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SECTIONS OF DYNAMICAL SYSTEMS IN E?

OToMAR HAJEK, Praha

(Received December 7, 1963)

It is shown that every section of an abstract dynamical system in E2, if it
is a locally connected continuum, is an arc or a simple closed curve. Further
results concern existence of local sections with special properties, in abstract
dynamical systems on uniformisable spaces.

For dynamical systems defined by differential equations on euclidean spaces E”
(and, more generally, on differentiable n-manifolds), the local structure of the
trajectories near a noncritical point is described by the ‘characteristic neighbour-
hood”; this consists of points on arcs of trajectories which intersect some (n — 1)-
dimensional non-tangent hypersurface.

Secondly, for abstract dynamical systems on metric spaces (and, more generally,
on uniformisable spaces), the local structure near a non-critical point is described
by the Whitney-Bebutov theorem, affirming the existence of a closed set or section,
which plays the role of the non-tangent hypersurface. The situation may be described,
up to a homeomorphism, in infinite-dimensional Hilbert space (countably infinite if
the carrier space is metric).

Now, possibly one cannot define differential systems on abstract spaces; however,
one may easily have abstract dynamical systems (non-differentiable!) on euclidean E”,
and this concept is most useful for practical applications. The Whitney-Bebutov
theorem still applies; and then there arise questions as to further properties of the
sections: e.g., is a section (n — 1)-dimensional? (The answer is affirmative if the
section is itself locally euclidean). The present paper is devoted to this class of
questions.

Let P be a separated uniformisable space (cf. [1]). A dynamical system on P is
a mapping @ such that

(1) ®: P x E' - P is continuous onto (the value of @ at (x, 9) will be denoted
by x ® 9), and

(2) (x@sl)(_BSZ:x@(\gl +\92), xEP, 916 El.
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(See also [4], p. 346.) We shall occasionally use x @ 3, + 3, to denote the element
of (2); and, in a similar sense, x @ — 9 instead of x @ (— 9). For X =« P, A = E',
X @ A will denote the set of all x @ 3 with x € X, 3 € A; and also write X @ 93 in
place of X @ {9}, etc.

Lemma 1. x ® 0 = x for x€ P.

Proof. From(2) wehave (x ® $) @0 =x@® I +0=x @ J,sothat y @ 0 = y
for all y of the form x + 9, i.e. in range ®. However, from (1), ® maps onto P.

It is immediate that, for fixed 9 € E', the mappings @ § : P — P defined by
(x)®9=x® 9 form a (topological) group of continuous mappings. Hence each
@ & is a homeomorphism of P; and, in particular,

(VXg@9=u(X,®9). Xod=X3
etc. Furthermore,

Lemma 2. If X < P, A  E' and A is compact,then X ®@ A = X @ A.

Proof.Inanycase X @ A < X @ A, since @ is continuous in P x E'. To prove
the opposite inclusion, take any x€X @ A. Then x, @ 9, - x for generalized
sequences x, € X and 3, € A. Since 4 is compact, there is a convergent subsequence
9, - 9y € 4, and then

Xp=(x DY) D -9 >x@® — 9,
and necessarily x @ — 9, € X. Thus
x=(x® —-9)®%eXdA
as was to be proved.

The following lemma is well-known.

Lemma 3. The set of all x € P which have x = x ® 9 for all 3 E" (the critical
points of @) is closed.

The proofis almost trivial. If x is a limit of a generalised sequence of x,, then also
X, ® 9 - x @ 9; if the x, are critical, x, ® 3 = x, — x, and hence x ® 3 = x. This
holds for all 3 € E!, i.e. x is critical.

Definition. A subset S = P is a section (of length 7. > 0) if
xES, x® IeS, |9| <2 implies 3=0.

(Also see [4], p. 352.) Obviously every subset of a section is itself a section, with
any length < . Obviously a section of length 4 cannot meet any cycle with (primitive)
period < 1; in particular, it cannot meet a critical point.
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Now, the closure of a section need not be a section (of any positive length). Also,
if we have two sections S,, S, which are sufficiently far apart (in a certain sense),
then S; U S, will again be a section. Thus interest centers more around closed con-
nected sections. Finally, an empty set, and also a set consisting of a single non-
critical point is trivially a section. We are interested in rather richer sections than
these.

Theerem 1. Let @ be a dynamical system on a 2-manifold P. Then every section S
which is a locally connected continuum is either a simple arc or a simple closed
curve.

In the proof, two non-trivial parts will be separated out as lemmas. We assume the
situation described in the premiss of the theorem.

—

Lemma 4. If there is an arc axb < S then locally at x, S is an arc (in fact, the

arc axb).

Proof. Let y = p(o), Ial < 0, > 0, be a parametrisation of axb, p(0) = x.
Let 24, be the length of S. Then the mapping h defined by

h(9,0) = p(o) ® 9 (|9] = 4o, |0] < 00)

is continuous and 1—1 into a 2-manifold P. Thus it is a homeomorphism, and the

image of the interval in E? is a closed simplex s> in P (the Invariance of Domain

Theorem); in particular, s® is a neighbourhood of x. Obviously S meets s* only at
~~

axb, by choice of 1,. This proves the lemma.

Lemma 5. S is a local dendrite.

Proof. Since P is a 2-manifold, i. e. locally euclidean, it is metrisable. We shall
show that there is a positive lower bound to the diameters of simple closed curves
in S (this implies our lemma: cf. [3], p. 228). Since S is compact, it suffices to show
that any x € S has a neighbourhood U such that there are no simple closed curves
entirely in U n S.

There is a neighbourhood U, of x anda A€ E' such that 0 < 24 < length S and
Uy (Uy @ A) = 0; since otherwise there would exist arbitrarily small $ with
Xy, = X, X, @ 3 — x, although x € S is noncritical. There is a homeomorphic image U
of an open disc in E?, with x e U < U,,.

Now assume there exists a closed curve C < U n S. Then S separates U; let x, be
a point in the interior of C. By choice of U, xo € U. Since U < Uy, Uy 0 (Uy @ 1) =
= 0, x, @ A4 1is not in the interior of C, and thereisa 3; with0 < 3, < 4, x, ® 9, €
€C < S. We also have (Uy @ — 1) n U, = 0, so that analoguously there is a 9_
with 0 > 3_;, > — A, x, ® 3_, € C = S. But this contradicts 21 < length S and
proves our lemma.

Proof of theorem 1. For this it suffices to show that S is an arc locally at each
x € S; since then it is a routine matter to prove that S, compact connected, is an arc
or simple closed curve.



We already have lemma 5; furthermore, from lemma 4 it follows that S, and hence
also any subcontinuum of S, has no branch points. Hence it remains to prove that
any non-degenerate dendrite without branch points is an arc or simple closed curve.
This is rather obvious; and may be proved directly, using the basic property of

dendrites D, that distinct points x, y of D are on a subarc xy < D uniquely determined
by its end points [3, p. 225]. (A possible proof proceeds via the Zorn lemma to obtain
a saturated arc in D.)

The idea of this theorem (but not its proof) goes back to [5]. The situation con-
sidered there concerned a single differential equation y’ = f(x, y) with x, y, f(x, y) €
€ E! and f continuous, but without unicity assumptions. A set S « E? was called
trajectory-intersecting if there is no solution through distinct points of S. Then [5,
§ 6, lemma] every such S may be continuously completely ordered; and thus [l.c.,
theorem 21] a trajectory-intersecting continuum is a simple arc.

Returning to the general situation treated in theorem 1, the topological structure
of the dynamical system near S is then completely described by the homeomorphism h
constructed in lemma 4. It remains to show that there exist sufficiently many sections-
continua. This may be done in a far more general setting than 2-manifolds. The con-
struction, a mild generalisation (from metric to separated uniformisable spaces) of
the Whitney-Bebutov construction, will be performed in detail, since further con-
sequences will be drawn from it. (Lemma 7 is then the Whitney-Bebutov theorem
[4, pp. 352—357].)

Construction. Let @ be a dynamical system on a separated uniformisable space P;
thus P is completely regular [ 1, chap. IX, p. 9]. Let x; € P be a noncritical point.

There is a 3 #+ 0 with x, + x, @ 3; we may assume, say, § = 1. There is a con-
tinuous real-valued function  on P with

Y(xo) = 0 < Y(xo ® 1) = 1

(if P is metrisable one may take y(x) = o(x, Xo)/e(Xo ® 1, x,)). Define ¢ by

o(x) = j :w(x ® ) do ;

Obviously then

(p(x@s)zr“wx@a)da and %<p(xc+)9)=¢(x@9+1)—¢(x@9)
[

3

are both continuous functions of (x, 9). Since (0/09) p(x @ 9) = 1 for x = x,,
3 = 0, there is a neighbourhood U, of x, and a 2 > 0 such that

(1) ;;,;(p(X@g)>0 for xeU,, |9 <24.
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In particular, @(xo @ 4) > ¢(xo) > @(xo @ —4), and thus there is a neighbour-
hood U, of x, such that )

(2) o(x @ 2) > ¢(x0) > o(x ® —1) for xeU,.

Now take any neighbourhood U of x, with U = U, n U, (particular choices of
this U will, subsequently, imply diverse properties of the section to be constructed).
Finally, set

(3) S ={xeP: o(x) = o(x0)} n(UD(=4 1),
(4) F=S®(-17).

We will now consider some properties of the objects just obtained.

Lemma 6. Both S, F are closed, and x,€ S, U = F. The relations
Q) xeU, plx)=x@JeSs, ]9|§l
define a continuous closed map p of U onto S.

Proof. From continuity of ¢ and lemma 2, S and hence F are closed. Obviously
Xo € S. Take any x€ U; from (2), ¢(x @ 9) = ¢(x,) for some € —~41,21); thus
x @ 3 € S and therefore x € F; this proves U < F.

As concerns the map p, it has just been shown that to any given x € U there is
a 9ed—214) with x® Je S, ie. with ¢(x ® 9) = ¢(x,). This 9 is determined
uniquely, since dp/09 > 0 on the arc x @ {—24, 24). Thus (5) indeed define a map
p: U — S. From (3), p is onto.

Continuity: Let x, — x in U (generalised sequence), let px, = x, @ 3,, px = x @ 9.
Take any confinal x;, and from §, select a confinal convergent 3, — . Obviously
then

X, =x,®3,>x®YeSs§,

by closedness of S, and ]9'! < Zsince |9,| £ 4. From unicity, §' = 9, so that px, —
— px. This proves px, — px, i.e., continuity.

Closedness: Let px, — y in S; then px, = x, ® 3, with
take a convergent confinal 3; — 9'. Necessarily, S’l < 1, and

9,

< 4, and one may

Xp=(x @) ® - ->yd -9elU,
since U is closed. Obviously p(y @ —9') = y; thus, closedness.

Lemma 7. S is a closed section of length A, and generates F, a neighbourhood of x,.

Proof. F is a neighbourhood of x, since U is such and U < F; both S, F are
closed (lemma 6).



Assume S is not a section of length 4, and aim at a contradiction. Then there exist
X,x® 3in S with 0 < 9 < 4. From (3), S = U @ (4, 1), so that there is a 9, €
€{—2, A with x ® 3, U = U,. Now apply (1): on the arc

(x @ 90) @ <—'2}'9 21> s

and this includes both x and x @ 9, there is ¢p/d% > 0; thus one cannot have both
o(x) = ¢(xo) = ¢(x @ 9); this contradiction completes the proof.

Theorem 2. Given a dynamical system on a separated uniformisable space P,
and a noncritical x, € P, there exist sections S 3 X, generating arbitrarily small
neighbourhoods of x,. If P is locally compact and [or locally connected, then S
may be taken compact and |or connected, respectively. Furthermore, if P is metri-
sable and has property &, then S may also be taken locally connected.

Proof. Preserve the preceding notation. The first assertion follows from lemma 7;
if 4, U are taken small, then

F=S@®(-1L2cU®(—2i20

may be made as small as one pleases.

If P is locally compact, one may take U compact; from lemma 6, p maps U
continously onto S, which is then also compact. Similarly for connectedness. If P
has property .9, one may take U with property % and hence locally connected
[6, p. 217, 215, 212]; since p is a closed continuous mapping onto, S is also locally
connected [[.c., p. 200].

Now consider several dynamical systems on the same uniform space P, %. For one
of these, say @, perform the construction of S as above; for any other @, define F
by (4) Do lemmas 6, 7 hold, at least for @ sufficiently near to @,? The answer is
affirmative, if “sufficiently near” is reasonably interpreted.

Theorem 3. Assume the above construction for a dynamical system @,. Then the
set of all dynamical system @ on P, U such that (i) S is a closed section of length A,
and (i) U = S @ (=2, A), is a neighbourhood of @, in the topology of uniform
convergence if P is locally compact.

Proof. It may be noticed that the proofs of lemmas 6 and 7 (corresponding to (i)
and (i) depend, in essence, only on the relations (1) and (2), respectively. Now consider
the topology of uniform convergence [2, p. 5] on the set of all continuous maps
P x E' - P, and the its subspace consisting of dynamical systems on P, %. The set
of all dynamical systems @ on P, % such that, on taking U, compact,

Yx @9+ 1) —y(x@® 9 >0 for xeU,, |9 <24
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is open, and contains @, by construction. Similarly, the set of @ with
1 1
J‘ Y((x @ 2) @y 0) do > o(x,) > J Y((x® —2) @y 0)de for xelU,
0 0

is open and contains @,. This concludes the proof of theorem 3.
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Pe3rome

CEYEHUS JUHAMUUYECKUX CUCTEM B E?

OTOMAP T AEK (Otomar Hajek), Tipara

W3yyaroTcst TOMOJIOrMYecKye CBOWCTBA JIOKAJIbHBIX CEYCHMI aOCTPAKTHBIX JWUHa-
MUMECKHX CHCTEM B THXOHOBCKOM Ipocrpanctse (cM. [4] B ciyuae MeTpuueckux
npOCTpaHCTB). OcHoBHast KOHCTPYKLUSL YuTHeil-beOyToBa — B HECKOJIBKO yrpolle-
HOM BHWJE — WCIOJIb3YeTCS IS IEePEHECECHUs] HEKOTOPBIX JIOKATBHLIX CBOWCTB
ITPOCTPAHCTBA HA KOHCTPYUPOBAHHOE CEUCHUE.

Ecnu Hecylliee TOMOJIOTHYECKOE MHOTOOOpa3ue pa3sMEpHOCTU [Ba, TO BCAKOE
JIOKAJIbHO CBSI3HOE KOHTHHYYM-CEUEHUE SIBIISICTCS TPOCTOW Jyroil WJIM MPOCTOM
3aMKHYTOM KpuBOii (Teopema 1). VI3 3THX T€OpEeM CIIeyeT CYEeCTBOBAHUE TPAHCBED-
CaJIbHBIX KPBIBBIX, MPOXO/SILMX 4Yepe3 Hamepen 3aAaHHYI0 HEKPUTUYECKYH) TOYKY,
B a0CTPAaKTHBIX CUCTEMAaX Ha MJIOCKUX MHOTOOOpa3usix.

Hakonel, noka3ano (Teopema 3), 4TO CeYeHME U3 T. 2 OCTACTCS CEYCHHEM NPU
MaJIbIX M3MEeHEHHAX JUHAMMYECKON CHCTeMBbI (B PABHOMEPHON TOMOJIOTHM).
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