also have е,^ ф D\{j e J, i EI). Suppose for an indirect proof 
that CjiED'^, By Lemma 5 we then have ê .̂ e D1"^ = D1"'D^'"^^^ = D <̂̂ -i> 
(hereby D^ = £>!). On the other hand eiJфD%iEI, j e J) implies еифП''/~^\ 
This contradiction proves our statement. 

b) Suppose now that A is irreducible and A\v > 1) is reducible. By a) A^ is 
completely reducible and there is a permutation matrix P such that 

0 ^2, 
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If A^y Al are irreducible, Lemma 7 holds. Suppose therefore that e.g. A^ is reducible. 
Then there is a permutation matrix Q such that 

lA\ 0 0 \ . 
QA^Q-' = [B, Ä[ 0 

\ o 0 A2I 

(Since A is irreducible none of the diagonal block matrices can be a zero matrix). 

[A' 0 
Now the last matrix can be considered as a reducible matrix of the form ( ^ 

\B M 

where В = Р Л , M = ( "̂ ^ ^ V Since QAQ~^ is irreducible and {DAQ'^Y is 

reducible, and of the form | ^ | , it follows by the statement proved sub a) that В 
\B M J ^ 

is necessarily a rectangular zero matrix. Hence B^ is a zero matrix and we have 
QA'Q-' = d i a g ( ^ l , ^ ï , ^ 2 ) . 

This proceeding can be repeated until all diagonal square matrices are irreducible. 
This proves Lemma 7. 

Theorem 8. Let A be a non-negative irreducible matrix. Denote ii^ = {d, u). 
Then A" is completely reducible into u^ irreducible matrices. 

Proof, a) We first show that A*^ iscomplety reducible into Wj irreducible matrices 

Denote 

The set Z^^, which is equal to D\ vj D^" u ... u D^̂ " is the support of the matrix 
В =. A"' + A^"' -{- . . . + Л^^"^ 

Consider the decomposition of S into quasidisjoint summands of the following 
form 

Define also Z„ = D X = ^A^W 
For к = 1, 2, ... , Ui let /^ = {i^^\ 4"^ •••, li^J} be the set of all indices such that 

{ец^(к), ец^ос),..., e^i^^^oc)} e W^Z^ . 

We have J^ u J2 u .. . u /„^ = N and J^ n Jp^ = 0 for /c Ф A. Moreover J^ Ф 0 
for every к = 1, 2 , . . . , м-̂ . For, if there were J,̂ ^ = 0 for some KQ(1 S ^O = ^^l) the 
''first row" of D^Z^^ would cousist of zeros, and consequently the same would be true 
for D^°'̂ ^Z„ for every integer ft ^ 1. But this is impossible, since then Dyz„ u 
u D^^^'^^Z^u .. . u Oy^^^-^Z« cannot be equal to S, a contradiction with the 
irreducibihty of Л. 
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We next prove that 

a) for every к we have 5^ = {ец | / e J ,̂. / e J^} c: Z„, 
ß) while if / e J^, le J^, к Ф Я, we have e^ фZ„. 

a) Since e^,- e D;iZ„ = U D^J^'''\ we have by Lemma 5 
Q = 0 

d i - 1 dt-1 

hence 

ß) Since eu e D\Z^, we have e^ e О^Г'^'^'^и and 

and this last set is different from Z„ since d^ii^ — к + À = d — к -^ À ф O(mod Wj). 
Now since N — J^^jJi^---^ ^щ^ w^ hsLwe 

(15) Z„ = { 0 } u S i u 5 , u . . . u 5 „ . , 

where 5^ n S^ = 0 for a ф ß. 

The relation (15) shows that В is completely reducible into и^ positive (and hence 
irreducible) matrices. This implies that A"^ is completely reducible into г/̂  irreducible 
matrices. For, if Л"̂  were (completely) reducible into 112 > Ui matrices, В would 
be completely reducible into t/2 matrices, a contradiction with (15). 

b) Consider now the matrix A". Л" is either irreducible or by Lemma 7 completely 
reducible into irreducible matrices, i.e. there is a permutation matrix P such that 

(16) Р-ГА"Р = dmg {B„B„...,B,) 

with Bi irreducible and a ^ 1. By a) A'" is completely reducible into MJ = (и, d) 
irreducible matrices. Since (16) implies 

P-'A'"P = ding {B[,Bl...,Bl), 

we clearly have a ^ u^. 
On the other hand recall that C^ с C"/'"^. Since C^^^'^e®^, we have C"/^' = 

= C'J^ for some w (1 ^ м̂  ^ d). Hence ы + dt = wt (mod d). Now (d, и + dt) = 
= {d, wt), and since (d, t) = 1, we have (d, w) = (J, w). By a) the matrix A'"^ is 
completely reducible into (vv, d) = (w, <i) = н^ irreducible matrices. Since the support 
of A" is a subset of the support of A'''^ we conclude that A" is completely reducible 
in at least Wj irreducible matrices. Therefore a ^ w-. The equality a = u^ comoletes 
the proof of our theorem. 

An immediate consequence of Theorem 8 is 
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Theorem 9. IfÄ is a non-negative irreducible matrix, then Л" is irreducible if and 
only if{u, d) = 1. 

In the course of the proof of Theorem 8 we also proved the following 

Corollary. With the same notations as above the matrix A"* + A^"^ + .. . -f A^^"^ 
is completely reducible into u^ positive matrices. 

Remark . It should be noted that the matrix Л"' itself is (completely) reducible 
into not necessarily positive matrices. This is shown on the following simple example. 
Let 

/0 1 0 0\ 
' o 0 1 01 
0 0 0 1 r 

a 0 0 0/ 
Then 

A^ = 

/0 0 1 0\ /0 0 0 l\ / 1 0 0 0\ 
' O O O 1 3 ^ 1 0 0 0 , ^ 0 1 OO] 

1 0 0 o r 0 1 0 0 0 0 1 01 
\0 1 0 o/ \ o 0 1 0/ \ o 0 0 II 

Here we have t = 1, d = 4. Choose w = 2. Then d^ = (2, 4) = 2 and 

A^ + Л^ 

is completely reducible into two positive matrices while Л^ is reducible only in two 
non-negative matrices. 

Taking и = d y/Q also have the following 

Corollary. Under the same suppositions as above the matrix A^^ is completely 
reducible into d positive matrices. 

IV. DECOMPOSITION INTO PRIMITIVE MATRICES 

Definition. A non-negative matrix A is said to be primitive if there is an integer w 
such that C^ = S. 

A positive matrix is primitive. A reducible matrix cannot be primitive. 
Theorem 2 implies immediately: 

Theorem 10. A non-negative irreducible matrix is primitive if and only if d — 
= d{A) = 1. 
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The sequence (5) has then the form 

Л? ^л? •••? ^ л ? ^ л ~ W — ••• 

Theorem 11. If A is primitive, then every power Л" is primitive. Conversely, if A^ 
for some w ^ 1 is primitive, then A is primitive. 

Proof, a) C^ = S implies C^^ = C^^u = S. b) By supposition there is an integer Q 
such that {Cj^Jf = 5. This implies (C^)"^^ = -S, which says that A is primitive. 

Let A be irreducible and card @^ = (i. Suppose that A^,A^,..., A" are all 
irreducible. By Theorem 9 we necessarily have (1, d) = (2, d) = ... = (n, d) = 1. 
Since (by Theorem 5) d :^ n, this implies d = 1. Hence 

Theorem 12. If A, A^, . . . , A" are all irreducible, then A is primitive. 

Theorem 13. Let A be non-negative irreducible matrix with card®^ = d. 
Then A^ is completely reducible into d primitive matrices and d is the least integer и 
for which A" is reducible into primitive matrices. 

Proof, a) By Theorem 8 the matrix A*^ is completely reducible into d irreducible 
matrices, i.e. there is a permutation matrix P such that 

PA'P-' = d i a g ( ^ i , . . . , ^ , ) 

with irreducible A^,..., A^. This relation implies 

PA'^'P-^ = disig{A[,...,A'a). 

Now by the Corollary at the end of section III A^'^ is completely reducible into d 
positive matrices. Hence A[,..., A^ are positive and therefore A^,..., A^ are primitive. 
(We use hereby that fact that the decomposition and diagonalization of A^^ into 
positive matrices is up to the order of summands uniquely determined). 

b) Let now и < d. Denote u^ = (u, d) < d. Л" can be decomposed into i/̂  
irreducible matrices, i.e. there is a permutation matrix Q such that 

(17) ß - M " ß = d i a g ( ß „ . . . , B j . 

If all В I, ...,B«i were primitive there would exist a number WQ such that for all 
w > WQ the matrices B"^, ...,BJJj would be positive. Choose h so that hdt > WQ. 
Then (17) implies 

ß-M«̂ ^̂ ß = diag(^f,...,<0. 

The matrix to the left is of the form diag (A^,..., A^) with positive A^,..., A^, while 
to the right we have only u^ positive matrices. This contradiction proves that 
Bi,..., ß„j cannot be all primitive, which completes the proof of our theorem. 
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V. THE EXPONENT OF A PRIMITIVE MATRIX 

For a primitive matrix Ä there is an integer w such that C^ = S. In this section we 
find estimations for the number w. 

The results formulated in Theorems 14 and 16 are known. (See [1], [5].) 
We begin with the following 

Lemma S.IfA is irreducible and A has at least one non-zero in the main diagonal, 
then A is primitive. 

Proof. Since C,, contains a non-zero idempotent e S, so does C^ for every г; > 1. 
The group @^ = ( D ^ , ..., D^} contains necessarily a unique element since otherwise 
we would have a contradiction with Theorem 3. Since d — 1, Ais primitive. 

Lemma 9. Suppose that A is a non-negative irreducible n x n matrix (n > 1) 
containing r > 0 non-zero elements in the main diagonal, i.e. {^ß^ß^, ....Cß^ß^] cz 
с C^. Denote В = {ß^, .,., ß^}. Then 

a) To every je N there is a ßeB and an s — s{j) such that ejpG C\. Hereby: 
If j e B, we may choose s — \. If В ^ N and j e N ~ B, we may choose s = 5(7) ^ 

b) For any I e N and any ß e В we have Cßi e C^~^ 

Proof, a) If / G В, then ejj G C^ and our statement is true with 5 = 1. We may 
restrict ourselves to the case В Ф N and j e N ~ B. 

Suppose for an indirect proof that C^, v > n — r, is the least power of C4 for 
which e-jß G C^ holds (for some ß G Б ) . Then there exist v different integersy, а^^а^, •.., 
. . . ,ay_i all e N — В such that Cjß = Cj^^ . e^^^^ ... e^^^^ß. Since v ^ n — r + 1 the 
set N would contain at least (n — г -h 1) + г = n 4- 1 elements, which is a contra­
diction. 

b) Let /, ß be fixed. The irreducibility implies the existence of a Я = Я(/, ß) ^ n 
such that Cßi G Q . We have therefore Cßi = Cß^^ . e^^^^ ... ^^^..^a^-i • ̂ ал-i j ^^^^ ^̂ ^ 
factors in Сд. Choose À as smail as possible. If I = ß, the idempotent Cßß is clearly 
contained in C^"^ Suppose therefore ^^ф /. Then ^, a^, «2? • • •? ^i- i^ ^ ^̂ "̂  ̂ ^̂  different, 
hence X + I ^ n, so that A = A(/, ^) ^ ?i — 1. If Я = /r — 1, our statement is 
proved. If Я < fî — 1, we many insert at the beginning e"ßß^~^ so that Cßi = e^jß^'^ . 
• ^ßi e CY^~^' ' C\ = CY^' This proves our Lemma. 

Theorem 14, If A is a non-negative irreducible n x n matrix [n > 1) with r > 0 
non-zero entries along the main diagonal, then (;7^«-r-i __ ^ 

Proof. Let j and / be fixed chosen. ïf В = N, i.e. r = /i, we have by Lemma 9b 
Cßi G C^~^ for any /?, leN, so that C^^ == S. Suppose therefore В ^ N. With the 
same notations as in Lemma 9, there is SL ß e В and a 5 = 5(7) such that Cjß eC^^. 
Further by Lemma 9b (e^j, eß2. ..., Cß^} с Cд"^ Hence 

^ji ^ {^ju ^]ъ • • •. ^jn} = ^лД^>1 ' ^fn^ • • •' ^/iJ ^ ^ Г " " ' • 
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If s = s{j) = п - г, we have eji e Cj" ' ^ If 5 = s{j) < n - r, multiply both sides 
by C'^'^"*. Since Л""*""* contains in each column a non-zero element, we have 

e,, 6 {ej„ ej^,..., e,„} СГ"' <= с Г " " ' " < - ' - • ' * = C j " — ' . 

This proves our Theorem. 

Remark . It is known that this result is the best possible. (See [1].) 
If all entries in the main diagonal of Л are zeros, it is natural to find an exponent g 

such that the support of Ä^ contains non-zero idempotents e S and use Theorem 14. 
To this purpose we prove the following 

Lemma 10. Let Abe a primitive n x n matrix with n > I. Then there is a positive 
integer g ^ n — 1 such that C^ contains at least g non-zero idempotents e S, 

Proof, a) If Л is primitive, there is at least one row in A that contains at least two 
non-zero elements. For, if each row of A contains a unique element different from 
zero, then there is either a zero column or there exists a permutation matrix В such 
that C^ = Cß, In both cases A cannot be primitive. 

Without loss of generality suppose that the first row of A. contains at least two 
elements different from zero. By the proof of Theorem 1 (part b) the "first row" 
of C^ contains at least one element not contained in "the first row" of C^. Analo­
gously Cj contains in the "first row" at least one element not contained in the "first 
row" of C^ u C^, and so on. This implies that the "first row" of C^ u ... u C^~^ 
contains all elements e^^, e^^, •••, ^ы Hence e^^ e C\ with g ^ n — 1. 

b) Let g be the least integer such that Q contains a non-zero idempotent e S. 
IÏg = 1, our statement is trivially true. If ep^p^ e C^, ^ > 1, we have 

^^l/?l == ^ßißl^ßlßi ••• ^ßg-ißg^ßgßi 

with all factors in C^. Hereby, clearly, all integers ß^, ß^,.,,, ßg are different one from 
an other. But then the following g — I elements (arising by cyclic permutations) 

^ßzßl == ^ßlßi^ßißA ••' ^ßgßl^ßi.ßl ' 

PgPg 

are also contained in C^. This proves our Lemma. 

Theorems 14 and 10 imply 

Theorem 15. Let A be a primitive n x n matrix. Let g be the least integer for 
which C^ contains a non-zero idempotent e S. Then с^ш-д-х) _ ^ 

The exponent g[2n ~ g - I) takes its greatest value for g = n - 1 and this value 
is n^ ~ n, so that we always have c^^"" = 5. But this exponent is not the lowest 
possible. By modifying the argument used above we shall obtain in Theorem 16 the 
best possible exponent. We first give a reformulation of Lemma 9 necessary for this 
purpose. 
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Lemma 11. Let g be the least integer such that C^ contains at least g non-zero 
idempotents e S. Denote these idempotents by Cß^ß^^ •-., ^̂  ^ . Denote further В = 
= {ßw'.ßgYThen: 

a) For every jeN there is a ß e В and an s = s{j) such that Cjß e Q . Hereby: 
If] e B, we may choose s = g;ifB + N and j e N - B, we may choose s = s(j) ^ 
й n - g, 

b) For any I e N and any ß e В we have Cßi e C^(«-i). 

Proof, a) If j e B, choose ß = j . Then Cjj G Q , so that our statement holds. Sup­
pose therefore В ф N and j e N - В. The proof follows then in the same way as in 
Lemma 9 (part a) writing g instead of r. 

b) The proof follows by Lemma 9 by considering the matrix Ä^ (instead of A) and 
writing g instead of r. 

Theorem 16. If A is a primitive n x n matrix, we always have c^"""^>^+i = s. 

Proof, a) If J G В, we have by Lemma l i b 

ej,E{ej,,ej2,,,.,ej„}czCfK 

Since the matrix Л""^ is primitive it contains in each column at least one element 
different from zero so that 

ejie{ej,,...,ej„}.Cr^ (for any I e N) . 

Therefore ^;j G С Г ' ' ' ' ^ " " ' ^ ' 
b) If Б Ф iV and j E N - В, then by Lemma 11 a there isa. ß e В such that Cjß e C^ 

where s ^ n — g. Hence 

eji^i^ju ej2, ..., ej„} = Cjßieß,, ..., e^J c: c f ^(«"D . 

If s = 71 - ^, we have Cji e c^-^+^("-i). If s < n - g, note again that A'^'^-' has 
in each column at least one element different from zero, so that Cji e {cj^,..., ejn} • 

^n-ff-s Therefore 

^ ^r'^ + gin-l) Y^n-g-s ^ ^п-д + д(п-1) 
^jl ^ ^A • ^A — ^A 

We have proved: for any j , I e N the relation eji e c^~^+â'("~^) holds. 

But now (by Lemma 10) 

n - g + g(n - 1) =: n + g{n - 2) S n -i- {n - l){n - 2) = {n ~ 1)^ 4. l . 

This proves Theorem 16. 

R e m a r k . It is known that the result of Theorem 16 is the best possible (seee.g. p ] ) -
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Резюме 

ПОЛУГРУППОВАЯ ТРАКТОВКА ТЕОРИИ 
НЕОТРИЦАТЕЛЬНЫХ МАТРИЦ 

ШТЕФАН ШВАРЦ (Stefan Schwarz) Братислава 

Пусть N = {1,2, ..., п} и S — множество символов {ei^ \ i, ке N} вместе 
с присоединенным нулем 0. Введем в S умножение естветсвенным образом. 
Тогда S является вполне простой полугруппой с нулем. 

Назовем носителем неотрицательной пхп матрицы Ä = (ац^ подмножество 
Cj^ CZ S тех eik Е S, для которых 0;̂ ^ > О вместе с нулем 0. 

Пусть © обозначает мультипликативную полугруппу всех подмножеств из S. 
Исследуя конечную циклическую полугруппу {С^, С^, С^,...} элементов е @, 
автор получил не только многие теоремы, касающиеся неотрицательных 
матриц, но нашел и новые характеристики таких понятий как, например, индекс 
импримитивности данной матрицы. 
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